Electronic Supporting Information of the Manuscript:

"SULFOLEFIN": Highly Modular Mixed S/Olefin Ligands for Enantioselective Rh-Catalyzed 1,4 Addition.

By: Noureddine Khiar, ${ }^{*}{ }^{\mathrm{a}}$ Álvaro Salvador, ${ }^{\text {a }}$ Ahmed Chelouan, ${ }^{\text {b }}$ Ana Alcudia, ${ }^{\text {b }}$ Inmaculada Fernández.* ${ }^{\text {b }}$
Contribution from: ${ }^{a}$ Instituto de Investigaciones Químicas, C.S.I.C-Universidad de Sevilla, cl. Américo Vespucio, 49., Isla de la Cartuja, 41092 Sevilla, Spain. ${ }^{b}$ Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012 Sevilla, Spain.

Table of contents

TOC SI-2
General Methods SI-3
Synthesis of sulfinamide-olefin ("sulfolefin") ligands SI-4
Representative procedure for the 1,4 -addition of boronic acids to enones SI-8
Spectra collection SI-13

General Methods

All reactions were run under an atmosphere of dry argon using oven-dried glassware and freshly distilled and dried solvents. Toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and diethyl ether were dried on an Innovative technology drying system. The metallic precursors were purchased from Strem Chemicals and the rest of the chemicals were obtained from Sigma-Aldrich and used without further purification. TLC was performed on Silica Gel GF254 (Merck) with detection by charring with phosphomolybdic acid/EtOH. For flash chromatography, silica Gel (Merck 230-400 mesh) was used. Chromatographic columns were eluted with positive air pressure and eluents are given as volume to volume ratios (v/v). NMR spectra were recorded with a Bruker Avance DPX400 ($\left.{ }^{1} \mathrm{H}, 400 \mathrm{MHz}\right)$ and Bruker Avance DRX500 ($\left.{ }^{1} \mathrm{H}, 500 \mathrm{MHz}\right)$, spectrometers. Chemical shifts are reported in ppm, and coupling constants are reported in Hz. Routine spectra were referenced to the residual proton or carbon signals of the solvent. High Resolution mass spectra (HRMS) were recorded in "Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla" with a Kratos MS-80RFA 241-MC apparatus. Optical rotations were determined with a Perkin-Elmer 341 polarimeter. Elemental analysis were measured in a LECO TruSpec ${ }^{\circledR}$ CHNS-932 apparatus. Melting points were measured in STUART SMP3 apparatus in open end capillary tubes. Enantiomeric excesses were measured on a Waters alliance 2695 and Agilent Technologies 1200 series apparatus with stationary chiral phase columns (Chiralcel ${ }^{\circledR}$ AD, OD, OD-H, AS-H).

Synthesis of sulfinamido-olefin ("sulfolefin") ligands ${ }^{1}$

General method for the synthesis of DAG-derived ligands

A solution of allylamine ($375 \mu \mathrm{~L}, 5 \mathrm{mmol}$) in THF (7 mL) is cooled to $-78{ }^{\circ} \mathrm{C}$ for 15 min , then a commercial solution of $n-\mathrm{BuLi}(3.2 \mathrm{~mL}, 5 \mathrm{mmol})$ is added dropwise and the reaction is stirred for 2 hours at $-78^{\circ} \mathrm{C}$. This solution is added via cannula over a solution of the corresponding DAG-sulfinylating agent (2.5 mmol). The reaction is stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min , then $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ is added carefully. The phases are separated, the aqueous layer is extracted with EtOAc ($2 \times 10 \mathrm{~mL}$) and the organic extracts are collected and dried over anhydrous MgSO_{4}. The solvent is eliminated under vacuum and the residue is purified by flash chromatography. Eluents are detailed for each case.

(S)-N-allyl-methanesulfinamide (1)

Flash chromatography (EtOAc), yellow oil. Yield: $500 \mathrm{mg}, 78 \%$.
$[\alpha]^{\mathrm{D}}{ }_{20}=-3.0\left(c 0.7, \mathrm{CHCl}_{3}\right)$.
HPLC: Chiralcel ${ }^{\circledR} \mathrm{AD}$ column (n-hexane $/ 2$-propanol, $94: 6,0.5 \mathrm{~mL} / \mathrm{min}$); t_{R} : 33.1 min . (S-isomer), 34.9 min . (R-isomer).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.95-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.11 (bs, 1H), 3.76-3.65 (m, 2H), 2.63 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 134.7,117.4,44.9,41.9$.

