Combined coinage metal catalysis in natural product synthesis: total synthesis of (+)-varitriol and seven analogs[†]

Tao Sun, Carl Deutsch and Norbert Krause*

Supporting Information

General information

All reactions were performed in heat gun-dried glassware under an argon atmosphere and all solvents were dried if not noted otherwise. Solvents came from the solvent purification system MB-SPS 800 of MBRAUN GmbH. Column chromatography was carried out with ACROS silica gel (0.035-0.070 mm). ¹H, ¹³C, COSY and NOESY spectra were recorded with Bruker DRX 400 and DRX 500 spectrometers at room temperature in CDCl₃ or (CD₃)₂CO. The signals of the undeuterated solvent were used as the standard (CDCl₃: ¹H NMR: δ = 7.26; ¹³C NMR: δ = 77.0; acetone-d₆: ¹H NMR: δ = 2.05; ¹³C: δ = 30.8). *J* values were given in Hz. Carbon atoms were assigned with APT experiments. IR spectra were measured with a Nicolet Avatar 320 FT-IR as a liquid film between NaCl plates. FAB mass spectra was measured with a Jeol SX102A spectrometer, ESI spectra with a LTQ ORBITRAP equipped with a Hypersil gold column (diameter 50 x 1 mm, particle size 1.9 µm). Optical rotations were determined with a Perkin-Elmer 341 polarimeter. Enantiomer excess (*ee*) was determined with a KNAUER chiral HPLC (250 x 4.6 mm Eurocel 01, 5 µm). Melting point were measured with a Reichert thermovar melting point apparatus and are uncorrected.

Synthetic procedures

(2-(Chloromethyl)-6-methoxyphenyl)methanol (8). To a solution of ethyl 6-chloromethyl-2-methoxybenzoate 7 (2.70 g, 11.8 mmol) in THF (30 mL) was added DIBAL-H (1 M in hexane; 29.2 mL, 29.2 mmol) at 0°C. After being stirred at 0°C for 1 h, the reaction mixture was quenched with H₂O (10 mL). The emulsion was added to a solution of patassium-sodium-tartrate (23.4 g, 82.9 mmol) in H₂O (66 mL). After stirring at room temperature for 3 h and extraction with CH₂Cl₂ (4 × 40 mL), the organic layer was dried with MgSO₄, and concentrated under vacuum. The residue was purified by column chromatography using cyclohexane/AcOEt (2:1) to give 8 (2.12 g, 11.4 mmol, 97%) as a colorless solid, mp 51-52°C. IR (v cm⁻¹): 3376 (OH), 2937, 2838, 1589, 1471, 1269, 1005, 748. ¹H NMR (400 MHz, CDCl₃) δ : 7.27 (1H, dd, *J* 8.3, 7.6), 6.98 (1H, d, *J* 7.6), 6.91 (1H, d, *J* 8.3), 4.84 (2H, d, *J* 4.5), 4.69 (2H, s), 3.87 (3H, s), 2.44 (OH, brs). ¹³C NMR (100 MHz, CDCl₃) δ : 158.3, 137.0 (2 C), 129.2 (CH), 127.7 (C), 122.5, 111.3 (2 CH), 56.6 (CH₂), 55.7 (CH₃), 43.9 (CH₂). EI-HRMS *m/z*: found 186.0433, calcd for C₉H₁₁O₂Cl (M⁺): 186.0442.

tert-Butyl(2-(chloromethyl)-6-methoxybenzyloxy)dimethylsilane (9).¹ To a solution of 8 (2.12 g, 11.4 mmol) in DMF (50 mL) were added TBSCl (2.58 g, 17.1 mmol) and imidazole (2.33 g, 34.2 mmol) at 0°C. After being stirred at 0°C for 4 h, the reaction mixture was quenched with aq. satd. NH₄Cl soln. (50 mL). Then H₂O (200 mL) was added. After extraction with a 1:1-mixture of isohexane and Et₂O (4 × 100 mL), the organic layer was dried with MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography using cyclohexane/AcOEt (50:1) to give 9 (3.32 g, 11.0 mmol, 96%) as a

¹ (*a*) R. T. Clemens and M. P. Jennings, *Chem. Commun.*, 2006, 2720; (*b*) K. C. Nicolaou, T. Ladduwahetty and E. M. Elisseou, *J. Chem. Soc., Chem. Commun.*, 1985, 1580; (*b*) K. C. Nicolaou, C. V. C. Prasad, P. K. Somers and C. K. Hwang, *J. Am. Chem. Soc.*, 1989, **111**, 5335.

colorless oil. IR (v cm⁻¹): 2955, 2929, 2856, 1621, 1384, 1122, 837. ¹H NMR (400 MHz, CDCl₃) δ : 7.26 (1H, dd, *J* 8.3, 7.6), 7.03 (1H, d, *J* 7.6), 6.86 (1H, d, *J* 8.3), 4.91 (2H, s), 4.81 (2H, s), 3.83 (3H, s), 0.90 (9H, s), 0.07 (6H, s). ¹³C NMR (100 MHz, CDCl₃) δ : 157.2, 138.6 (2 C), 129.0 (CH), 127.7 (C), 122.5, 111.1 (2 CH), 55.6 (CH₃), 55.5, 43.7 (2 CH₂). CI-HRMS *m*/*z*: found 265.1611, calcd for C₁₅H₂₅O₂Si (M-Cl)⁺: 265.1618.

Diethyl 2-((*tert*-butyldimethylsilyloxy)methyl)-3-methoxybenzylphosphonate (2). A mixture of **9** (809 mg, 2.69 mmol) and triethylphosphite (1.10 g, 6.62 mmol) was stirred under reflux (ca 170°C) for 3 h. After cooling to ambient temperature, the residue was purified by column chromatography using cyclohexane/AcOEt (1:1) to give **2** (1.04 g, 2.58 mmol, 96%) as a colorless oil. IR (v cm⁻¹): 2955, 2929, 2856, 1588, 1471, 1251, 1052, 1028, 838. ¹H NMR (400 MHz, CDCl₃) δ : 7.18 (1H, dd, *J* 8.2, 7.6), 6.95 (1H, dd, *J* 7.6, *J*_{HP} 2.1), 6.76 (1H, d, *J* 8.2), 4.89 (2H, s), 3.95-4.05 (4H, m), 3.80 (3H, s), 3.43 (2H, d, *J*_{HP} 21.8), 1.24 (6H, t, *J* 7.1), 0.88 (9H, s), 0.04 (6H, s). ¹³C NMR (100 MHz, CDCl₃) δ : 157.4 (C, d, *J*_{CP} 3.1), 133.2 (C, d, *J*_{CP} 8.8), 128.4 (CH, d, *J*_{CP} 6.7), 55.9 (CH₂), 55.4 (CH₃), 30.0 (CH₂, d, *J*_{CP} 120.5), 25.9 (3CH₃), 18.3 (C), 16.3 (2CH₃, d, *J*_{CP} 6.0), -5.4 (2CH₃). ESI-HRMS *m*/*z*: found 425.1882, calcd for C₁₉H₃₅O₅NaPSi (M+Na)⁺: 425.1884.

