Electronic Supplementary Information:

A heterotrimetallic Pd/Sm/Pd complex for asymmetric Friedel-Crafts alkylations of pyrroles with nitroalkenes

Guoqi Zhang*

* Department of Chemistry, University of Basel, Spitalstrasse 51, 4056, Basel, Switzerland. E-mail: gqzhang79@gmail.com

Experimental Section

General aspects. Reagents were purchased from Fluka AG or Aldrich (Buchs, Switzerland). All reactions were performed at ambient conditions without protection of inert atmosphere. Pyrrole was distilled prior to use. The nitroalkenes 5a-5g were purchased from Sigma-Aldrich. nitroalkene 5h was prepared according to a literature procedure.¹ Racemic samples of the Friedel-Crafts products described below were prepared using InCl₃ as a catalyst following a literature procedure.² Flash chromatography was performed on silica gel (Fluka, Kieselgel 60, 230-400 mesh) using compressed air. ¹H NMR and ¹³C NMR spectra were obtained with a Bruker DPX-NMR (400 MHz) spectrometer using tetramethylsilane as the internal reference. Electron spray ionization mass spectra (ESI-MS) were recorded on a Bruker Esquire 3000^{plus}. IR spectra were recorded on a Shimadzu FTIR-8400S spectrophotometer with solid (or liquid) samples in a Golden Gate diamond ATR accessory. Optical rotations were measured in a Perkin Elmer Polarimeter 341, sodium lamp, 1 dm cuvette lengths, c in g/100 mL, at ambient temperature in the solvent and concentration indicated. HPLC was carried out using an intelligent pump, detector, integrator on Hewlett Packard S1100 with Chiralcel ODH or ADH columns.

X-ray crystallography. Crystallographic data for **1a**: orthorhombic, space group $P2_12_12_1$, a = 13.4805(4), b = 20.3239(6), c = 24.9820(7) Å, $\alpha = \beta = \gamma = 90^\circ$, V = 6844.5(3) Å³. Z = 2, $\rho_{calcd} = 1.682$ gcm⁻¹, μ (Mo K α) = 1.555 mm⁻¹. Least-squares refinements based on 3874 reflections with $I > 2\sigma(I)$ and 947 parameters led to convergence, with a final R1 = 0.0553, wR₂ = 0.0739, and GOF = 1.0093. Determination of the cell parameters and collection of the reflection intensities were performed on an Enraf-Nonius Kappa CCD diffractometer (graphite monochromated MoKa radiation, $\lambda = 0.71073$ N) at 203 K. The structure was solved by direct methods using the program SIR92. Anisotropic least-squares refinement was carried out on all non-hydrogen atoms using the program CRYSTALS. Hydrogen atoms are added in calculated positions. The final refinement was, unfortunately, not great due to the poor crystal quality. CCDC 842060 contains the supplementary crystallographic data for this paper.

Fig. S1. The preparation and crystal structures of 1a.

Synthesis of 1/Pd/Sm (2: 2: 1) complex 1a

To a stirred solution of **1** (41.5 mg, 0.1 mmol) in THF (10 mL) was added solid Pd(OAc)₂ (22.4 mg, 0.1 mmol) in one portion at room temperature, the resulting mixture was stirred for 15 min, resulting in the formation of a yellow suspension, to which Sm(OTf)₃ (29.9 mg, 0.05 mmol) was added in one portion, upon addition the suspension turned into a clear yellow solution immediately. The solution was allowed to stir at room temperature for another 15 min, the solvent was removed by evaporation, the resulting solid was washed with Et₂O, then dried in vacuo. Yield: 83%. The complex for catalytic reactions, however, was prepared in situ. Yellow pellets suitable X-ray structural analysis were obtained by slow diffusion of Et₂O into a CHCl₃-C₇H₈ solution of **1a** over a period of two weeks. FT-IR (solid, cm⁻¹): 3136w, 2933w, 1468s, 1386w, 1246s, 1221s, 1156s, 1136w, 1026s, 945w, 870m, 839w, 773w, 736m, 717m, 636s. ESI-MS (MeOH) m/z 541.1 [PdL + Na]⁺ (base peak, calc. 541.1), 1039.6 [(PdL)₂ + H]⁺ (calc. 1039.3), 1061.5 [(PdL)₂ + Na]⁺ (calc. 1061.5), 1227.4 [Sm(PdL)₂ + 2F⁻]⁺ (calc. 1227.2).

