# **Supporting Information**

# Structure, stereochemistry and synthesis of enantiopure cyclohexenone *cis*-diol bacterial metabolites derived from phenols

Derek R. Boyd,<sup>\*a</sup> Narain D. Sharma,<sup>a</sup> John F. Malone,<sup>a</sup> Peter B. A. McIntyre,<sup>a</sup> Paul J. Stevenson,<sup>a</sup> Christopher C. R. Allen,<sup>a</sup> Marcin Kwit<sup>a</sup> and Jacek Gawronski<sup>\*c</sup>

<sup>a</sup> School of Chemistry and Chemical Engineering, Queen's University, Belfast, UK, BT9 5AG. FAX: (+44)-

28-9097-4687; Tel(+44) 28 9097 4421; e-mail: dr.boyd@gub.ac.uk,

<sup>b</sup> School of Biological Sciences, Queen's University, Belfast BT9 5AG, UK.

<sup>c</sup> Department of Chemistry, A. Mieckiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland. . FAX:

(+48)-61-8658-008; e.mail: gawronsk@amu.edu.pl

#### Index

P.4 Copy of 1H – NMR spectrum of compound  $4d_s$ P.5 Copy of 13C - NMR spectrum of compound  $4d_s$ P.6 Copy of 1H – NMR spectrum of compound  $4e_s$ P.7 Copy of 13C - NMR spectrum of compound  $4e_s$ P.8 Copy of 1H – NMR spectrum of compound  $4f_s$ P.9 Copy of 13C - NMR spectrum of compound  $4f_s$ P.10 Copy of 1H – NMR spectrum of compound  $4g_R$ P.11 Copy of 13C - NMR spectrum of compound  $4g_R$ P.12 Copy of 1H – NMR spectrum of compound  $4g_{R-cam}$ P.13 Copy of 13C – NMR spectrum of compound  $4g_{R-cam}$ P.14 Copy of 1H – NMR spectrum of compound  $5g_R$ P.15 Copy of 13C - NMR spectrum of compound  $5g_R$ P.16 Copy of 1H – NMR spectrum of compound  $4i_R$ P.17 Copy of 13C – NMR spectrum of compound  $4i_R$ P.18 Copy of 1H – NMR spectrum of compound  $5i_R$ P.19 Copy of 13C - NMR spectrum of compound  $5i_R$ P.20 Copy of 1H – NMR spectrum of compound  $4j_R$ P.21 Copy of 13C – NMR spectrum of compound  $4j_R$ P.22 Copy of 1H – NMR spectrum of compound **12c** P.23 Copy of 1H – NMR spectrum of compound 12d P.24 Copy of 1H – NMR spectrum of compound **12e** P.25 Copy of 1H – NMR spectrum of compound 13c

P.26 Copy of 1H – NMR spectrum of compound 13d
P.27 Copy of 1H – NMR spectrum of compound 13e
P. 28–65 Additional data for calculated ECD and UV-Vis spectroscopy and specific optical rotation values















 $7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0 \quad ppm$ 









8 7 6 5 4 3 2 1 0 ppm

































**Figure A1.** UV spectra spectra of *cis*-ketodiols **4a-4j**, **5g** and **5i**, experimental (in acetonitrile solutions, solid black lines) and  $\Delta E_{B3LYP}$  (red dashed lines),  $\Delta G_{B3LYP}$  (black dotted lines) and  $\Delta E_{B2PLYP(D)}$  (dash-dot-dot blue lines) Boltzmann averaged calculated at PCM/B2LYP/Aug-cc-pVTZ level. All calculated spectra were wavelength-corrected to match the experimental UV  $\lambda_{max}$ . Data for *cis*-diols **4h** and **4j** were taken from M. Kwit, J. Gawronski, D. R. Boyd, N. Sharma and M. Kaik, *Org. Biomol. Chem.* **2010**, *8*, 5635.

#### **Computational details**

Starting geometries of keto-*cis*-diols **4a-4g**, *ent-***4i**, **5g** and *ent-***5i** were obtained by optimisation at the B3LYP/6-311++G(d,p)<sup>[1]</sup> level of theory. From these geometries, for both *P* and *M* helicity enones, relaxed potential energy surfaces (PES) were obtained by changing the dihedral angles of H-C4-O-H, H-C5-O-H and, if necessary, of C2=C3-O-CH<sub>3</sub> and C2=C3-C<sub>Ar</sub>=C<sub>Ar</sub> in the range 0° to 360° by 30 degree steps. This allowed to identify the minimum energy structures which were further optimised in the acetonitrile and methanol solutions, using the polarizable continuum model (IEFPCM)<sup>[2]</sup> at the PCM/B3LYP/6-311++G(2d,2p) level of theory. The structures thus obtained were the real minimum energy conformers (no imaginary frequencies have been found). For all stable conformers the single point energy at the PCM/B2PLYP(D)/Aug-cc-pVTZ<sup>[3]</sup> were calculated. The total and free energy values were used to obtain the Boltzmann population of conformers at 298.15 K. For DFT calculations, only the results for conformers that differ from the most stable by less than 2 kcal mol<sup>-1</sup> have been taken into account for further considerations, following a generally accepted protocol.<sup>[4]</sup>