tert-Butyl(2-(chloromethyl)benzyloxy)dimethylsilane (11). To a solution of 10^2 (870 mg, 5.56 mmol) in DMF (28 mL) were added TBSCl (1.26 g, 8.34 mmol) and imidazole (1.14 g, 16.7 mmol) at 0°C. After being stirred at 0°C for 2 h, the reaction mixture was quenched with aq. satd. NH₄Cl soln. (30 mL). Then H₂O (140 mL) was added. After extraction with a 1:1-mixture of isohexane and Et₂O (3 × 90 mL), the organic layer was dried with MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography using cyclohexane/AcOEt (50:1) to give **11** (1.50 g, 5.54 mmol, quant.) as a light yellow oil. The NMR data are in accordance with those reported in the literature.³

Diethyl 2-((*tert*-butyldimethylsilyloxy)methyl)benzylphosphonate (12). A mixture of 11 (1.50 g, 5.54 mmol) and triethylphosphite (1.84 g, 11.1 mmol) was stirred under reflux (ca 155°C) for 5 h. After cooling to ambient temperature, the residue was purified by column chromatography using cyclohexane/AcOEt (2:1) to give 12 (1.87 g, 2.58 mmol, 91%) as a light yellow oil. IR (v cm⁻¹): 2956, 2930, 2857, 1472, 1252, 1055, 1028, 964, 838. ¹H NMR (400 MHz, CDCl₃) δ : 7.40 (1H, d, *J* 6.5), 7.16-7.29 (3H, m), 4.82 (2H, s), 3.91-4.02 (4H, m), 3.23 (2H, d, *J*_{HP} 21.8), 1.21 (6H, t, *J* 7.1), 0.92 (9H, s), 0.08 (6H, s). ¹³C NMR (100 MHz, CDCl₃) δ : 139.6 (C, d, *J*_{CP} 6.6), 130.7 (CH, d, *J*_{CP} 5.5), 129.0 (C, d, *J*_{CP} 9.6), 127.4 (CH, d, *J*_{CP} 3.0), 127.0 (CH, d, *J*_{CP} 3.2), 126.9 (CH, d, *J*_{CP} 3.7), 63.3 (CH₂), 62.0 (2CH₂, d, *J*_{CP} 6.8), 30.0 (CH₂, d, *J*_{CP} 138.3), 25.9 (3CH₃), 18.3 (C), 16.3 (2CH₃, d, *J*_{CP} 6.0), -5.3 (2CH₃). EI-HRMS *m*/*z*: found 372.1870, calcd for C₁₈H₃₃O₄PSi (M⁺): 372.1880.

((2*R*,3*R*)-3-(Prop-1-ynyl)oxiran-2-yl)methanol (14).⁴ To a suspension of powdered, activated molecular sieves (4 Å, 6 g) in CH₂Cl₂ (100 mL) were added D-(–)-DET (1.48 g, 7.2 mmol) and Ti(O*i*-Pr)₄ (1.71 g, 6.0 mmol) at -30° C. After stirring at -30° C for 20 min, 13 (2.88 g, 30.0 mmol) was added dropweise over 10 min. The mixture was stirred for additional 40 min at -30° C then cooled to -50° C. *tert*-Butylhydroperoxide (TBHP, 3.76 M solution in toluene,

² W. E. Lindsell, D. D. Palmer, P. N. Preston and G. M. Rosair, *Organometallics*, 2005, 24, 1119.

³ B. Bradshaw, P. Evans, E. J. Thomas, R. H. Davies and K. J. Broadley, *Org. Biomol. Chem.*, 2008, **6**, 2138.

⁴ (*a*) J. G. Hill, K. B. Sharpless, C. M. Exon and R. Regenye, *Org. Synth.*, 1985, **63**, 66; (*b*) Y. Gao, R. M. Hanson, J. M. Klunder, S. K. Ko, H. Masamune and K. B. Sharpless, *J. Am. Chem. Soc.*, 1987, **109**, 5765;

47.9 mL, 180 mmol, predried with 4.8 g powdered, activated molecular sieves (4\AA))⁵ was slowly added over a period of 10 min. The reaction mixture was further stirred at -30° C for 1 h before it was put in a fridge with an inner temperature of -23° C. After 4 days the reaction mixture t was ransferred into a bigger flask at 0°C, leaving the molecular behind. To this mixture was added a precooled (icebath) solution of FeSO₄ • 7 H₂O (180 g, 648 mmol) and tartaric acid (3.6 g, 24 mmol) in H₂O (720 mL). The mixture was stirred at 0°C for 1 h and then allowed to warm up to room temperature. After extraction with Et₂O (6 × 300 mL), the organic layer was dried with MgSO₄ and concentrated under vacuum (up to 300 mbar). The crude product, which was a mixture of **14** and D-(–)-DET in toluene, was direct applied in the next step.

An analytically pure sample was obtained according to the original literature procedure⁴ and purification of the crude product by column chromatography using cyclohexane/AcOEt (2:1). Data for **14**: Light yellow oil; 91% *ee*. $[\alpha]_{10}^{20} = -3.1$ (*c* 1, CHCl₃). IR (v cm⁻¹): 3405 (OH), 2921, 2243 (C=C), 1438, 1066, 1024, 858. ¹H NMR (400 MHz, CDCl₃) & 3.90 (1H, d, *J* 12.9), 3.66 (1H, d, *J* 12.9), 3.38 (1H, s), 3.24 (1H, s), 2.14 (OH, brs), 1.83 (3H, s). ¹³C NMR (100 MHz, CDCl₃) & 81.0, 75.0 (2 C), 60.3 (CH₂), 59.9, 43.0 (2 CH), 3.5 (CH₃). EI-HRMS *m*/*z*: found 112.0518, calcd for C₆H₈O₂ (M⁺): 112.0519.