Synthesis of (*E*)-1-nitrohex-1-ene 5h

To a mixture of pentaldehyde (1.72 g, 20 mmol) and nitromethane (1.22 g, 20 mmol) in methanol (5 cm⁻³) at

0 °C was added dropwise a solution of NaOH in H₂O (1.00 g, 25 mmol in 2 cm⁻³) Further methanol (2 cm⁻³) was added and the resulting yellow slurry stirred at that temperature for ca. 1 h. Water (15 cm⁻³) was added and the clear yellow solution was poured into hydrochloric acid (10 cm⁻³ conc. HCl in 15 cm⁻³ H₂O) and stirred for 10 min. The resulting mixture was extracted with CH₂Cl₂ (20 cm⁻³ x 3), the combined organic layers were dried over anhydrous Na₂SO₄ and the solvent removed under reduced pressure. The residue was purified by column chromatography (*n*-hexane/EtOAc, 25:1, v/v) to yield the title product as a pale-yellow liquid (0.723 g, 28%). IR (liquid, cm⁻¹): 2958m, 2930m, 2860m, 1646m, 1517s, 1464m, 1349s, 1040w, 967s, 913s, 832m, 730s. ¹H NMR (400 MHz, CDCl₃): δ 7.25 (dt, *J* = 4.7, 14.7 Hz, 1H, H^{CH2CH=CH}), 6.96 (d, *J* = 13.4 Hz, 1H, H^{CH=CHNO2}), 2.25 (m, 2H, H^{CH2}), 1.47 (m, 2H, H^{CH2}), 1.35 (m, 2H, H^{CH2}), 0.90 (m, 3H, H^{CH3}). ¹³C NMR (101 MHz, CDCl₃): δ 142.9, 139.6, 29.8, 28.1, 22.2, 13.7. Anal. Calc. for C₆H₁₁NO₂: C 55.80, H 8.58, N 10.84; Found: 56.22, 8.54, N 10.45%.

General procedure for catalytically asymmetric Friedel-Crafts reaction

The catalyst was prepared in situ and all reactions were performed in the air without any protection of inert atmosphere. To a stirred solution of **1** (4.15 mg, 0.01 mmol) in THF (0.4 mL) was added solid $Pd(OAc)_2$ (2.24 mg, 0.01 mmol) in one portion at r.t., the resulting mixture was stirred for 15 min, to which $Sm(OTf)_3$ (2.99 mg, 0.005 mmol) was added in one portion, giving a clear yellow solution. The solution was allowed to stir at r.t. for another 15 min to give a solution of catalyst **1a**. To this solution was added the pyrrole substrate (0.60 mmol) and the nitroalkene substrate (0.20 mmol) sequentially. The reaction mixture was stirred for 65 h at room temperature. After the reaction, the Friedel-Crafts product was isolated by flash column chromatography on silica gel with hexane/ethyl acetate as eluents.

2-(2-nitro-1-phenylethyl)-1H-pyrrole 6aa

NO₂ Yellow solid (37.2 mg, 86%). ¹H NMR (400 MHz, CDCl₃): δ 7.84 (bs, 1H), 7.38-7.29 (m, 3H), 7.25-7.23 (m, 2H), 6.70-6.68 (m, 1H), 6.18-6.16 (m, 1H), 6.10-6.08 (m, 1H), 4.99 (dd, *J* = 12.0, 7.2 Hz, 1H), 4.92-4.89 (m, 1H), 4.81 (dd, *J* = 12.0, 7.6 Hz, 1H); ¹³C

NMR (101 MHz, CDCl₃): δ 138.4, 129.6, 129.3, 128.6, 128.3, 118.6, 109.1, 106.2, 79.6, 43.3. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (90:10 heptane: isopropanol, 0.8 mL/min, 250 nm); major enantiomer t_r = 28.0 min, minor enantiomer t_r = 34.7 min; 85% ee; $[\alpha]_D^{20}$ +58.8 (c = 1.1, CH₂Cl₂).

2-[1-(4-fluorophenyl)-2-nitroethyl]-1H-pyrrole 6ab

Pale-yellow crystals (43.1 mg, 92%). ¹H NMR (400 MHz, CDCl₃): δ 7.85 (bs, 1H), 7.23-7.19 (m, 2H), 7.07-7.03 (m, 2H), 6.72-6.70 (m, 1H), 6.19-6.17 (m, 1H), 6.09-6.07 (m, 1H), 4.97 (dd, J = 12.0, 7.2 Hz, 1H), 4.89 (t, J = 8.0 Hz, 1H), 4.77 (dd, J = 12.4, 8.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 134.2, 130.1, 130.0, 129.1, 118.8, 116.7, 109.2, 106.3, 79.6, 42.6. Enantiomeric excess

was determined by HPLC with a Chiralcel OD-H column (95:5 heptane: isopropanol, 0.6 mL/min, 230 nm); major enantiomer $t_r = 70.8$ min, minor enantiomer $t_r = 74.7$ min; 91% ee; $[\alpha]_D^{20}$ +60.6 (c = 1.0, CH₂Cl₂).

