Electronic Supplementary Information

Hydrogen tunnelling influences the isomerisation of some small radicals of interstellar importance. A theoretical investigation.

Tianfang Wang and John H. Bowie

Department of Chemistry, The University of Adelaide, South Australia, 5005.

Section I Geometric structures and energies.

Fig.S1 Geometries (in Å, deg) of minima and transition state structures optimised at AE-MP2/aug-cc-pVTZ level of theory.

 $TS (CH_3O^{\cdot} \rightarrow {}^{\cdot}CH_2OH)$

H5 117:06 1.0701 S1 1.7098 C3 121.17 97.42 121.77 1.0694 H2 H2	τ (2,1,3,4) = -179.72° τ (5,3,1,4) = -0.27°
[•] CH ₂ SH	
H4 11143 1.0837 108.28 1.7882 C31.0895 H2 11143 1.0837 109.28 H5 CH ₃ S	τ (4,3,1,2) = -117.69° τ (5,3,1,2) = 117.68°
H2 1.4275 52.84 119.51 1.0743 120.55 1.0741 H5	τ (2,1,3,4) = -93.69° τ (5,3,1,4) = -172.62°
$\mathbf{TS} (CH_2SH \to CH_3S)$	
H2 108.91 1.089 108.01 1.089 108.01 1.224 1.2045 109.81 1.12.21 1.0849 1.12.21 1.0849	$\tau (3,1,4,2) = 117.64^{\circ}$ $\tau (5,4,1,2) = -58.80^{\circ}$ $\tau (6,4,1,2) = 121.20^{\circ}$ $\tau (7,1,4,2) = -121.18^{\circ}$
CH ₃ CO ₂ .	
H7 1,3009 06 H2 117,81 92.87 1.8794 1.3510 118,40 C1 1.4820 C4 129.16 1.0794 117.61 137.97 1.1936 H3 05	$\tau (3,1,4,2) = 151.55^{\circ}$ $\tau (5,4,1,2) = -75.77^{\circ}$ $\tau (6,4,1,2) = 104.23^{\circ}$ $\tau (7,1,4,2) = -104.23^{\circ}$
TS (CH ₃ CO ₂ \rightarrow CH ₂ CO ₂ H)	
H7 0.3618 110.37 06 H3 10.37 06 H3 10.37 06 H3 1.0741 122.72 115.48 1.3511 120.74 1.0716 117.20 123.78 1.1916 H2 05 CH ₂ CO ₂ H	$\tau (3,1,4,2) = -179.99^{\circ}$ $\tau (5,4,1,2) = 0.01^{\circ}$ $\tau (6,4,1,2) = -180.00^{\circ}$ $\tau (7,6,4,1) = 0.01^{\circ}$

 $TS (`OCH_2CH_2OH \rightarrow HOCH_2`CHOH)$

 $\begin{aligned} \tau & (3,7,6,1) = 64.60^{\circ} \\ \tau & (4,1,6,2) = -147.95^{\circ} \\ \tau & (5,4,1,6) = -24.30^{\circ} \\ \tau & (7,6,1,2) = -163.50^{\circ} \\ \tau & (8,6,1,2) = -39.17^{\circ} \\ \tau & (9,6,1,2) = 81.23^{\circ} \end{aligned}$