(2*R*,3*R*)-2-(Benzyloxymethyl)-3-(prop-1-ynyl)oxirane (6). To a suspension of NaH (60% disp. in oil, 1.8 g, 45 mmol) in THF (300 mL) was added crude 14 at 0°C. After being stirred at room temperature for 15 min, BnBr (7.68g, 45 mmol) and TBAI (0.554 g, 1.5 mmol) were added. The reaction mixture was stirred at room temperature for 22 h and then was quenched with aq. satd. NH₄Cl soln. (65 mL). After extraction with Et₂O (3 × 130 mL), the organic layer was dried with MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography using cyclohexane/AcOEt (20:1) to give **6** (2.88 g, 14.2 mmol, 47% for two steps) as a yellow oil. $[\alpha]_{D}^{20} = +9.1$ (*c* 1.2, CHCl₃). IR (v cm⁻¹): 3400 (OH), 3030, 2919, 2858, 2242 (alkyne), 1454, 1096, 739. ¹H NMR (400 MHz, CDCl₃) δ : 7.27-7.38 (5H, m), 4.56 (2H, s), 3.71 (1H, dd, *J* 11.7, 2.2), 3.52 (1H, dd, *J* 11.7, 4.5), 3.29 (2H, m), 1.84 (3H, s). ¹³C NMR (100 MHz, CDCl₃) δ : 137.6 (C), 128.3, 127.7, 127.7 (5 CH), 80.7, 75.2 (2 C), 73.3, 68.9 (2 CH₂), 58.6, 43.2 (2 CH), 3.6 (CH₃). EI-HRMS *m/z*: found 202.0985, calcd for C₁₃H₁₄O₂ (M⁺): 202.0988.

(2*R*,3*S*,4*R*,5*S*)- and (2*R*,3*R*,4*S*,5*S*)-2-(Benzyloxymethyl)-5-methyltetrahydrofuran-3,4diol (15/16).⁶ To a 1:1-mixture of *t*-butanol and H₂O (88 mL) were added at room temperature under air K₃Fe(CN)₆ (8.69 g, 26.4 mmol), NaHCO₃ (2.22 g, 26.4 mmol), Na₂CO₃ (2.80 g, 26.4 mmol), K₂OsO₂(OH)₄ (32.5 mg, 0.0881 mmol) and (DHQD)₂PYR (389 mg, 0.441 mmol). After stirring for 10 min, MeSO₂NH₂ (1.67 g, 17.6 mmol) was added and the mixture was stirred until both phases were clear (ca. 15 min). Then the reaction mixture was cooled to 2°C and **4** (1.80 g, 8.81 mmol) was added. After being strongly stirred at 2°C for 64 h, the reaction was quenched with aq. satd. Na₂S₂O₃ soln. (70 mL) at 2°C and further stirred for 1 h at room temperature. After extraction with ethyl acetate (5 × 75 mL), the organic layer was washed with aq. KOH (2 M, 2 × 75 mL), dried with MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography using cyclohexane/AcOEt (1:2) to give a mixture of **15** and **16** (2.06 g, 8.64 mmol, 98%, *dr* = 78:22) as a yellow oil. Data for the mixture of **15** and **16**: IR (v cm⁻¹): 3390 (OH), 2928, 1454, 1384, 1096, 740. ¹H NMR (400 MHz, CDCl₃) δ : 7.27-7.39 (5H+1.5H m), 4.52-4.60 (2H+0.6H, m), 4.07-4.12 (0.3H, m), 3.94-3.99 (1H, m), 3.89-3.93 (1H, m), 3.86-3.89 (0.3H, m), 3.77-3.85 (1.3H, m), 3.63-3.68

⁵ J. G. Hill, B. E. Rossiter and K. B. Sharpless, J. Org. Chem., 1983, 48, 3707

⁶ (a) H. C. Kolb, M. S. VanNieuwenhze and K. B. Sharpless, *Chem. Rev.*, 1994, **94**, 2483; (b) A. B. Zaitsev and H. Adolfsson, *Synthesis*, 2006, 1725.

(1.3H, m), 3.54-3.68 (2.6H, m), 2.85-3.10 (2.6H, m), 1.28 (3H, d, *J* 6.3), 1.28 (0.9H, d, *J* 6.3). ¹³C NMR (100 MHz, CDCl₃) δ : 137.8, 136.6 (2 C), 128.7, 128.4, 128.2, 127.9, 127.7 (10 CH), 82.6, 79.3, 77.7, 76.2, 75.7 (5 CH), 74.0 (CH₂), 74.0 (CH), 73.6 (CH₂), 72.7, 72.5 (2 CH), 70.7, 68.6 (2 CH₂), 18.7, 14.3 (2 CH₃). ESI-HRMS *m*/*z*: found 239.1280, calcd for C₁₃H₁₉O₄ (M+H)⁺: 239.1278.

(3aR,4R,6S,6aS)- and (3aS,4R,6S,6aR)-4-(Benzyloxymethyl)-2,2,6-trimethyltetrahydrofuro-[3,4-d][1,3]dioxole (17/18). To a solution of the mixture of 15 and 16 (1.22 g, 5.12 mmol) in DMF (20 mL) were added PPTS (129 mg, 0.512 mmol) and 2,2-dimethoxypropane (1.60 g, 15.4 mmol) at room temperature. After being stirred at this temperature for 23 h, the reaction mixture was diluted with H₂O (150 mL). After extraction with Et₂O/isohexane (2:1, 3 \times 100 mL), the organic layer was dried with MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography using cyclohexane/AcOEt (7:1) to give 17 (1.01 g, 3.63 mmol, 71%) as a colorless oil and 18 (0.287 g, 1.03 mmol, 20%) as a colorless solid. Data for 17: $\left[\alpha\right]_{p}^{20} = +10.4$ (c 1.2, CHCl₃). IR (v cm⁻¹): 3030, 2933, 1454, 1382, 1212, 1076, 867. ¹H NMR (400 MHz, CDCl₃) δ: 7.26-7.37 (5H, m), 4.59 (2H, s), 4.56 (1H, dd, J 6.9, 4.5), 4.25 (1H, dd, J 6.7, 5.1), 4.04-4.09 (1H, m), 3.94-4.02 (1H, m), 3.53-3.63 (2H, m), 1.53 (3H, s), 1.33 (3H, s), 1.32 (3H, d, J 6.4). ¹³C NMR (100 MHz, CDCl₃) δ: 137.9, (C), 128.3, 127.7, 127.6 (5 CH), 114.5 (C), 85.9, 83.0, 82.3, 80.6 (4 CH), 73.5, 70.4 (2 CH₂), 27.3, 25.4, 18.9 (3 CH₃). NOSY (500 MHz, CDCl₃) showed it was the cis-trans-cis-product. ESI-HRMS m/z: found 279.1594, calcd for C₁₆H₂₃O₄ (M+H)⁺: 279.1591. Data for **18**: mp 33-35°C. [α]²⁰ = -22.0 (c 1.2, CHCl₃). IR (v cm⁻¹): 3030, 2935, 1454, 1381, 1209, 1100, 1010, 899. ¹H NMR (400 MHz, CDCl₃) δ: 7.24-7.38 (5H, m), 4.64-69 (2H, m), 4.49-4.56 (2H, m), 3.75-3.82 (1H, m), 3.67-3.74 (2H, m), 3.60-3.67 (1H, m), 1.46 (3H, s), 1.34 (3H, d, J 6.4), 1.31 (3H, s). ¹³C NMR (100 MHz, CDCl₃) δ: 138.0 (C), 128.2, 127.8, 127.5 (5 CH), 112.1 (C), 82.0, 81.4, 80.3, 77.6 (4 CH), 73.4, 68.1 (2 CH₂), 25.8, 24.9, 13.3 (3 CH₃). ESI-HRMS m/z: found 279.1592, calcd for $C_{16}H_{23}O_4$ (M+H)⁺: 279.1591.