The calculations of optical rotations were carried out for all stable conformers at four different wavelengths (589, 578, 546 and 436 nm), in the solvent and *in vacuo*, using the B3LYP/Aug-cc-pVTZ method. London orbitals (which ensure the origin independency of the results) have been used. Since the experimental data were recorded in methanol solution, optical rotations calculated with the use of the IEFPCM model were further taken into account.<sup>[5]</sup>

For all investigated compounds the ECD spectra were measured in acetonitrile solution and calculated at the IEFPCM/TDDFT/B2LYP/Aug-cc-pVTZ<sup>[3,6-7]</sup> level for all stable geometries optimised at the IEFPCM/B3LYP/6-311++G(2d,2p)

level, according to the procedure previously described.<sup>[8]</sup>

Note that in the case of **4a** all calculations were done using B3LYP hybrid functional and Aug-cc-pVDZ basis set for carbon, hydrogen and oxygen atoms and Aug-cc-pVDZ-PP basis set for iodine, with the use of the Conductor-like Screening Model (COSMO),<sup>[9]</sup> simulating acetonitrile or methanol solutions.

Rotatory strengths were calculated using both length and velocity representations. In the present study, the differences between the length and velocity of the calculated values of rotatory strengths were quite small and for this reason only the velocity representations were further used (see also Supplementary Information). The ECD spectra were simulated by overlapping Gaussian functions<sup>[10]</sup> for each transition, according to the procedure previously described.<sup>[11-15]</sup>

- 1 (a) Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004; (b) Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- (a) D. Marchesan, S. Coriani, C. Forzato, P. Nitti, G. Pitacco, K. Ruud, J. Phys. Chem. A 2005, 109, 1449-1453; (b) B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. Frisch, F. J. Devlin, S. Gabriel, P. J. Stephens, *J. Phys. Chem. A* 2002, *106*, 6102-6113. (c) G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, V. Barone, *J. Chem. Phys.* 2006, *124*, 094107.
- 3 S. Grimme, J. Chem. Phys. **2006**, 124, 034108; (b) S. Grimme, F. Neese, J. Chem. Phys. **2007**, 127, 154116; (c) L. Goerigk, S. Grimme, J. Phys. Chem. A, **2009**, 113, 767.
- 4 (a) P. J. Stephens, D. M. McCann, E. Butkus, S. Stončius, J. R. Cheeseman, M. J. Frisch, *J. Org. Chem.* **2004**, *69*, 1948-1958; (b) P. J. Stephens, F. J. Devlin, J. R. Cheeseman, M. J. Frisch, O. Bortolini, P. Besse, *Chirality* **2003**, *15*, S57.
- 5 (a) M. Pecul, K. Ruud, T. Helgaker, *Chem. Phys. Lett.* **2004**, *388*, 110; (b) T. Helgaker, K. Ruud, K. L. Bak, P. Jørgensen, J. Olsen, *Faraday Discuss.* **1994**, *99*, 165.
- 6 R. Ahlrichs, M. Baer, M. Haeser, H. Horn, C. Koelmel, *Chem. Phys. Lett.* **1989**, *162*, 165 (see also www.turbomolegmbh.com for an overview of the TURBOMOLE program).
- 7 J. Gawronski, M. Kwit, P. Skowronek, Org. Biomol. Chem. 2009, 7, 1562.
- 8 M. Kwit, J. Gawronski, D. R. Boyd, N. Sharma and M. Kaik, Org. Biomol. Chem. 2010, 8, 5635.
- 9 (a) A. Klamt and G. Schüürmann, J. Chem. Soc. Perkin Trans. 2, **1993**, 5, 799; b) A. Klamt and V. Jonas, J. Chem. Phys., **1996**, 105, 9972.
- 10 (a) N. Harada, P. Stephens, *Chirality*, **2010**, *22*, 229-233; (b) N. M. O'Boyle, A. L. Tenderholt, K. M. Langner. J. Comp. Chem., **2008**, *29*, 839-845.
- 11 J Gawronski, M. Kwit, D. R. Boyd, N. D. Sharma, J. F. Malone, A. Drake, J. Am. Chem. Soc. 2005, 127, 4308.
- 12 M. Kwit, N. D. Sharma, D. R. Boyd, J. Gawronski, *Chem. Eur. J.* **2007**, *13*, 5812.
- 13 M. Kwit, N. D. Sharma, D. R. Boyd, J. Gawronski, *Chirality* **2008**, *20*, 609.
- 14 M. Kwit, J. Gawronski, D.R. Boyd, N. D. Sharma, M. Kaik, R. A. More O'Ferrall, J. S. Kudavalli, *Chem. Eur. J.* **2008**, *14*, 11500.