	Methylamino ra	dical (CH ₃ 'NH)	
	Х	Y	Z
N1	-0.705303	-0.037298	-0.268670
H2	0.801231	-0.024979	1.183637
H3	-1.167368	0.749779	0.181881
C4	0.680205	0.026308	0.098982
H5	1.230573	-0.790894	-0.353318
H6	1.127588	0.971087	-0.218853
	1-amino-methy	lene ('CH ₂ NH ₂)	
	<u> </u>	<u>Y</u>	Z
N1	-0.646316	-0.068071	-0.004634
H2	-1.002643	-0.801638	0.582044
Н3	-1.167413	0.783195	0.109755
C4	0.732324	0.072893	-0.012587
H5	1.308893	-0.832361	0.000848
H6	1.125620	0.930445	-0.524465
	TS (CH ₂ 'NH	$\rightarrow (CH_2NH_2)$	
	X	Y	Z
N1	-0 746312	-0.129803	-0.093598
H2	-0.079861	-0 238417	0.954552
H3	-1 154256	0.794605	0.015269
C4	0 677628	0.031979	0.002998
H5	1 251630	-0.841561	-0.251213
H6	1.140905	1.002122	-0.081411
	Methovy rad	ical (CH.O)	
	V V	V	7
C1	0.000220	0 570270	0.00000
U1 Ц2	-0.009339	-0.379370	0.000000
П2 Ц3	-0.439019	-0.990090	0.900243
нл НЛ	-0.459619	-0.801870	-0.900245
05	-0.009339	0.791285	0.00000
	0.00/00/	0.771205	0.00000
	I Ividaov	adiaal (CULOU)	
	nyaroxymetnyl i		7
<u></u>	Δ	I 0.007401	
	0.082426	0.02/401	-0.0649/4
	1.110244	0.985249	0.109280
H3 114	-1.08/482	0./33004	-0.055923
H4 05	1.220404	-0.8/9334	0.100000
05	-0.00/9/3	-0.123473	0.021234
	TS (CH ₃ O ⁻ -	\rightarrow 'CH ₂ OH)	
	X	Y	Z
Cl	0.035099	0.624961	0.000000
H2	0.244458	1.133837	0.931814
H3	-0.980301	-0.069338	0.000000
H4	0.244458	1.133837	0.931814

05

0.035099

-0.743513

0.000000

Table S1 Cartesian coordinates (in Å) of minima and transition state structures, optimised at AE-MP2(full)/aug-cc-pVTZ level of theory.

	Mercaptomethyl radical ('CH ₂ SH)			
	Х	Y	Ζ	
S1	-0.413902	-0.508771	0.317039	
H2	-0.711494	0.571951	1.036348	
C3	1.205118	-0.094573	-0.044361	
H4	1.644213	0.816375	0.303337	
H5	1.763260	-0.786315	-0.640315	
	Methythio ra	dical (CH ₃ S [•])		
	Х	Y	Ζ	
S 1	-0.593665	0.000071	-0.047563	
H2	1.413416	-0.001729	1.152988	
C3	1.189501	-0.000130	0.086793	
H4	1.619490	0.893805	-0.349474	
H5	1.619488	-0.892754	-0.352150	
	TS ('CH ₂ SH	$H \rightarrow CH_3S$.)		
	Х	Y	Ζ	
S 1	-0.643464	0.000000	-0.036440	
H2	0.226338	-0.001665	1.095434	
C3	1.126438	0.000000	-0.048141	
H4	1.655228	0.933019	-0.110360	
H5	1.655234	-0.932675	-0.113186	
	Methanecarboxylic	radical (CH ₃ CO	2')	
	Х	Y	Z	
C1	-1.329669	-0.161044	-0.000039	
H2	-1.628308	-0.716953	-0.882548	
H3	-1.628383	-0.716218	0.882936	
C4	0.165205	-0.060052	0.000003	
O5	0.957143	-0.967575	0.000093	
O6	0.549115	1.210873	-0.000052	
H7	-1.806583	0.813357	-0.000485	

Carboxylmethyl acid radical ('CH₂CO₂H)

	Х	Y	Z
C1	1.358960	-0.229264	0.000018
H2	2.072362	0.570322	0.000088
H3	1.694069	-1.249787	-0.000223
C4	-0.062343	0.139319	0.000007
05	-0.455112	1.264292	-0.000011
O6	-0.931167	-0.895451	-0.000011
H7	-0.455900	-1.731595	0.000156

TO.		.011	CO II)
- 1 - 1	(H.((), ', -	\rightarrow (H	-(()-H)
101	$CH_{2}CO_{2}$	/ UII	$\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}$