((3aR,4R,6S,6aS)-2,2,6-Trimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)methanol (19). To a solution of 17 (1.08 g, 3.88 mmol) in THF (27 mL) was added Pd (10 wt% on activated carbon, 206 mg, 0.194 mmol) at room temperature. Then a balloon with H₂ was attached. After being strongly stirred at room temperature for 3 h, the reaction mixture was filtered through celite and the residue was washed with ethyl acetate (500 mL). The solvent was removed under vacuum to afford crude 19 (740 mg) as a light yellow oil.

An analytically pure sample was obtained by column chromatography using cyclohexane/AcOEt (2:1). $[\alpha]_{D}^{20} = +9.8$ (*c* 1.25, CHCl₃). IR (v cm⁻¹): 3434 (OH), 2935, 1455, 1383, 1213, 1078, 865. ¹H NMR (400 MHz, CDCl₃) δ : 4.63 (1H, dd, *J* 7.0, 4.5), 4.23 (1H, dd, *J* 6.8, 5.4), 3.95-4.03 (2H, m), 3.79-3.86 (1H, m), 3.64-3.72 (1H, m), 1.90 (OH, brs), 1.53 (3H, s), 1.34 (3H, s), 1.32 (3H, d, *J* 6.4). ¹³C NMR (100 MHz, CDCl₃) δ : 114.8 (C), 86.1, 84.1, 81.6, 80.5 (4 CH), 62.8 (CH₂), 27.4, 25.4, 18.8 (3 CH₃). ESI-HRMS *m/z*: found 189.1121, calcd for C₉H₁₇O₄ (M+H)⁺: 189.1121.

((3aS,4R,6S,6aR)-2,2,6-Trimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)methanol (20). Debenzylation of 18 (602 mg, 2.16 mmol) according to the procedure used for 19 gave crude 20 (425 mg) as a colorless oil. An analytically pure sample was obtained by column chromatography using cyclohexane/ AcOEt (2:1). $[\alpha_{JD}^{P0} = -8.7 \ (c \ 1.1, \ CHCl_3)$. IR (v cm⁻¹): 3433 (OH), 2937, 1456, 1381, 1210, 1125, 1074, 1009, 900, 870. ¹H NMR (400 MHz, CDCl_3) δ : 4.70 (1H, dd, *J* 6.1, 3.9), 4.54 (1H, dd, *J* 6.1, 3.7), 3.81-3.92 (2H, m), 3.61-3.67 (1H, m), 3.56-3.61 (1H, m), 2.64 (OH, brs), 1.44 (3H, s), 1.30 (3H, s), 1.28 (3H, d, *J* 6.4). ¹³C NMR (100 MHz, CDCl_3) δ : 112.2 (C), 82.1, 81.5, 81.1, 77.5 (4 CH), 60.8 (CH₂), 25.7, 24.7, 13.2 (3 CH₃). ESI-HRMS *m*/*z*: found 189.1120, calcd for C₉H₁₇O₄ (M+H)⁺: 189.1121.

(3aS,4S,6S,6aS)-2,2,6-Trimethyltetrahydrofuro[3,4-*d*][1,3]dioxole-4-carbaldehyde (3). To a solution of DMP (0.992 g, 2.34 mmol) in CH₂Cl₂ (30 mL) was added a solution of 19 (400 mg, crude product) in CH₂Cl₂ (10 mL) at room temperature. After being stirred at room temperature for 22 h, the reaction was quenched with aq. satd. Na₂CO₃ soln. (30 mL). After addition of aq. satd. Na₂S₂O₃ soln. (40 mL), the mixture was stirred until both phases were clear (ca. 30 min). After extraction with CH₂Cl₂ (5 × 70 mL), the organic layer was concentrated under vacuum giving the crude aldehyde **3** (380 mg) as a light yellow oil. Analytical data of the crude product: IR (v cm⁻¹): 2982, 2935, 1732 (C=O), 1382, 1212, 1078, 866. ¹H NMR (400 MHz, CDCl₃) δ : 9.72 (1H, s, CHO), 4.92 (1H, dd, *J* 6.3, 2.7), 4.33-4.38 (2H, m), 4.26-3.33 (1H, dq, *J* 6.7, 2.4), 1.52 (3H, s), 1.33 (3H, s), 1.19 (3H, d, *J* 6.7). ¹³C NMR (100 MHz, CDCl₃) δ : 201.1 (CHO), 113.9 (C), 88.8, 85.5, 81.6, 81.5 (4 CH), 26.8, 25.2, 18.8 (3 CH₃). EI-HRMS *m*/*z*: found 171.0652, calcd for C₈H₁₁O₄ (M-CH₃)⁺: 171.0652.

(3a*R*,4*S*,6*S*,6a*R*)-2,2,6-Trimethyltetrahydrofuro[3,4-*d*][1,3]dioxole-4-carbaldehyde (21). Oxidation of 20 (338 mg, 1.80 mmol) according to the procedure used for 3 gave crude 21 (310 mg) as a colorless oil. Analytical data of the crude product: IR (ν cm⁻¹): 2986, 2936, 1737 (C=O), 1384, 1211, 1107, 1073, 1009, 874. ¹H NMR (400 MHz, CDCl₃) & 9.63 (1H, s, CHO), 5.02 (1H, dd, *J* 5.9, 4.4), 4.61 (1H, dd, *J* 5.9, 3.6), 3.96 (1H, d, *J* 4.3), 3.75 (1H, dq, *J* 6.3, 3.6), 1.44 (3H, s), 1.40 (3H, d, *J* 6.3), 1.29 (3H, s). ¹³C NMR (100 MHz, CDCl₃) & 198.7 (CHO), 113.1 (C), 85.2, 82.6, 81.8, 78.3 (4 CH), 25.7, 24.7, 13.3 (3 CH₃). EI-HRMS *m/z*: found 171.0655, calcd for C₈H₁₁O₄ (M-CH₃)⁺: 171.0652.

