Electronic Supplementary Information

Investigation of the electrophilic reactivity of the cytotoxic marine alkaloid discorhabdin B

Cary Lam, Tanja Grkovic, A. Norrie Pearce, and Brent R. Copp*

School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.

b.copp@auckland.ac.nz

Contents:

- S3 **Fig. S1.** ¹H NMR spectrum of **17** TFA salt in CD₃OD (600 MHz) showing 1-substituteddiscorhabdin D- (blue) and discorhabdin W-type (red) resonances.
- S3 Fig. S2. ${}^{1}H{-}^{13}C$ HMBC spectrum of 17 TFA salt showing a crucial correlation from H-1 to C-26 to establish connectivity of the two subunits.
- S4 **Table S1.** NMR data for **17** TFA salt in CD₃OD.
- S5 Fig. S3. ECD spectra of 17 (red) and (-)-discorhabdin H (6) (blue).
- S6 Fig. S4. 1 H NMR spectrum (CD₃OD, 400 MHz) of 11.
- S7 **Fig. S5.** 13 C NMR spectrum (CD₃OD, 100 MHz) of **11**.
- S8 Fig. S6. COSY NMR spectrum (CD₃OD) of 11.
- S9 Fig. S7. Edited HSQC NMR spectrum (CD₃OD) of 11.
- S10 **Fig. S8.** HMBC NMR spectrum (CD₃OD) of **11**.
- S11 Fig. S9. NOESY NMR spectrum (Tmix 600 ms, CD₃OD, 400 MHz) of 11.
- S12 Fig. S10. ¹H NMR spectrum (CD₃OD, 400 MHz) of 12.
- S13 **Fig. S11.** ¹³C NMR spectrum (CD₃OD, 100 MHz) of **12**.
- S14 **Fig. S12.** COSY NMR spectrum (CD₃OD) of **12**.
- S15 Fig. S13. Edited HSQC NMR spectrum (CD₃OD) of 12.
- S16 Fig. S14. HMBC NMR spectrum (CD₃OD) of 12.
- S17 Fig. S15. ¹H NMR spectrum (CD₃OD, 400 MHz) of 13.
- S18 **Fig. S16.** ¹³C NMR spectrum (CD₃OD, 100 MHz) of **13**.
- S19 Fig. S17. COSY NMR spectrum (CD₃OD) of 13.
- S20 **Fig. S18.** Edited HSQC NMR spectrum (CD₃OD) of **13**.

- S21 Fig. S19. HMBC NMR spectrum (CD₃OD) of 13.
- S22 **Fig. S20.** ¹H NMR spectrum (CD₃OD, 600 MHz) of **17**.
- S23 Fig. S21. ¹³C NMR spectrum (CD₃OD, 150 MHz) of 17.
- S24 Fig. S22. LR-COSY NMR spectrum (opt for 2 Hz, CD₃OD) of 17.
- S25 **Fig. S23.** Edited HSQC NMR spectrum (CD₃OD) of **17**.
- S26 **Fig. S24.** HMBC NMR spectrum (CD₃OD) of **17**.

Fig. S1. ¹H NMR spectrum of **17** TFA salt in CD₃OD (600 MHz) showing 1-substituted-discorhabdin D- (blue) and discorhabdin W-type (red) resonances.

Fig. S2. ${}^{1}\text{H}{-}^{13}\text{C}$ HMBC spectrum of **17** TFA salt showing a crucial correlation from H-1 to C-26 to establish connectivity of the two subunits.

no.	¹³ C ð	¹ H δ [m, J (Hz)]	COSY	HMBC
1	46.1	4.73 (d, 3.0)	H-2	2, 3, 5, 6, 26
2	65.6	4.45 (d, 3.0)	H-1	1, 3, 6, 17, 19
3	182.4			
4	114.5	6.15 (s)		2, 5, 6
5	171.0			
6	46.6			
7A	38.9	2.89 (under impurity)	H-7B, H-8	5, 8, 20
7B		2.72 (d, 11.9)	H-7A, H-8	5, 8, 20
8	63.8	5.60 (dd, 3.6, 1.1)	H-7A, H-7B	5, 6, 10
10	148.6			
11	167.0			
12	125.6			
14	127.7	7.14 (s)		12, 15, 21
15	122.8			
16A	20.8	3.22 (m)	H-16B, H-17A, H-17B	15, 17, 21
16B	52.0	3.08 (ddd, 16.7, 6.7, 2.6)	H-16B, H-17A, H-17B	15, 17, 21
17A 17D	52.9	4.12 (ddd, 13.9, 7.3, 2.6)	H-10A, H-10B, H-1/B	16, 19, 21
1/Б 10	150.5	5.90 (III)	п-10А, п-10В, п-1/А	16, 19, 21
19 20	101.2			
20	101.2			
21	119.5	7 87 (5)		22 24 25 26 27 41
22	130.3	7.07 (8)		25, 24, 25, 20, 27, 41
23	124.7			
24	170.2	6 66 (g)		22 24 27
23 26	163.5	0.00(s)		23, 24, 27
20	50.8			
27	115 1	4 77 (d. 7 5)	н 20	26 27 29 41
20 29	126.8	6.56(d, 7.5)	H-28	20, 27, 29, 41
31	147.2	0.00 (0, 7.0)	11 20	27, 20, 31
32	166.5			
33	125.8			
35	127.6	7.24(s)		32, 33, 35, 42
36	123.2			,,,,
37	19.3	2.97 (m)	H-38	35, 36, 38, 42
38	46.2	3.90 (m)	H-37	37, 40, 42
40	160.3	~ /		
41	95.8			
42	121.2			

Table S1. NMR data for 17 TFA salt in CD₃OD.

¹H data at 600 MHz, 13 C at 150 MHz.

Fig. S4. ¹H NMR spectrum (CD₃OD, 400 MHz) of 11.

Fig. S5. ¹³C NMR spectrum (CD₃OD, 100 MHz) of 11.

Fig. S9. NOESY NMR spectrum (Tmix 600 ms, CD₃OD, 400 MHz) of 11.

Fig. S10. ¹H NMR spectrum (CD₃OD, 400 MHz) of **12**.

Fig. S13. Edited HSQC NMR spectrum (CD₃OD) of 12.

Fig. S14. HMBC NMR spectrum (CD₃OD) of 12.

Fig. S15. ¹H NMR spectrum (CD₃OD, 400 MHz) of **13**.

Fig. S17. COSY NMR spectrum (CD₃OD) of 13.

13 (6S,8R,3'R) COOH C S 0 AcHN. ΙŻ 20 0 Ξ σ 1, 117, 107 1, 11 11111111 1000.# İİİİqqq. 15. 53 1995 . Ē 0 0 111 Ż 16 4 mdd bpm 8 8 4 20 8 2 8 8 110 8 120 130 2.0 2.5 edited HSQC spectrum (CD3OD) of (-)-discorhabdin B NAC adduct ring open 0 \$ 3.0 3 -0 3.5 D 0 4.0 4.5 0 5.0 5.5 6.0 6.5 • 2.0 4 7.5

Fig. S18. Edited HSQC NMR spectrum (CD₃OD) of 13.

Fig. S19. HMBC NMR spectrum (CD₃OD) of 13.

Fig. S21. ¹³C NMR spectrum (CD₃OD, 150 MHz) of 17.

S23

Fig. S22. LR-COSY NMR spectrum (opt for 2 Hz, CD₃OD) of 17.

Fig. S23. Edited HSQC NMR spectrum (CD₃OD) of 17.

Fig. S24. HMBC NMR spectrum (CD₃OD) of 17.