		1b (CH ₃ CO ₂	γ CH ₂ CO ₂ H)		
_		Х	Y	Ζ	
	C1	-0.929735	-0.886787	0.000000	•
	H2	-1.426590	-1.128846	0.927163	
	H3	-1.426590	-1.128846	-0.927163	
	C4	0.000000	0.267312	0.000000	
	O5	-0.066155	1.459048	0.000000	
	O6	1.093189	-0.526416	0.000000	
	H7	0.215321	-1.486511	0.000000	

·OCH ₂ CH ₂ OH			
	Х	Y	Z
C1	0.585179	0.069647	0.637364
H2	1.008669	0.857592	1.254041
H3	0.379201	-0.791414	1.276008
O4	1.543116	-0.245662	-0.348678
H5	1.114546	-0.849453	-0.964106
C6	-0.703433	0.550782	0.010379
07	-1.235645	-0.367178	-0.860835
H8	-1.439922	0.866271	0.753877
H9	-0.489009	1.419940	-0.626751

H2	1.008669	0.857592	1.254041
H3	0.379201	-0.791414	1.276008
O4	1.543116	-0.245662	-0.348678
H5	1.114546	-0.849453	-0.964106
C6	-0.703433	0.550782	0.010379
07	-1.235645	-0.367178	-0.860835
H8	-1.439922	0.866271	0.753877
H9	-0.489009	1.419940	-0.626751

HC	CH ₂ CHOH	[
	0112 011011	-

HOCH ₂ °CHOH			
	Х	Y	Ζ
C1	0.661596	0.293416	0.635289
H2	1.086409	0.883320	1.425626
H3	-1.270671	-1.272265	-0.039782
O4	1.582549	-0.217599	-0.220136
H5	1.089166	-0.654281	-0.926990
C6	-0.678278	0.575500	0.080686
07	-1.158667	-0.547567	-0.663197
H8	-1.365176	0.860413	0.875634
H9	-0.649675	1.385177	-0.651621

TS ('OCH ₂ CH ₂ OH \rightarrow	HOCH ₂ ·CHOH)
	moon ₂ emony

		-	/
	Х	Y	Z
C1	0.446506	-0.009392	0.503789
H2	0.632307	0.125779	1.560151
H3	-0.293583	-1.044722	0.410629
O4	1.625096	-0.110235	-0.200132
H5	1.428584	-0.076195	-1.141206
C6	-0.736896	0.680036	-0.082405
07	-1.403575	-0.581639	-0.158120
H8	-1.245433	1.384804	0.568819
H9	-0.551699	1.121460	-1.060687

Table S2 Zero-point vibrational energies (ZPVEs, calculated at AE-MP2/aVTZ, in hartree), single-point energies (calculated at AE-MP2/aVTZ, AE-CCSD(T)/aVnZ, n = D, T, Q, AE-CCSD(T)/CBS, in hartree) and relative energies (in kJ mol⁻¹).

	CH ₃ 'NH	TS	·CH ₂ NH ₂
E _{MP2}	-95.02834	-94.96852	-95.04429
aug-cc-pVDZ	-94.95580	-94.89148	-94.96422
aug-cc-pVTZ	-95.07241	-95.01014	-95.08333
aug-cc-pVQZ	-95.12148	-95.05929	-95.13342
E _{CBS}	-95.18135	-95.11926	-95.19454
ZPVE	0.04999	0.04663	0.05090
$\Delta E_{MP2+ZPVE}$	0	148	-39
$\Delta E_{CBS+ZPVE}$	0	155	-32

	CH ₃ O ⁻	TS	·CH ₂ OH
E _{MP2}	-114.87637	-114.82874	-114.89877
aug-cc-pVDZ	-114.78918	-114.73474	-114.80115
aug-cc-pVTZ	-114.91837	-114.86623	-114.93211
aug-cc-pVQZ	-114.97525	-114.92326	-114.99012
E _{CBS}	-115.03651	-114.9845495	-115.05263
ZPVE	0.03777	0.03361	0.03798
$\Delta E_{MP2+ZPVE}$	0	114	-58
$\Delta E_{CBS+ZPVE}$	0	125	-42