Diethyl 3-methoxybenzylphosphonate (23). A mixture of 3-methoxybenzyl chloride (1.00 g, 6.39 mmol) and triethylphosphite (0.956 g, 5.75 mmol) was stirred under reflux (ca 170°C) for 3 h. After cooling to ambient temperature, the residue was purified by column chromatography using cyclohexane/AcOEt (1:2) to give **23** (0.965 g, 3.74 mmol, 65%) as a colorless oil. IR (v cm⁻¹): 2983, 1602, 1384, 1252, 1027, 964. The NMR data are in accordance with those reported in the literature.⁷ EI-HRMS *m*/*z*: found 258.1006, calcd for $C_{12}H_{19}O_4P$ (M⁺): 258.1015.

tert-Butyldimethyl(2-((*E*)-2-((3a*R*,4*R*,6*S*,6a*S*)-2,2,6-trimethyltetrahydrofuro[3,4-*d*][1,3]dioxol-4-yl)vinyl)benzyloxy)silane (25). HWE-reaction according to the general procedure (reaction time: 15 h) of 12 (488 mg, 1.31 mmol) and 3 (crude product, 114 mg) gave 25 (125 mg, 0.309 mmol, 49% for 3 steps) as a yellow oil. $[\alpha]_D^{20} = +30.9$ (*c* 1.3, CHCl₃). IR (v cm⁻¹): 2930, 2858, 1384, 1258, 1079, 837. ¹H NMR (400 MHz, CDCl₃) δ : 7.46 (1H, dd, *J* 7.0, 1.6), 7.41 (1H, dd, *J* 7.0, 1.1), 7.19-7.29 (2H, m), 6.93 (1H, d, *J* 15.7, HC=C), 6.14 (1H, dd, *J* 15.7, 6.9, HC=C), 4.77 (2H, s), 4.55 (1H, dd, *J* 6.9, 4.9), 4.43-4.49 (1H, m), 4.35 (1H, dd, *J* 6.9, 4.7), 4.01-4.09 (1H, m), 1.58 (3H, s), 1.37 (3H, d, *J* 7.1), 1.36 (3H, s), 0.93 (9H, s), 0.09 (6H, s). ¹³C NMR (100 MHz, acetone-d6) δ : 140.0, 136.9 (2 C), 131.8, 130.2, 129.4, 129.3, 129.2, 127.5 (4 CH + 2 H<u>C</u>=C), 116.1 (C), 88.0, 87.4, 86.8, 81.9 (4 CH), 65.0 (CH₂), 28.7 (CH₃), 27.3 (C(<u>CH₃)₃), 26.7, 20.6 (2 CH₃), 19.8 (<u>C</u>(CH₃)₃), -4.1 (2CH₃). EI-HRMS *m/z*: found 404.2373, calcd for C₂₃H₃₆O₄Si (M⁺): 404.2377.</u>

(3a*R*,4*R*,6*S*,6a*S*)-4-(3-Methoxystyryl)-2,2,6-trimethyltetrahydrofuro[3,4-*d*][1,3]dioxole

(26). HWE-reaction according to the general procedure (at 40°C for 22 h) of 23 (58 mg, 0.226 mmol) and 3 (crude product, 21 mg) gave 26 (16 mg, 0.0551 mmol, 47% for 3 steps) as a yellow oil. $[\alpha]_{D}^{20} = +36.7$ (*c* 1.65, CHCl₃). IR (v cm⁻¹): 2978, 2933, 1599, 1383, 1157, 1078, 865. ¹H NMR (400 MHz, CDCl₃) δ : 7.17-7.23 (1H, m), 6.98 (1H, d, *J* 7.6), 6.92 (1H, s), 6.80

⁷ M. J. Mphahlele, A. Pienaar and T. A. Modro, J. Chem. Soc., Perkin Trans. 2, 1996, 1455.

(1H, dd, *J* 8.1, 2.2), 6.68 (1H, d, *J* 15.9, HC=C), 6.24 (1H, dd, *J* 15.9, 6.7, HC=C), 4.55 (1H, dd, *J* 6.9, 5.2), 4.40-4.46 (1H, m), 4.35 (1H, dd, *J* 6.9, 4.8), 4.00-4.08 (1H, m), 3.81 (3H, s, OCH₃), 1.58 (3H, s), 1.37 (3H, d, *J* 6.4), 1.36 (3H, s). ¹³C NMR (100 MHz, CDCl₃) δ : 159.7, 137.8 (2 C), 132.3, 129.5, 127.3, 119.3 (4 CH), 115.1 (C), 113.6, 111.7 (2 CH), 86.2, 85.6, 84.7, 80.2 (4 CH), 55.2 (OCH₃), 27.4, 25.5, 19.0 (3 CH₃). ESI-HRMS *m*/*z*: found 291.1592, calcd for C₁₇H₂₃O₄ (M⁺): 291.1591.

3a*S*,**4***S*,**6***R*,**6a***R*)-**2**,**2**,**4**-**Trimethyl-6**-styryltetrahydrofuro-[**3**,**4**-*d*][**1**,**3**]dioxole (27). HWEreaction according to the general procedure (at 40°C for 24 h) of **24** (120 mg, 0.524 mmol) and **3** (crude product, 65 mg) gave **27** (42 mg, 0.161 mmol, 45% for 3 steps) as a yellow oil. $[\alpha]_{10}^{20} = +41.1$ (*c* 1.5, CHCl₃). IR (v cm⁻¹): 2979, 2934, 1382, 1212, 1078, 864. ¹H NMR (400 MHz, CDCl₃) δ : 7.20-7.41 (5H, m), 6.71 (1H, t, *J* 15.9), 6.25 (1H, dd, *J* 15.9, 6.7), 4.55 (1H, dd, *J* 7.0, 5.1), 4.44 (1H, m), 4.35 (1H, dd, 7.0, 4.8), 4.00-4.08 (1H, m), 1.58 (3H, s), 1.38 (3H, d, *J* 6.5), 1.36 (3H, s). ¹³C NMR (100 MHz, CDCl₃) δ : 136.4 (C), 132.5, 128.5, 127.8, 127.0, 126.6 (5 CH + 2 H<u>C</u>=C), 115.1 (C), 86.2, 85.6, 84.8, 80.2 (4 CH), 27.4, 25.5, 19.0 (3 CH₃). ESI-HRMS *m*/*z*: found 261.1486, calcd for C₁₆H₂₁O₃ (M⁺): 261.1485.