[^0]

Elemental analysis: Calcd. for $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NOS}$: C, 40.31%; H,7.61 \%; N, 11.75\%; S, 26.90\%. Found: C, 40.48; H, 7.89%; N, 11.58%; S, 26.92%.

(S)- N -allyl-isopropanesulfinamide (2)

Flash chromatography (EtOAc), yellow oil. Yield: $315 \mathrm{mg}, 87 \%$
$[\alpha]^{\mathrm{D}}{ }_{20}=-10.5\left(c \quad 0.6, \mathrm{CHCl}_{3}\right)$.
HPLC: Chiralcel ${ }^{\circledR}$ AD column (n-hexane $/ 2$-propanol, $90: 10,0.5 \mathrm{~mL} / \mathrm{min}$); $t_{\mathrm{R}}: 30.5 \mathrm{~min}$. (S-isomer), 34.0 min . (R-isomer).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.94-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.50(\mathrm{~m}, 3 \mathrm{H}), 2.78(\mathrm{sep}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.22(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.0,117.2,53.6,46.3,15.6$.
Elemental analysis: Calcd. for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NOS}: \mathrm{C}, 48.94 \%$; $\mathrm{H}, 8.90$ \%; N, 9.51%; S, 21.78\%. Found: C, 49.05; H, 8.91\%; N, 9.31\%; S, 21.96\%.

(S)-N-allyl-p-toluenesulfinamide (3)

Flash chromatography (Hexane:EtOAc,1:1), white solid. Yield: $430 \mathrm{mg}, 67 \%$
$[\alpha]^{\mathrm{D}}{ }_{20}=-24\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
HPLC: Chiralcel ${ }^{\circledR}$ AD column (n-hexane/2-propanol, $90: 10,0.5 \mathrm{~mL} / \mathrm{min}$); $t_{\mathrm{R}}: 14.5 \mathrm{~min}$. (S-isomer), 19.8 min . (R-isomer).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.87-$
$5.80(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{bs}, 1 \mathrm{H}), 3.80$
(dd, $J=5.7$ and $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=4.3$ and $14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.3,134.7,129.5,125.9,117.3,43.6,21.3$

Peak Results

	Name	RT	\% Area
1		14.563	49.61
2		19.846	50.39

Peak Results

	Name	RT	\% Area
1		14.536	99.56
2		19.872	0.44

(R)- N -allyl-tert-butanesulfinamide (4)

Flash chromatography (Hexane:EtOAc, 1:1),yellow oil. Yield: $669 \mathrm{mg}, 83 \%$
$[\alpha]^{\mathrm{D}}{ }_{20}=+12.3\left(c 0.6, \mathrm{CHCl}_{3}\right)$.
HPLC: Chiralcel ${ }^{\circledR}$ AS-H column (n-hexane $/ 2$-propanol, $90: 10,0.7 \mathrm{~mL} / \mathrm{min}$); t_{R} : 13.8 \min. $(S$-isomer), 24.7 min . (R-isomer).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.95-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.39(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.2,117.0,55.7,48.1,22.5$.
Elemental analysis: Calcd. for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{NOS}$: C, 52.13%; H,9.38 \%; N, 8.69\%; S, 19.88\%. Found: C, 52.36; H, 9.26\%; N, 8.39\%; S, 20.10\%.

Peak Results

	Name	RT	\% Area
1		14.870	50.06
2		25.044	49.94

Peak Results

	Name	RT	\% Area
1		13.778	0.48
2		24.710	99.52

(R)-N-cinammyl-tert-butanesulfinamide (5)

Flash chromatography (Hexane:EtOAc, 1:1) Light yellow solid.
$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right): 58-59{ }^{\circ} \mathrm{C}$
$[\alpha]{ }^{\mathrm{D}}{ }_{20}=-36.1\left(c 0.5, \mathrm{CHCl}_{3}\right)$
HPLC: Chiralcel ${ }^{\mathbb{B}}$ OD column (n-hexane $/ 2$-propanol, $90: 10,1 \mathrm{~mL} / \mathrm{min}$); $t_{\mathrm{R}}: 8.0 \mathrm{~min}$. (S isomer), 13.8 min . (R-isomer).
${ }^{1}{ }^{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24$ (dt, $J=6.2,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.94(\mathrm{~m}$, $1 \mathrm{H}), 3.93-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 136.4,132.5,128.5,127.7,126.4,55.7,47.8,22.6$.