	CH ₂ SH ⁻	TS	CH ₃ S [•]
E _{MP2}	-437.52168	-437.47508	-437.54080
aug-cc-pVDZ	-437.42893	-437.38168	-437.44934
aug-cc-pVTZ	-437.57121	-437.52419	-437.58974
aug-cc-pVQZ	-437.63065	-437.58293	-437.64812
E _{CBS}	-437.69420	-437.64561	-437.71051
ZPVE	0.03190	0.03021	0.03637
$\Delta E_{MP2+ZPVE}$	0	118	-38
$\Delta E_{CBS+ZPVE}$	0	123	-31

	CH ₃ CO ₂ ·	TS	$^{\circ}CH_{2}CO_{2}H$
E _{MP2}	-228.08926	-228.04232	-228.10859
aug-cc-pVDZ	-227.89796	-227.84745	-227.90931
aug-cc-pVTZ	-228.14900	-228.10040	-228.16204
aug-cc-pVQZ	-228.20626	-228.15735	-228.21928
E _{CBS}	-228.26029	-228.21088	-228.27318
ZPVE	0.04863	0.04436	0.04927
$\Delta E_{MP2+ZPVE}$	0	112	-49
$\Delta E_{CBS+ZPVE}$	0	119	-32

	[•] OCH ₂ CH ₂ OH	TS	HOCH ₂ [·] CHOH
E _{MP2}	-229.26374	-229.21469	-229.28965
aug-cc-pVDZ	-229.07313	-229.02399	-229.08859
aug-cc-pVTZ	-229.33190	-229.28394	-229.34915
aug-cc-pVQZ	-229.39409	-229.34585	-229.41137
E _{CBS}	-229.45363	-229.40499	-229.47084
ZPVE	0.07279	0.06871	0.07320
$\Delta E_{MP2+ZPVE}$	0	118	-67
$\Delta E_{CBS+ZPVE}$	0	117	-44

	Vib. Sym.	Approx. type of mode	$\omega^a (\mathrm{cm}^{-1})$	Expt. (cm^{-1})
		CH ₃ s-deform.	1390	1379 ¹
CH ₃ NH		CN stretch	1046	1105^{1}
·CH ₂ NH ₂	<i>a</i> '	NH ₂ scissors	1665	1700 ²
		Deformation	622	600^{2}
	<i>a</i> "	CH ₂ stretch	2880	$2840^{3,4}$
	и	CO stretch	1025	$1047^{3, 4}$
		HCO deform	671	$651 5^{3-5}$
	a^{\prime}	CH _a stretch	2960	2955 ⁶
CH ₃ O [•]	u	CH ₂ stretch	2900	2935 2885 ^{7, 8}
		CH ₂ scissors	1398	$1406+2^{9}$
		Umbrella	1370	1376^{6}
		HCO deform	1398	1233 ^{6, 10, 11}
			1570	1255
	<i>a</i> '	OH stretch	3698	3674.9 ¹²
		CH ₂ a-stretch	3230	3161.5 ¹²
		CH ₂ s-stretch	3150	3043.4 ¹²
		CH ₂ scissors	1504	1459 ¹³
·CH ₂ OH		OH deform.	1330	1334 ^{13, 14}
- 2 -		CO stretch	1222	1183 ^{13, 14}
		HCOH deform.	1048	1048 ^{13, 14}
	а	Torsion	429	420 ^{13, 14}
		H ₂ CO OPLA	177	234 ± 5^{15}
	a_1	CH ₃ stretch	3004	2960 ± 30^{16}
		Umbrella	1321	1313±5 ^{17, 18}
CH ₃ S		CS stretch	753	$727\pm3^{16-18}$
	е	CH ₃ deform.	1458	1496 ± 6^{17}
CUSU			424	42519,20
		Π_2 Uniorenia	434	423

Table S3 Theoretical and experimental vibrational frequencies of minima in different isomerisations

^aCalculated at AE-MP2/aVTZ level of theory.