2-[1-(4-chlorophenyl)-2-nitroethyl]-1H-pyrrole 6ac

White crystals (47.0 mg, 94%). ¹H NMR (400 MHz, CDCl₃): δ 7.85 (bs, 1H), 7.34-7.31 (m, 2H), 7.19-7.15 (m, 2H), 6.72-6.70 (m, 1H), 6.19-6.16 (m, 1H), 6.08-6.07 (m, 1H), 4.97 (dd, J = 12.4, 7.2Hz, 1H), 4.88 (t, J = 7.6 Hz, 1H), 4.77 (dd, J = 12.0, 8.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 136.9, 134.5, 129.8, 129.7, 128.7, 118.9, 109.2, 106.4, 79.4, 42.7. Enantiomeric excess was

determined by HPLC with a Chiralcel OD-H column (85:15 heptane: isopropanol, 0.8 mL/min, 250 nm); major enantiomer $t_r = 19.8$ min, minor enantiomer $t_r = 21.7$ min; 71% ee; $[\alpha]_D^{20} + 56.2$ (c = 1.1, CH₂Cl₂).

2-[1-(4-bromophenyl)-2-nitroethyl]-1H-pyrrole 6ad

White crystals (54.7 mg, 93%). ¹H NMR (400 MHz, CDCl₃): δ 7.86 (bs, 1H), 7.50-7.46 (m, 2H), 7.13-7.09 (m, 2H), 6.72-6.70 (m, 1H), 6.19-6.16 (m, 1H), 6.07-6.06 (m, 1H), 4.97 (dd, J = 12.0, 6.8Hz, 1H), 4.86 (t, J = 7.6 Hz, 1H), 4.77 (dd, J = 12.0, 8.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 137.5, 132.8, 130.0, 128.6, 122.6, 118.9, 109.2, 106.4, 79.3, 42.8. Enantiomeric excess was

determined by HPLC with a Chiralcel OD-H column (85:15 heptane: isopropanol, 0.8 mL/min, 250 nm); major enantiomer $t_r = 22.8$ min, minor enantiomer $t_r = 25.1$ min; 80% ee; $[\alpha]_D^{20} + 37.4$ (c = 1.5, CH₂Cl₂).

2-[1-(4-methoxyphenyl)-2-nitroethyl]-1H-pyrrole 6ae

Yellow oil (43.1 mg, 92%). ¹H NMR (400 MHz, CDCl₃): δ 7.83 (bs, 1H), 7.17-7.13 (m, 2H), 6.90-6.86 (m, 2H), 6.70-6.68 (m, 1H), 6.18-6.16 (m, 1H), 6.07-6.06 (m, 1H), 4.96 (dd, J =12.0, 7.2 Hz, 1H), 4.85 (t, J = 8.0 Hz, 1H), 4.76 (dd, J = 12.0, 8.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 159.8, 130.2, 129.7, 129.5, 118.5, 115.0, 109.1, 106.0, 79.8, 55.7, 42.6.

Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (95:5 heptane: isopropanol, 0.6 mL/min, 230 nm); major enantiomer $t_r = 70.8$ min, minor enantiomer $t_r = 74.7$ min; 89% ee; $[\alpha]_D^{20} + 77.2$ (c = 0.9, CH₂Cl₂).

2-(2-nitro-1-furylethyl)-1H-pyrrole 6af

Brownish solid (39.1 mg, 95%). ¹H NMR (400 MHz, CDCl₃): δ 8.23 (bs, 1H), 7.41-7.40 (m, 1H), 7.19-7.15 (m, 1H), 6.74-6.73 (m, 1H), 6.35-6.34 (m, 1H), 6.21-6.20 (m, 1H), 6.18-6.16 (m, 1H), 6.10 (bs, 1H), 5.02 (t, *J* = 7.6 Hz, 1H), 4.90 (dd, *J* = 12.8, 7.6 Hz, 1H), 4.82 (dd, *J* = 12.8, 7.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃):

δ 151.1, 143.2, 126.7, 118.7, 111.0, 109.3, 108.6, 108.3, 107.1, 78.2, 37.4.Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (85:15 heptane:

isopropanol, 0.8 mL/min, 250 nm); minor enantiomer $t_r = 12.5$ min, major enantiomer $t_r = 14.5$ min; 85% ee; $[\alpha]_D^{20}$ -26.4 (c = 0.8 , CH₂Cl₂).