Elemental analysis: Calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NOS}: \mathrm{C}, 65.78 \%$; H,8.07 \%; N, 5.90%; S, 13.51%. Found: C, 65.66; H, 7.94\%; N, 6.15\%; S, 13.79\%.

Peak Results

	Name	RT	\% Area
1		8.032	49.99
2		13.919	50.01

Peak Results			
Name RT \% Area 1 8.042 0.37 2 13.877 99.63			

Representative procedure for the $\mathbf{R h}(\mathrm{I})$ catalyzed $\mathbf{1 , 4}$-addition of boronic acids to enones

A mixture of sulfolefin ligand $5(7.1 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\left[\mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{Cl}\right]_{2}(6.0$ $\mathrm{mg}, 0.015 \mathrm{mmol})$ is stirred for 0.5 hours in 1.2 mL of degassed solvent. $\mathrm{PhB}(\mathrm{OH})_{2}(146$ $\mathrm{mg}, 1.2 \mathrm{mmol})$ is added over the catalyst and sequentially the α, β-unsaturated carbonyl compound (0.6 mmol) and 2.5 M KOH aqueous solution ($120 \mu \mathrm{~L}, 2.5 \mathrm{M}$). The reaction is followed by TLC, and once the starting material is consumed, the crude reaction mixture is purified by flash chromatography. The eluents are detailed for each case.

(R)-3-Phenyl-cyclohexanone (8)

Following the typical procedure for the 1,4-addition, the reaction of cyclohexenone $\mathbf{6}$ $(58 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ and phenyl boronic acid $7(146 \mathrm{mg}, 1.2 \mathrm{mmol})$ gave, after flash chromatography (Hexane: $\mathrm{Et}_{2} \mathrm{O}, 9: 1$), the product $\mathbf{8}$ as a colourless oil. Yield: 97.2 mg , 93\%
$[\alpha]^{\mathrm{D}}{ }_{20}=-18.3\left(c 0.9, \mathrm{CHCl}_{3}\right)$.
HPLC: 99 \% ee, Chiralcel ${ }^{\circledR}$ OD-H column (n-hexane/2-propanol, $90: 10,0.5 \mathrm{~mL} / \mathrm{min}$); $t_{\mathrm{R}}: 21.8 \mathrm{~min}$ (major), 23.7 min (minor).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 3 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H})$, 2.37-2.59 (m, 4H), 2.07-2.16 (m, 2H), 1.80-1.89 (m, 2H).
${ }^{13}{ }^{1} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta, 210.9,144.3,128.6,126.6,126.5,48.9,44.7,41.1$, 32.7, 25.5

Peak Results

	Name	RT	\% Area
1		21.893	100.00

(R)-3-Phenyl-cyclopentanone (12)

Following the typical procedure for the 1,4-addition, the reaction of 2-cyclopentenone 9 $(50 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ and phenyl boronic acid $7(146 \mathrm{mg}, 1.2 \mathrm{mmol})$ gave the product 12, after flash chromatography (Hexane:Et ${ }_{2} \mathrm{O}, 9: 1$), as a colorless oil. Yield: $89.4 \mathrm{mg}, 93 \%$.

$$
[\alpha]^{\mathrm{D}}{ }_{20}=-123.6\left(c 0.5, \mathrm{CHCl}_{3}\right)
$$

HPLC: 99% ee, Chiralcel ${ }^{\circledR}$ OB column (n-hexane $/ 2$-propanol, $90: 10,0.5 \mathrm{~mL} / \mathrm{min}$); t_{R} : 30.5 min . (minor), 34.0 min . (major).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.28(\mathrm{~m}, 3 \mathrm{H}), 3.40-3.48(\mathrm{~m}$, $1 \mathrm{H}), 2.62-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.49(\mathrm{~m}, 4 \mathrm{H}), 1.98-2.02(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 218.1,142.9,128.5,126.5,126.5,45.6,42.0,38.7$, 31.0. ppm

Peak Results

	Name	RT	\% Area
1		33.677	100.00

(R)-3-Phenyl-cycloheptanone (13)

