Reactive intermediates in the H-phosphonate synthesis of oligonucleotides

Nicholas Powles, John Atherton and Michael I Page

Manuscript ID OB-ART-12-2011-007130

SUPPLEMENTARY INFORMATION

Fig. 1 ¹H decoupled ³¹P NMR timescan for the addition of DPCP (0.19mmol, 0.25M) to triethylammonium ethyl H-phosphonate (0.24M) and triphenylphosphate (0.13M) as internal standard in CDCl₃ at 298K.

A graph of concentration versus time was produced using the integral ratios and the molarity of triphenylphosphate used. All the identified peaks were present and their rate of formation/reaction could be shown as a function of time (**Fig. 2**).

Fig. 2 The reaction of DPCP (0.19mmol, 0.25M) added to triethylammonium ethyl H-phosphonate (0.24M, 15% ethyl H-phosphonic acid) and triphenylphosphate (0.13M) as internal standard in CDCl₃ as measured by ¹H decoupled ³¹P NMR at 298K.

Fig. 3 ¹H decoupled ³¹P NMR chemical shift for ethyl H-phosphonate anion and DPP during the reaction of DPCP (0.19mmol, 0.25M) added to triethylammonium ethyl H-phosphonate (0.24M, 15% ethyl H-phosphonic acid) and triphenylphosphate (0.13M) as internal standard in CDCl₃ at 298K shown in **Fig. 3**

Fig. 4 ¹H decoupled ³¹P NMR timescan for the addition of neat DPCP (0.17mmol, 0.23M) to triethylammonium ethyl H-phosphonate (0.23M) and triphenylphosphate (0.14M) as internal standard in d_3 -acetonitrile in 298K.

Fig. 5 ¹H decoupled ³¹P NMR timescan for the addition of neat DPCP (0.17mmol, 0.23M) to triethylammonium ethyl H-phosphonate (0.23M, 15% ethyl H-phosphonic acid) and triphenylphosphate (0.14M) as internal standard in d_3 -acetonitrile at 298K.

Fig. 6 ¹H decoupled ³¹P NMR chemical shifts for ethyl H-phosphonate and DPP for the addition of neat DPCP (0.17mmol, 0.23M) to triethylammonium ethyl H-phosphonate (0.23M) and triphenylphosphate (0.14M) as internal standard in d_3 -acetonitrile at 298K.

Fig. 7 ³¹P coupled - ³¹P coupled NMR COSY spectra for an equilibrium mixture of bis diethyl pyro-di-H-phosphonate and diphenyl ethyl pyro-H-phosphonate in CDCl₃ at 298K.

Fig. 8 Averaging of 16 scans per spectrum versus collection of 1 scan per spectrum. The larger markers show the data after averaging all 16 scans.

Fig. 9 ¹H decoupled ³¹P NMR timescan for the addition of neat DPCP (0.18mmol, 0.24M) to ethyl Hphosphonate triethylammonium salt (0.23M), triethylamine (0.23M), and triphenylphosphate (0.14M) as internal standard in CDCl₃ at 298K.

Fig. 10 Concentration – time plots for the addition of neat DPCP (0.18mmol, 0.24M) to ethyl H-phosphonate triethylammonium salt (0.23M), triethylamine (0.23M) and triphenylphosphate (0.14M) as internal standard in $CDCI_3$ as measured by ¹H decoupled ³¹P NMR at 298K.

Fig. 11 The second order fit for the reaction of DPCP (0.21mmol, 0.42M) with DPP (0.42M) in the presence of pyridine (0.25mmol, 0.49M, 1.19moleq) and triphenylphosphate (0.29M) as internal standard in CDCl₃ (0.5ml) as measured by ¹H decoupled ³¹P NMR at 298K.

Fig.12 ¹H decoupled ³¹P NMR of diphenylchlorophosphate in CDCl₃

Fig.13 ¹H NMR of diphenylchlorophosphate in CDCl₃

Fig.15 ¹H decoupled ³¹P NMR of triethylammonium ethyl H-phosphonate in CDCl₃

Fig.16 ¹H NMR of triethylammonium ethyl H-phosphonate in CDCl₃

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Fig.18 ³¹P NMR of ethyl H-phosphonate free acid in CDCl₃

Fig.19¹H NMR of ethyl H-phosphonate free acid in CDCl₃

Fig.21 ¹H decoupled ³¹P NMR of diphenylchlorophosphate and triethylammonium ethyl H-phosphonate in $CDCI_3$

6.2ppm ethyl H-phosphonate anion, -4.6ppm diphenylchlorophosphate, -11.7ppm diphenylphosphate anion, -25.0ppm tetraphenylpyrophosphate; the doublet at -3.0ppm is bis diethyl pyro-di-H-phosphate.

Fig.22 ¹H decoupled ³¹P NMR of diphenylchlorophosphate, triethylammonium ethyl H-phosphonate, triphenylphosphate and ethanol in CDCl₃

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Fig.23 ¹H decoupled ³¹P NMR of Bis Diethyl pyro-di-H-phosphonate (IS:triphenylphosphate) in CDCl₃

Fig.24 ¹H decoupled ³¹P NMR of bis diethyl pyro-di-H-phosphonate with diphenylphosphate added (IS:triphenylphosphate) in CDCl₃. Diphenyl ethyl pyro-H-phosphonate is generated as shown by the doublets at -24.0ppm and at -3.1ppm

Fig. 25 ³¹P NMR of bis diethyl pyro-di-H-phosphonate and pyridine in CDCl₃ (IS triphenylphosphate). The metaphosphite formed as shown by triplet at 112.8ppm, a doublet at 113.5ppm and a singlet at 114.0ppm.

Fig.26 ¹H NMR of triethylammonium ethyl H-phosphonate in CDCl₃

Fig.28 ³¹P NMR of triethylammonium ethyl H-phosphonate and diphenylchlorophosphate in CDCl₃

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Fig.30 ¹H decoupled ³¹P NMR of ethyl H-phosphonic acid in CDCl₃

Fig.31 ¹H decoupled ³¹P NMR of bis diethyl pyro-di-H-phosphonate in CDCl₃ (IS triphenylphosphate)

Fig.32 ³¹P NMR of bis diethyl pyro-di-H-phosphonate and diphenylphosphate in CDCl₃

Fig.33 ¹H decoupled ³¹P NMR of bis diethyl pyro-di-H-phosphonate and diphenylphosphate in CDCl₃

Fig.34 31 P NMR of triethylammonium ethyl H-phosphonate, diphenylchlorophosphate and tetrahydrofurfuryl alcohol in CDCI₃