2-(2-nitro-1-thiophenylethyl)-1H-pyrrole 6ag

Brownish solid (38.2 mg, 86%). ¹H NMR (400 MHz, CDCl₃): δ 8.01 (bs, 1H), 7.27-7.25 (m, 1H), 6.99-6.97 (m, 1H), 6.96-6.94 (m, 1H), 6.73-6.71 (m, 1H), 6.19-6.17 (m, 1H), 6.12 (bs, 1H), 5.22 (t, J = 8.0 Hz, 1H), 4.95 (dd, J = 12.8, 7.6 Hz, 1H), 4.84 (dd, J = 13.2, 8.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 141.4, 128.7, 127.6,

126.4, 126.0, 118.7, 109.3, 106.4, 80.1, 38.7. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (85:15 heptane: isopropanol, 0.8 mL/min, 250 nm); minor enantiomer $t_r = 17.8$ min, major enantiomer $t_r = 21.3$ min; 93% ee; $[\alpha]_D^{20}$ +47.9 (c = 0.5, CH₂Cl₂).

2-(1-butyl-2-nitroethyl)-1H-pyrrole 6ah

Colourless oil (21.6 mg, 55%). IR (liquid, cm⁻¹): 3392m, 2926s, 2858m, 1541s, 1429w, 1177s, 1331w, 1121w, 1028w, 716s. ¹H NMR (400 MHz, CDCl₃): δ 8.10 (bs, 1H), 6.70-6.68 (m, 1H), 6.17-6.15 (m, 1H), 6.01-6.99 (m, 1H), 4.56-4.46 (m,

2H), 1.70-1.62 (m, 2H), 1.35-1.21 (m, 4H), 0.87 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 130.5, 117.7, 109.1, 106.2, 105.8, 80.9, 37.9, 32.5, 29.6, 22.9, 14.3. ESI-MS (MeOH): m/z 219.1 [M + Na]⁺ (base peak, calc. 219.1). Anal. Calc. C 61.20, H 8.22, N 14.27 for C₁₀H₁₆N₂O₂; Found: 61.52, 8.35, N 13.96%. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (95:5 heptane: isopropanol, 0.5 mL/min, 230 nm); minor enantiomer t_r = 29.9 min, major enantiomer t_r = 32.4 min; 59% ee; [α]_D²⁰ -15.7 (c = 0.6, CH₂Cl₂).

2-(2-nitro-1-phenylethyl)-5-ethyl-1*H*-pyrrole 6ba

Brownish oil (42.0 mg, 86%). ¹H NMR (400 MHz, CDCl₃): δ 7.54 (bs, 1H), 7.40-7.35 (m, 3H), 7.32 (m, 2H), 5.98 (t, *J* = 4.0 Hz, 1H), 5.86 (t, *J* = 3.8 Hz, 1H), 5.00 (dd, *J* = 12.0, 8.0 Hz, 1H), 4.88 (t, *J*

= 8.0 Hz, 1H), 4.80 (dd, J = 12.0, 8.0 Hz, 1H), 2.55 (q, J = 8.0 Hz, 2H), 1.20 (t, J = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 138.7, 135.2, 129.6, 128.5, 128.3, 127.7, 106.1, 104.8, 79.7, 43.4, 21.1, 13.8. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (90:10 heptane: isopropanol, 0.8 mL/min, 250 nm); major enantiomer t_r = 19.3 min, minor enantiomer t_r = 22.9 min; 66% ee; [α]_D²⁰ +31.0 (c = 0.7, CH₂Cl₂).

2-[1-(4-bromophenyl)-2-nitroethyl]-5-ethyl-1H-pyrrole 6bd

Brownish oil (58.0 mg, 90%). ¹H NMR (400 MHz, CDCl₃): δ 7.54 (bs, 1H), 7.50 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 5.96 (t, J = 4.0 Hz, 1H), 5.86 (t, J = 4.0 Hz, 1H), 4.97 (dd, J = 12.0, 4.0 Hz, 1H), 4.83 (t, J = 8.0 Hz, 1H), 4.76 (dd, J = 12.0, 8.0 Hz, 1H), 2.55 (q, J = 8.0

Hz, 2H), 1.21 (t, J = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 137.8, 135.6, 132.7, 130.0, 127.0, 122.5, 106.3, 104.9, 79.4, 42.9, 25.8, 21.1, 13.8. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (90:10 heptane: isopropanol, 0.8 mL/min, 250 nm); major enantiomer t_r = 23.6 min, minor enantiomer t_r = 26.6 min; 50% ee; $[\alpha]_D^{20}$ +11.6 (c = 0.6, CH₂Cl₂).