Following the typical procedure for the 1,4 -addition, the reaction of 2 -cycloheptenone $10(66.8 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ and phenyl boronic acid $7(146 \mathrm{mg}, 1.2 \mathrm{mmol})$ gave the product 13, after flash chromatography (Hexane: $\mathrm{Et}_{2} \mathrm{O}, 9: 1$), as a colorless oil. Yield: 103.9 mg , 92\%.
$[\alpha]^{\mathrm{D}}{ }_{20}=-72.6\left(c 0.8, \mathrm{CHCl}_{3}\right)$.
HPLC: 96\% ee, Chiralcel ${ }^{\circledR}$ OD-H column (n -hexane $/ 2$-propanol, $90: 10,0.5 \mathrm{~mL} / \mathrm{min}$); $t_{\mathrm{R}}: 10.7 \mathrm{~min}$. (major), 12.5 min . (minor).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.22(\mathrm{~m}, 3 \mathrm{H}), 2.90-2.94(\mathrm{~m}$, $2 \mathrm{H}), 2.57-2.67(\mathrm{~m}, 3 \mathrm{H}), 2.03-2.07(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 213.3,146.8,128.5,126.3,126.2,51.2,43.8,42.6$, 39.1, 29.1, 24.1 ppm .

Peak Results

	Name	RT	\% Area
1		10.763	98.32
2		12.551	1.68

(R)-4-phenyl-tetrahydro-2H-pyran-2-one (14)

Following the typical procedure for the 1,4-addition, the reaction of 5,6-dihydro- 2 H -pyran-2-one $11(58.8 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ and phenyl boronic acid $7(146 \mathrm{mg}, 1.2 \mathrm{mmol})$ gave the product 14, after flash chromatography (Hexane: $\mathrm{Et}_{2} \mathrm{O}, 9: 1$), as a colorless oil. Yield: $101.5 \mathrm{mg}, 96 \%$.
$[\alpha]^{\mathrm{D}}{ }_{20}=-8.3\left(c 0.7, \mathrm{CHCl}_{3}\right)$
HPLC: 99% ee, Chiralcel ${ }^{\circledR}$ OD-H column (n-hexane/2-propanol, $90: 10,0.5 \mathrm{~mL} / \mathrm{min}$); $t_{\mathrm{R}}: 51.6 \mathrm{~min}$. (mayor), 61.4 min . (minor).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20-7.39(\mathrm{~m}, 5 \mathrm{H}), 4.38-4.52(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.26(\mathrm{~m}$, $1 \mathrm{H}), 2.88-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=10.6 \mathrm{~Hz}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-2.16(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.6,142.8,128.9,127.2,126.4,68.6,37.4,30.3 \mathrm{ppm}$.

Peak Results

	Name	RT	\% Area
1		51.638	100.00

(R)-4-phenylpentan-2-one (16)

Following the typical procedure for the 1,4-addition, the reaction of 3-penten-2-one $\mathbf{1 5}$ $(83.1 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ and phenyl boronic acid $7(146 \mathrm{mg}, 1.2 \mathrm{mmol})$ gave the product 16 , after flash chromatography (Hexane: $\mathrm{Et}_{2} \mathrm{O}, 9: 1$), as a colorless oil. Yield: $75.9 \mathrm{mg}, 78 \%$. $[\alpha]^{\mathrm{D}}{ }_{20}=-20.8\left(c 0.8, \mathrm{CHCl}_{3}\right)$.

HPLC: 94% ee, Chiralcel ${ }^{\circledR}$ AS-H column (n-hexane/2-propanol, $98: 2,0.5 \mathrm{~mL} / \mathrm{min}$); t_{R} : 15.1 min . (mayor), 18.1 min (minor).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.17-7.32(\mathrm{~m}, 5 \mathrm{H}), 3.28-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.80(\mathrm{~m}$, $2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 207.7,146.1,128.5,126.7,126.2,51.9,35.4,30.5,21.9$ ppm.

Peak Results

	Name	RT	\% Area
1		15.081	97.35
2		18.054	2.65

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

[^0]: ${ }^{1}$ For the synthesis of the racemic ligands for HPLC studies, allylamine was treated with 2 eq. of nBuLi followed by quenching with the corresponding racemic sulfinyl chloride according to the following scheme.