tert-Butyl(2-methoxy-6-((*E*)-2-((3aS,4*R*,6S,6a*R*)-2,2,6-trimethyltetrahydrofuro[3,4-*d*]-[1,3]dioxol-4-yl)vinyl)benzyloxy)dimethylsilane (28). HWE-reaction according to the general procedure (at 65°C for 21 h) of 2 (285 mg, 0.708 mmol) and 21 (crude product, 60 mg) gave 25 (52 mg, 0.120 mmol, 36% for 3 steps) as a light yellow oil. $[\alpha]_{D}^{20} = -61.5$ (*c* 1.5, CHCl₃). IR (v cm⁻¹): 2933, 2855, 1579, 1472, 1380, 1253, 1066, 837. ¹H NMR (400 MHz, CDCl₃) δ : 7.17-7.24 (3H, m), 6.74-6.80 (1H, m), 6.30 (1H, dd, *J* 16.0, 7.8, HC=C), 4.84 (1H, d, *J* 11.2), 4.79 (1H, d, *J* 11.2, AB-system), 4.68-4.72 (1H, m), 4.59-4.64 (1H, m), 4.11 (1H, dd, *J* 7.6, 3.6), 3.80 (3H, s), 3.67-3.75 (1H, m), 1.52 (3H, s), 1.38 (3H, d, *J* 6.3), 1.34 (3H, s), 0.88 (9H, s), 0.05 (3H, s), 0.03 (3H, s). ¹³C NMR (100 MHz, CDCl₃) δ : 157.2, 138.6 (2 C), 132.2, 128.4 (2 CH), 126.4 (C), 125.7, 119.0 (2 CH), 112.1 (C), 109.9 (CH), 83.4, 82.9, 82.5, 77.4 (4 CH), 55.9 (CH₂), 55.6 (OCH₃), 26.0 (C(<u>C</u>H₃)₃), 25.1, 23.8 (2 CH₃), 18.4 (<u>C</u>(CH₃)₃), 13.5 (CH₃), -5.2 (2CH₃). ESI-HRMS *m*/*z*: found 452.2825, calcd for C₂₄H₄₂O₅NSi (M+NH₄)⁺: 452.2827.

tert-Butyldimethyl(2-((*E*)-2-((3a*S*,4*R*,6*S*,6*aR*)-2,2,6-trimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)vinyl)benzyl-oxy)silane (29). HWE-reaction according to the general procedure (reaction time: 8 h) of **12** (352 mg, 0.946 mmol) and **21** (crude product, 80 mg) gave **29** (56 mg, 0.138 mmol, 31% for 3 steps) as a light yellow oil. $[\alpha]_{J^0}^{20} = -41.5$ (*c* 2.45, CHCl₃). IR (v cm⁻¹): 2931, 2856, 1383, 1256, 1098, 1073, 837. ¹H NMR (400 MHz, CDCl₃) &: 7.51 (1H, dd, *J* 6.8, 1.8), 7.39 (1H, dd, *J* 6.6, 1.5), 7.22 (2H, m), 6.92 (1H, d, *J* 15.9, HC=C), 6.25 (1H, d, *J* 15.9, 7.8, HC=C), 4.79 (1H, d, *J* 13.2), 4.74 (1H, d, *J* 13.1, AB-system with last signal), 4.69 (1H, dd, *J* 6.0, 3.8), 4.60 (1H, dd, *J* 5.9, 3.7), 4.09 (1H, dd, *J* 7.6, 3.5), 3.70 (1H, dq, *J* 6.3, 3.7), 1.51 (3H, s), 1.36 (3H, d, *J* 6.3), 1.32 (3H, s), 091 (9H, s), 0.07 (3H, s), 0.06 (3H, s). ¹³C NMR (100 MHz, CDCl₃) &: 138.2, 134.6 (2 C), 131.1, 127.7, 127.1, 126.7, 126.2, 125.6 (4 CH + 2 HC=C), 112.2 (C), 83.3, 82.8, 82.5, 77.5 (4 CH), 63.1 (CH₂), 26.0 (CH₃), 25.9 (C(<u>CH₃)₃), 25.1, (CH₃), 18.4 (C</u>(CH₃)₃), 13.5 (CH₃), -5.2 (2CH₃). EI-HRMS *m/z*: found 404.2368, calcd for C₂₃H₃₆O₄Si (M⁺): 404.2377.

(3aS,4R,6S,6aR)-4-(3-Methoxystyryl)-2,2,6-trimethyltetrahydrofuro[3,4-d][1,3]dioxole

(30). HWE-reaction according to the general procedure (reaction time: 8 h) of 23 (305 mg, 1.18 mmol) and 21 (crude product, 90 mg) gave 30 (60 mg, 0.207 mmol, 42% for 3 steps) as a light yellow oil. [$\alpha_{f_D}^{p_0} = -67.8$ (*c* 0.93, CHCl₃). IR (v cm⁻¹): 2935, 2837, 1599, 1383, 1265, 1163, 1097, 1036. ¹H NMR (400 MHz, CDCl₃) δ : 7.18-7.25 (1H, m), 6.96 (1H, s), 6.80 (1H, d, *J* 8.0, 2.1), 6.68 (1H, d, *J* 16.0, HC=C), 6.37 (1H, dd, *J* 16.0, 7.8, HC=C), 4.70 (1H, dd, *J*

6.0, 3.8), 4.63 (1H, dd, *J* 5.9, 3.7), 4.09 (1H, dd, *J* 7.7, 3.6), 3.80 (3H, s, OCH₃), 3.71 (1H, dq, *J* 6.3, 3.7), 1.53 (3H, s), 1.38 (3H, d, *J* 6.4), 1.34 (3H, s). ¹³C NMR (100 MHz, CDCl₃) δ : 159.6, 137.9 (2 C), 134.3, 129.3, 123.9, 119.5, 113.5 (5 CH), 112.2 (C), 111.9 (CH), 83.2, 82.5, 82.4, 77.4 (4 CH), 55.2 (OCH₃), 26.0, 25.0, 13.4 (3 CH₃). EI-HRMS *m/z*: found 290.1509, calcd for C₁₇H₂₂O₄ (M⁺): 290.1513.

(3a*R*,4*S*,6*R*,6a*S*)-2,2,4-Trimethyl-6-styryltetrahydrofuro[3,4-*d*][1,3]dioxole (31). HWEreaction according to the general procedure (reaction time: 14 h) of 24 (216 mg, 0.946 mmol) and 21 (crude product, 83 mg) gave 31 (58 mg, 0.207 mmol, 49% for 3 steps) as a colorless oil. $[\alpha]_{D}^{20} = -48.1$ (*c* 1.65, CHCl₃). IR (v cm⁻¹): 2979, 2935, 1368, 1209, 1096, 1032, 968. ¹H NMR (400 MHz, CDCl₃) δ : 7.40-7.45 (2H, d, *J* 7.3), 7.27-7.33 (2H, m), 6.91 (1H, d, *J* 16.1, HC=C), 6.38 (1H, dd, *J* 16.1, 7.8, HC=C), 4.71 (1H, dd, *J* 6.0, 3.7), 4.62 (1H, dd, *J* 6.0, 3.7), 4.10 (1H, dd, *J* 7.6, 3.5), 3.71 (1H, dq, *J* 6.3, 3.6), 1.54 (3H, s), 1.38 (3H, d, *J* 6.3), 1.35 (3H, s). ¹³C NMR (100 MHz, CDCl₃) δ : 136.5 (C), 134.5 (CH), 128.4 (2CH), 127.8 (CH), 126.8 (2CH), 123.5 (CH), 112.2 (C), 83.2, 82.6, 82.5, 77.4 (4 CH), 26.0, 25.0, 13.4 (3 CH₃). EI-HRMS *m*/*z*: found 260.1410, calcd for C₁₆H₂₀O₃ (M⁺): 260.1407.