2-(2-nitro-1-furylethyl)-5-ethyl-1H-pyrrole 6bf

Brownish oil (43.0 mg, 92%). ¹H NMR (400 MHz, CDCl₃): δ 7.91 (bs, 1H), 7.43 (m, 1H), 6.36 (dd, J = 8.0, 4.0 Hz, 1H), 6.22 (d, J = 3.2 Hz, 1H), 5.99 (t, J = 4.0 Hz, 1H), 5.86 (t, J = 4.0 Hz, 1H), 4.99 (t, J = 8.0 Hz, 1H), 4.91 (dd, J = 12.0, 4.0 Hz, 1H), 4.83 (dd, J = 12.0, 8.0 Hz, 1H),

2.60 (q, J = 8.0 Hz, 2H), 1.24 (t, J = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.4, 147.8, 143.1, 138.7, 135.3, 125.0, 111.0, 108.1, 107.0, 105.1, 78.3, 37.5, 25.9, 21.2, 13.7. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (90:10 heptane: isopropanol, 0.8 mL/min, 250 nm); minor enantiomer t_r = 12.4 min, major enantiomer t_r = 15.3 min; 85% ee; $[\alpha]_D^{20}$ -24.2 (c = 0.5, CH₂Cl₂).

2-(2-nitro-1-thiophenylethyl)-5-ethyl-1H-pyrrole 6bg

2H), 1.23 (t, J = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 141.5, 134.9, 127.2, 126.7, 125.8, 125.5, 105.8, 104.6, 79.8, 38.3, 20.8, 13.4. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (90:10 heptane: isopropanol, 0.8 mL/min, 250 nm); minor enantiomer t_r = 18.0 min, major enantiomer t_r = 21.8 min; 87% ee; $[\alpha]_D^{20}$ +20.7 (c = 1.2, CH₂Cl₂).

References:

J. T. Liu, C. F. Yao, *Tetrahedron Lett.* 2001, **42**, 6147-6150.
B. M. Trost, C. Müller, *J. Am. Chem. Soc.*, 2008, **130**, 2438-2439.

HPLC profiles:

Racemates and products

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	28.037	MM	1.2365	1.54187e4	207.82443	92.7034
2	34.688	MM	1.2549	1213.59900	16.11799	7.2966

Signal 1: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	70.785	MF	2.9850	1.79437e4	100.18740	95.0214
2	74.735	FM	1.9168	940.15045	8.17478	4.9786

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.793	вv	0.7642	7458.44629	150.50403	85.5280
2	21.716	VB	0.6844	1262.03137	23.06211	14.4720

Signal 1: DAD1 B, Sig=250,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1 2	22.831 25.116	BB BB	0.8675	1.06772e4 1211.45251	186.62993 18.87497	 89.8100 10.1900

Signal 1: DAD1 B, Sig=250,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	25.539	MM	1.0448	4284.41260	68.34254	94.3178 [°]
2	32.768	MM	1.2609	258.11563	3.41170	5.6822

Signal	1:	DAD1	в,	Sig=250,16	Ref=off
--------	----	------	----	------------	---------

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
 1 2	12.537 14.494	MM MM	0.4973	751.34973 9419.25781	25.18150 247.73141	7.3875 92.6125

Signal 1: DAD1 B, Sig=250,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.802	BB	0.6249	1429.00464	34.37843	3.7527
2	21.312	BB		3.66504e4	671.21082	96.2473

Signal 1: DAD1 D, Sig=230,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	29.697	MF	1.0504	6383.49512	101.28540	20.3061
2	32.373	FM	1.1623	2.50528e4	359.23685	79.6939

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.332	BB	0.7661	1.39924e4	278.50830	83.1151
2	22.866	BB	0.7945	2842.55713	52.26468	16.8849

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	23.561	MF	0.9926	1.14232e4	191.80528	74.6137
2	26.565	FM	1.0594	3886.59009	61.14575	25.3863

Signal 1: DAD1 B, Sig=250,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1 2	12.440 15.328	BB BB	0.5154 0.6187	1162.87952 1.43369e4	34.48457 361.51810	 7.5026 92.4974

Signal 1: DAD1 B, Sig=250,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area १
1	18.027	MM	0.7039	2597.84399	61.51017	6.6668
2	21.774	BB	0.8683	3.63693e4	656.54767	93.3332