Section II Tunnelling effects estimated by Eckart method

1. Eckart tunnelling analysis

For Eckart method, the cross-section of the potential energy surface is fitted with the Eckart potential,²¹⁻²³

$$V(s) = \frac{A \exp(\frac{s - s_0}{L})}{1 + \exp(\frac{s - s_0}{L})} + \frac{B \exp(\frac{s - s_0}{L})}{[1 + \exp(\frac{s - s_0}{L})]^2}$$
(s1)

The fitting parameters are

17

$$A = V_r - V_f$$
$$B = (\sqrt{V_r} + \sqrt{V_f})^2$$
$$L = \frac{2\pi}{\omega^*} \sqrt{\frac{2}{\mu}} (\frac{1}{\sqrt{V_r}} + \frac{1}{\sqrt{V_f}})^{-1}$$

where V_f and V_r are the energy barriers with ZPEs (excluding the vibration corresponding to the reaction mode) in the forward and reverse direction, ω^* is the absolute value of imaginary frequency of the transition state. Hence, the transmission probability as a function of energy is

$$\boldsymbol{P}(\varepsilon) = \frac{\cosh(\alpha + \beta) - \cosh(\alpha - \beta)}{\cosh(\alpha + \beta) + \cosh\delta}$$
(s2)

The parameters are

$$\alpha = \frac{4\pi}{\hbar\omega^*} \left(\frac{1}{\sqrt{V_r}} + \frac{1}{\sqrt{V_f}}\right)^{-1} \sqrt{\varepsilon}$$
$$\beta = \frac{4\pi}{\hbar\omega^*} \left(\frac{1}{\sqrt{V_r}} + \frac{1}{\sqrt{V_f}}\right)^{-1} \sqrt{\varepsilon - V_r} + V_f$$
$$\delta = 4\pi \sqrt{\frac{V_r V_f}{(\hbar\omega^*)^2} - \frac{1}{16}}$$

where ε is the collision energy. The rate constant can be calculated by the following equation,

$$\boldsymbol{k}_{Eckart} = \frac{\omega_0}{2\pi} \boldsymbol{P}(\varepsilon) = \frac{\omega_0}{2\pi} \frac{\cosh(\alpha + \beta) - \cosh(\alpha - \beta)}{\cosh(\alpha + \beta) + \cosh\delta}$$
(s3)

Eventually, the temperature dependant rate constant expression for Eckart methods is similar to that of WKB [eqn (4) in the text],

2. Results and discussion

Isomerisation	ω^* (cm ⁻¹)	$V_r(\mathrm{cm}^{-1})$	V_f (cm ⁻¹)	$\omega_{0,\text{forward}} \text{ (cm}^{-1})$	$\omega_{0,\text{reverse}} (\text{cm}^{-1})$
$^{\circ}\mathrm{CH}_{2}\mathrm{SH}\rightarrow\mathrm{CH}_{3}\mathrm{S}^{\circ}$	1688.4	8010.5	12945.5	820.7	755.3
$CH_3O \rightarrow CH_2OH$	2122.2	10426.5	12437.8	978.2	1116.1
$CH_3CO_2 \rightarrow CH_2CO_2H$	2308.6	9838.0	11213.8	368.9	327.9
$HOCH_2CH_2O^{\cdot} \rightarrow HO^{\cdot}CHCH_2OH$	2243.0	9629.6	13031.4	528.5	547.8
CH_3 'NH \rightarrow 'CH ₂ NH ₂	2108.3	12823.2	15333.2	985.7	663.9

Table S4 Key parameters used in Eckart estimation

2.1 CH_3 NH and CH_2NH_2

Fig.S2 Potential energy curve and rate constants for the isomerisation of CH₃'NH to 'CH₂NH₂. (a) Along the intrinsic reaction coordinate (open triangles), the geometric structures and zero-point vibrational corrections were calculated at AE-MP2/aVTZ level of theory. Final energies were determined from AE-CCSD(T)/aVQZ single points at the stationary points. The blue curve is the Eckart fitting of the potential. (b) Temperature dependence of Eckart tunnelling corrected rate constants for forward and reverse reactions.