(2*R*,3*S*,4*R*,5*S*)-2-(2-(Hydroxymethyl)styryl)-5-methyltetrahydrofuran-3,4-diol (32). Deprotection of 25 (43 mg, 0.106 mmol) according to the general procedure (5.4 mL 1 M HCl, 18 eq, 18 h) and column chromatography using CH₂Cl₂/acetone (2:1) gave 32 (12 mg, 0.0479 mmol, 45%) as a colorless oil. $[\alpha]_{D}^{20} = +17.5$ (*c* 0.55, CHCl₃). IR (v cm⁻¹): 3379 (OH), 2928, 1454, 1384, 1221, 1092, 1010, 754. ¹H NMR (400 MHz, CDCl₃) δ : 7.50 (1H, d, *J* 7.5), 7.21-7.29 (3H, m), 6.98 (1H, d, *J* 15.7, HC=C), 6.08 (1H, dd, *J* 15.8, 7.2, HC=C), 4.73 (1H, d, *J* 12.3), 4.61 (1H, d, *J* 12.3), 4.27 (1H, t, *J* 6.4), 3.85-3.90 (1H, m), 3.78-3.85 (2H, m), 3.64 (1H, brs, OH), 3.22 (1H, brs, OH), 2.96 (1H, brs, OH), 1.29 (3H, d, *J* 6.4). ¹³C NMR (100 MHz, CDCl₃) δ : 137.4, 135.6 (2 C), 129.9, 129.6, 129.0, 128.4, 128.0, 1276.3 (4 CH + 2 HC=C), 84.0, 80.0, 76.1, 75.4 (4 CH), 63.3 (CH₂), 19.2 (CH₃). ESI-HRMS *m/z*: found 501.2478, calcd for C₂₈H₃₇O₈ (2M+H)⁺: 501.2483.

(2*R*,3*S*,4*R*,5*S*)-2-(3-Methoxystyryl)-5-methyltetrahydrofuran-3,4-diol (33). Deprotection of 26 (33 mg, 0.114 mmol) according to the general procedure (2.1 mL 1 M HCl, 18 eq, 28 h) and column chromatography using cyclohexane/AcOEt (2:1) gave 33 (25 mg, 0.10 mmol, 88%) as a colorless oil. $[\alpha]_{10}^{20} = +22.0$ (*c* 1.45, CHCl₃). IR (v cm⁻¹): 3391 (OH), 2930, 1580, 1455, 1269, 1089, 1047, 778. ¹H NMR (400 MHz, CDCl₃) δ : 7.19-7.25 (1H, m), 6.98 (1H, d, *J* 7.7), 6.93 (1H, s), 6.80 (1H, dd, *J* 8.1, 2.1), 6.87 (1H, d, *J* 15.8, HC=C), 6.20 (1H, dd, *J* 15.9, 7.0, HC=C), 4.30 (1H, t, *J* 6.3), 3.87-3.97 (2H, m), 3.80 (3H, OCH₃), 3.74-3.82 (1H, m), 2.75 (OH, brd, *J* 5.6), 2.69 (OH, bd, *J* 5.4), 1.36 (3H, d, *J* 6.4). ¹³C NMR (100 MHz, CDCl₃) δ : 159.7, 137.7 (2 C), 132.5, 129.5, 127.5, 119.3, 113.6, 111.7 (4 CH + 2 HC=C), 84.1, 79.7, 76.2, 75.5 (4 CH), 55.2 (OCH₃), 19.0 (3 CH₃). EI-HRMS *m/z*: found 250.1206, calcd for C₁₄H₁₈O₄ (M⁺): 250.1200.

(2*S*,3*R*,4*S*,5*R*)-2-Methyl-5-styryltetrahydrofuran-3,4-diol (34). Deprotection of 27 (28 mg, 0.108 mmol) according to the general procedure (2.0 mL 1 M HCl, 18 eq, 27 h) and column chromatography using cyclohexane/AcOEt (2:1) gave 34 (19 mg, 0.0862 mmol, 80%) as a colorless solid, mp 76-78°C. $[\alpha]_{D}^{20} = +27.9$ (*c* 0.95, CHCl₃). IR (v cm⁻¹): 3431 (OH), 2928, 1384, 1221, 1092, 967, 747. ¹H NMR (400 MHz, CDCl₃) δ : 7.21-7.42 (5H, m), 6.70 (1H, d, *J* 15.9, HC=C), 6.21 (1H, dd, *J* 15.9, 7.0, HC=C), 4.31 (1H, d, *J* 6.4), 3.88-3.93 (2H, m), 3.74-3.81 (1H, m), 2.60-2.80 (2H, brs, OH), 1.36 (3H, d, *J* 6.3). ¹³C NMR (100 MHz, CDCl₃) δ : 136.3 (C), 137.2 (CH), 128.5 (2CH), 127.9 (CH), 127.2 (2CH), 126.6 (CH), 84.2, 79.7, 76.2, 75.5 (4 CH), 19.0 (3 CH₃). EI-HRMS *m/z*: found 220.1099, calcd for C₁₃H₁₆O₃ (M⁺): 220.1094.

(2R,3R,4S,5S)-2-(2-(Hydroxymethyl)-3-methoxystyryl)-5-methyltetrahydrofuran-3,4-

diol (**35**). Deprotection of **28** (49 mg, 0.113 mmol) according to the general procedure (8.1 mL 1 M HCl, 72 eq, 52 h) and column chromatography using CH₂Cl₂/acetone (2:1) gave **35** (29 mg, 0.103 mmol, 91%) as a colorless oil. $[\alpha]_{D}^{20} = +1.5$ (*c* 1.4, CH₃OH). IR (v cm⁻¹): 3391 (OH), 2934, 1578, 1471, 1384, 1264, 1074, 1000, 795. ¹H NMR (400 MHz, CDCl₃) δ : 7.23 (1H, t, *J* 8.0), 7.09 (1H, d, *J* 7.7), 7.03 (1H, d, *J* 15.9, HC=C), 6.82 (1H, d, *J* 8.2), 6.17 (1H, dd, *J* 15.9, 6.4, HC=C), 4.79 (2H, brs), 4.47 (1H, t, *J* 6.1), 4.28-4.35 (1H, m), 4.07-4.12 (1H, m), 3.95-4.04 (1H, m), 3.85 (3H, s, OCH₃), 2.96 (1H, brs, OH), 2.80 (1H, brs, OH), 2.51 (1H, brs, OH), 1.34 (3H, d, *J* 6.4). ¹³C NMR (100 MHz, CDCl₃) δ : 157.7, 137.9 (2 C), 130.2, 129.6, 128.9 (3 CH), 126.0 (C), 119.4, 109.7 (2 CH), 80.7, 74.1, 73.2 (4 CH), 56.4 (CH₂), 55.6 (OCH₃), 14.8 (CH₃). ESI-HRMS *m/z*: found 303.1204, calcd for C₁₅H₂₀O₅Na (M+Na)⁺: 303.1203.