The results of the Eckart method is shown in Figure S2a, and it is clear that the Eckart potential behaves well in the reverse direction (reverse from TS) of the reaction coordinate, though certain errors emerge at the region of positive *s* values. As it narrows the width of the barrier that the reactant CH_3 'NH 'penetrates', the transmission probability would be different from the value calculated from the IRC, in this case, an increase is observed. This means that the rate constants increase accordingly, illustrated in Figure

S2b, i.e., k_{Eckart} is nearly 1.5 orders of magnitude higher than k_{WKB} at the zero limit. This discrepancy decreases gradually as the temperature increases, to ~1 order of magnitude at 300K. Moreover, the relationship between the rate constants (both forward and reverse) and temperature show similar trends for both WKB and Eckart methods.

2.2 CH_3O and CH_2OH

Fig.S3 Potential energy curve and rate constants for the isomerisation of CH₃O[•] to [•]CH₂OH. (a) Along the intrinsic reaction coordinate (open triangles), the geometric structures and zero-point vibrational corrections were calculated at AE-MP2/aVTZ level of theory, and final energetics were determined from AE-CCSD(T)/aVQZ single points at the stationary points. The blue curve is the Eckart fitting of the potential; (b) temperature dependence of Eckart tunnelling corrected rate constants for forward and reverse reactions.

The Eckart potential narrows the barrier width; moreover, its tail decreases slower than the intrinsic reaction coordinate, with the consequence that k_{Eckart} is about 0.5 order of magnitude higher than k_{WKB} with this discrepancy diminishing. Both methods show a significant increase of rate constant above 200K, giving a half-life of 2.41 (Eckart) and 14.64 (WKB) hr at room temperature, respectively.

2.3 CH_2SH and CH_3S

Fig.S4 Potential energy curve and rate constants for the isomerisation of CH_2SH to CH_3S . (a) Along the intrinsic reaction coordinate (open triangles), the geometric structures and zero-point vibrational corrections were calculated at AE-MP2/aVTZ level of theory; final energies were determined from AE-CCSD(T)/aVQZ single points at the stationary points. The blue curve is the Eckart fitting of the potential; (b) temperature dependence of Eckart tunnelling corrected rate constants for forward and reverse reactions.

2.4 CH_3CO_2 and CH_2CO_2H

Fig.S5 Potential energy curve and rate constants for the isomerisation of CH_3CO_2 to CH_2CO_2H . (a) Along the intrinsic reaction coordinate (open triangles), the geometric structures and zero-point vibrational corrections were calculated at AE-MP2/aVTZ level of theory; final energies were determined from

AE-CCSD(T)/aVTZ single points at the stationary points. The blue curve is the Eckart fitting of the potential; (b) temperature dependence of Eckart tunnelling corrected rate constants for forward and reverse reactions.

2.5 HOCH₂CH₂O' and HO'CHCH₂OH

Fig.S6 Potential energy curve and rate constants for the isomerisation of HOCH₂CH₂O[•] to HO[•]CHCH₂OH. (a) Along the intrinsic reaction coordinate (open triangles), the geometric structures and zero-point vibrational corrections were calculated at AE-MP2/aVTZ level of theory. Final energies were determined from AE-CCSD(T)/aVTZ single points at the stationary points. The blue curve is the Eckart fitting of the potential; (b) temperature dependence of Eckart tunnelling corrected rate constants for forward and reverse reactions.