(2*R*,3*R*,4*S*,5*S*)-2-(2-(Hydroxymethyl)styryl)-5-methyltetrahydrofuran-3,4-diol (36). Deprotection of 29 (40 mg, 0.0989 mmol) according to the general procedure (4.5 mL 2 M HCl, 90 eq, 18 h) and column chromatography using CH₂Cl₂/acetone (5:1) gave 36 (17 mg, 0.0679 mmol, 69%) as a colorless oil. $[\alpha]_{D}^{20} = +6.7$ (*c* 0.8, CHCl₃). IR (v cm⁻¹): 3366 (OH), 2930, 1384, 1113, 1073, 995, 755. ¹H NMR (400 MHz, CDCl₃) δ : 7.48 (1H, d, *J* 7.3), 7.21-7.32 (3H, m), 6.09 (1H, d, *J* 15.9, HC=C), 6.16 (1H, dd, *J* 15.9, 6.2, HC=C), 4.74 (1H, d, *J* 12.3), 4.66 (1H, d, *J* 12.3, AB-system with last signal), 4.49 (1H, t, *J* 6.1), 4.28-4.34 (1H, m), 4.03-4.07 (1H, m), 3.95-4.03 (1H, m), 2.83 (3H, brs, OH), 1.34 (3H, d, *J* 6.4). ¹³C NMR (100 MHz, CDCl₃) δ : 137.4, 136.2 (2 C), 130.0, 128.9, 128.8, 128.4, 127.8, 126.8 (4 CH + 2 H<u>C</u>=C), 80.4, 76.6, 74.2, 73.3 (4 CH), 63.7 (CH₂), 14.8 (CH₃). ESI-HRMS *m*/*z*: found 501.2478, calcd for C₂₈H₃₇O₈ (2M+H)⁺: 501.2483.

(2*R*,3*R*,4*S*,5*S*)-2-(3-Methoxystyryl)-5-methyltetrahydrofuran-3,4-diol (37). Deprotection of **30** (19 mg, 0.0654 mmol) according to the general procedure (7.8 mL 1 M HCl, 120 eq, 48 h) and column chromatography using cyclohexane/AcOEt (2:1) gave **37** (11 mg, 0.0439 mmol, 67%) as a colorless oil. $[\alpha]_{D}^{20} = -17.5$ (*c* 0.5, CHCl₃). IR (v cm⁻¹): 3435 (OH), 2934, 1599, 1384, 1267, 1157, 1047, 780. ¹H NMR (400 MHz, CDCl₃) δ: 7.23 (1H, t, *J* 7.9), 7.00 (1H, d, *J* 7.7), 6.95 (1H, s), 6.81 (1H, dd, *J* 8.2, 2.2), 6.68 (1H, d, *J* 16.0, HC=C), 6.30 (1H, dd, *J* 16.0, 6.7, HC=C), 4.46 (1H, dt, *J* 6.2, 0.8), 4.34 (1H, q, *J* 5.5), 4.19 (1H, q, *J* 5.1), 4.01 (1H, qd, *J* 6.4, 4.8), 3.81 (3H, s), 2.52 (1H, brd, *J* OH), 2.38 (1H, brd, *J* OH), 1.36 (3H, d, *J* 6.4). ¹³C NMR (100 MHz, CDCl₃) δ: 159.7, 137.7 (2 C), 133.6, 129.5, 125.3, 119.4, 113.8, 1117.7 (4 CH + 2 H<u>C</u>=C), 80.9, 73.9, 73.3 (4 CH), 55.2 (OCH₃), 14.8 (CH₃). EI-HRMS *m/z*: found 250.1196, calcd for C₁₄H₁₈O₄ (M⁺): 250.1200.

(2*S*,3*S*,4*R*,5*R*)-2-Methyl-5-styryltetrahydrofuran-3,4-diol (38). Deprotection of 31 (29 mg, 0.111 mmol) according to the general procedure (10 mL 1 M HCl, 90 eq, 27 h) and column chromatography using cyclohexane/AcOEt (2:1) gave 38 (18 mg, 0.0817 mmol, 74%) as a colorless solid, mp 87-89°C. $[\alpha]_D^{20} = -21.8$ (*c* 0.9, CHCl₃). IR (v cm⁻¹): 3398 (OH), 3026, 2933, 1384, 1114, 1073, 969, 750. ¹H NMR (400 MHz, CDCl₃) δ : 7.22-7.45 (5H, m), 7.00 (1H, d, *J* 7.7), 6.95 (1H, s), 6.81 (1H, dd, *J* 8.2, 2.2), 6.72 (1H, d, *J* 16.0, HC=C), 6.31 (1H, dd, *J* 16.0, 6.6, HC=C), 4.32-4.39 (1H, m), 4.16-4.22 (1H, m), 4.02 (1H, qd, *J* 6.4, 4.9), 2.45 (1H, brs, OH), 2.29 (1H, brs, OH), 1.36 (3H, d, *J* 6.5). ¹³C NMR (100 MHz, CDCl₃) δ : 136.2 (C), 133.7 (CH), 128.5 (2CH), 128.0(CH), 126.7 (2CH), 124.9 (CH), 80.9, 73.9, 73.4 (4 CH), 14.8 (CH₃). EI-HRMS *m*/*z*: found 220.1083, calcd for C₁₃H₁₆O₃ (M⁺): 220.1094.

¹³C NMR (100 MHz, acetone-d₆)

¹³C-NMR (100 MHz, CDCl₃)

¹³C-NMR (100 MHz, CDCl₃)

¹³C-NMR (100 MHz, CDCl₃)

¹³C-NMR (100 MHz, CDCl₃)

¹³C-NMR (100 MHz, CDCl₃)

¹³C-NMR (100 MHz, CDCl₃)

19

¹³C-NMR (100 MHz, CDCl₃)

¹³C-NMR (100 MHz, CDCl₃)

¹³C-NMR (100 MHz, CDCl₃)

¹³C-NMR (100 MHz, CDCl₃)

¹³C-NMR (100 MHz, CDCl₃)

¹³C-NMR (100 MHz, CDCl₃)

NOESY (500 MHz, CDCl₃)

¹³C-NMR (100 MHz, acetone-d₆)

¹³C-NMR (100 MHz, CDCl₃)

¹³C-NMR (100 MHz, CDCl₃)