The tunnelling effects evaluated by the Eckart method are displayed in Figures S2-S6. It is clear that in the cases of CH₃'NH, CH₃O' and 'CH₂SH, the Eckart potential represents the potential energy surface within a reasonable error range, usually narrowing the barrier significantly at the bottom of the barrier. Thus the Eckart tunnelling corrected rate constants are higher at low temperature, though comparable to those obtained by WKB method as temperature increases. As temperature increases, the results of these two methods should coincide with each other; the narrower the potential energy surface, the better this coincidence becomes. However, for the isomerisations of CH₃CO₂' to 'CH₂CO₂H and HOCH₂CH₂O' to HO'CHCH₂OH, the Eckart potential does not provide a good fitting to the potential energy surface. This results in large and incorrect transmission probabilities, leading to high tunnelling corrected rate constants for both forward and reverse directions within the entire temperature range. This is particularly noticeable at low temperature. Therefore, the Eckart method is only applicable to those studied systems when the isomerisation involves a 1, 2 hydrogen transfer.

References for supplementary section.

- 1. D. Radisic, S. J. Xu and K. H. Bowen, Chem. Phys. Lett., 2002, 354, 9.
- 2. T. L. Jansen, I. Trabjerg, S. Rettrup, P. Pagsberg and A. Sillesen, Acta Chem. Scand., 1999, 53, 1054.
- 3. S. C. Foster, P. Misra, T. Y. D. Lin, C. P. Damo, C. C. Carter and T. A. Miller, *J. Phys. Chem.*, 1988, **92**, 5914.
- 4. Y. Y. Lee, G. H. Wann and Y. P. Lee, J. Chem. Phys., 1993, 99, 9465.
- 5. A. Geers, J. Kappert, F. Temps and T. J. Sears, J. Chem. Phys., 1993, 98, 4297.
- 6. M. J. Nee, A. Osterwalder, J. Zhou and D. M. Neumark, J. Chem. Phys., 2006, 125.
- J. X. Han, S. M. Hu, H. B. Chen, Y. Utkin, J. M. Brown and R. F. Curl, *Phys. Chem. Chem. Phys.*, 2007, 9, 3725.
- 8. J. X. Han, Y. G. Utkin, H. B. Chen, L. A. Burns and R. F. Curl, J. Chem. Phys., 2002, 117, 6538.
- 9. S. Y. Chiang, Y. C. Hsu and Y. P. Lee, J. Chem. Phys., 1989, 90, 81.
- D. L. Osborn, D. J. Leahy, E. H. Kim, E. de Beer and D. M. Neumark, *Chem. Phys. Lett.*, 1998, 292, 651.
- 11. T. M. Ramond, G. E. Davico, R. L. Schwartz and W. C. Lineberger, J. Chem. Phys., 2000, 112, 1158.
- 12. L. Feng, J. Wei and H. Reisler, J. Phys. Chem. A, 2004, 108, 7903.
- 13. M. E. Jacox, Chem. Phys, 1981, 59, 213.
- 14. M. E. Jacox and D. E. Milligan, J. Mol. Spect., 1973, 47, 148.
- 15. R. D. Johnson and J. W. Hudgens, J. Phys. Chem., 1996, 100, 19874.
- 16. R. L. Schwartz, G. E. Davico and W. C. Lineberger, J. Elect. Spect. & Rel. Phen., 2000, 108, 163.
- 17. S. Y. Chiang and Y. P. Lee, J. Chem. Phys., 1991, 95, 66.
- 18. M. Suzuki, G. Inoue and H. Akimoto, J. Chem. Phys., 1984, 81, 5405.
- 19. M. E. Jacox, Can. J. Chem., 1983, 61, 1036.
- 20. M. E. Jacox and D. E. Milligan, J. Mol. Spect., 1975, 58, 142.
- 21. C. Eckart, Phys. Rev., 1930, **35**, 1303.
- 22. H. S. Johnston and J. Heicklen, J. Phys. Chem., 1962, 66, 532.
- 23. T. N. Truong and D. G. Truhlar, J. Chem. Phys., 1990, 93, 1761.