15 M. Kwit, J. Gawronski, L. Sbircea, N. D. Sharma, M. Kaik, D. R. Boyd, Chirality, 2009, 21, E37.

| Conformer <sup>a</sup>   | $E_{tot}$     | ΔE   | Population | $\Delta G$ | Population |
|--------------------------|---------------|------|------------|------------|------------|
| $4a(M1)^{b}$             | -754.38000739 | 0.87 | 5          | 1.02       | 4          |
| $4a(M2)^{b}$             | -754.38083059 | 0.35 | 13         | 0.16       | 18         |
| $4a(M3)^{b}$             | -754.37977744 | 1.01 | 4          | 0.96       | 4          |
| $4a(M4)^{b}$             | -754.38059932 | 0.50 | 10         | 0.32       | 13         |
| $4a(P1)^{b}$             | -754.38010693 | 0.80 | 6          | 1.36       | 2          |
| $4a(P2)^{b}$             | -754.38138924 | 0.00 | 23         | 0.11       | 19         |
| $4a(P3)^{b}$             | -754.38122343 | 0.10 | 21         | 0.00       | 24         |
| $4a(P4)^{b}$             | -754.38116156 | 0.14 | 18         | 0.22       | 16         |
| <b>4b</b> ( <i>M</i> 2)  | -796.43299657 | 0.15 | 17         | 0.00       | 25         |
| <b>4b</b> ( <i>M</i> 3)  | -796.43247009 | 0.48 | 10         | 0.33       | 14         |
| <b>4b</b> ( <i>M</i> 4)  | -796.43317079 | 0.04 | 21         | 0.14       | 19         |
| <b>4b</b> ( <i>P</i> 1)  | -796.43013745 | 1.94 | 1          | 2.44       |            |
| <b>4b</b> ( <i>P</i> 2)  | -796.43294182 | 0.18 | 16         | 0.57       | 9          |
| <b>4b</b> ( <i>P</i> 3)  | -796.43282629 | 0.25 | 14         | 0.23       | 17         |
| <b>4b</b> ( <i>P</i> 4)  | -796.43322992 | 0.00 | 22         | 0.27       | 16         |
| <b>4c</b> ( <i>M</i> 1a) | -690.389609   | 0.58 | 8          | 0.61       | 6          |
| <b>4c</b> ( <i>M</i> 1b) | -690.390036   | 0.31 | 12         | 0.71       | 5          |
| <b>4c</b> ( <i>M</i> 2a) | -690.389919   | 0.38 | 11         | 0.00       | 18         |
| <b>4c</b> ( <i>M</i> 2b) | -690.389171   | 0.85 | 5          | 0.61       | 6          |
| <b>4c</b> ( <i>M</i> 3a) | -690.389092   | 0.90 | 5          | 0.34       | 10         |
| <b>4c</b> ( <i>M</i> 3b) | -690.38964    | 0.56 | 8          | 0.26       | 11         |
| <b>4c</b> ( <i>M</i> 4a) | -690.389807   | 0.45 | 10         | 0.33       | 10         |
| <b>4c</b> ( <i>M</i> 4b) | -690.39053    | 0.00 | 21         | 0.16       | 13         |
| <b>4c</b> ( <i>P</i> 1a) | -690.388571   | 1.23 | 3          | 1.24       | 2          |
| <b>4c</b> ( <i>P</i> 1b) | -690.38565    | 3.06 |            | 3.05       |            |
| <b>4c</b> ( <i>P</i> 2a) | -690.389426   | 0.69 | 6          | 0.5        | 7          |
| <b>4c</b> ( <i>P</i> 2b) | -690.386438   | 2.57 |            | 2.16       |            |
| <b>4c</b> ( <i>P</i> 3a) | -690.38932    | 0.76 | 6          | 0.63       | 6          |
| <b>4c</b> ( <i>P</i> 3b) | -690.386616   | 2.46 |            | 1.46       | 1          |
| <b>4c</b> ( <i>P</i> 4a) | -690.38921    | 0.83 | 5          | 0.76       | 5          |
| <b>4c</b> ( <i>P</i> 4b) | -690.386315   | 2.65 |            | 2.28       |            |

**Table A1.** Total energies ( $E_{tot}$ , in Hartree), relative energies ( $\Delta E$ ,  $\Delta G$  in kcal mol<sup>-1</sup>) and percentage populations of individual conformers of **4a-4g**, *ent*-**4i**, **5g** and *ent*-**5i** calculated at the PCM(MeCN)/B3LYP/6-311++G(2d,2p) level.

| <b>4d</b> ( <i>M</i> 2)  | -918.90418258  | 0.56 | 8  | 0.72 | 9  |
|--------------------------|----------------|------|----|------|----|
| <b>4d</b> ( <i>M</i> 3)  | -918.90503293  | 0.02 | 21 | 0.41 | 13 |
| <b>4d</b> ( <i>M</i> 4)  | -918.90242934  | 1.66 | 1  | 1.91 | 1  |
| <b>4d</b> ( <i>P</i> 1)  | -918.90464944  | 0.26 | 14 | 0.00 | 27 |
| <b>4d</b> ( <i>P</i> 2)  | -918.90506780  | 0.00 | 22 | 0.30 | 16 |
| <b>4d</b> ( <i>P</i> 3)  | -918.90473508  | 0.21 | 15 | 0.44 | 13 |
| <b>4d</b> ( <i>P</i> 4)  | -918.90495274  | 0.07 | 19 | 0.15 | 21 |
| <b>4e</b> ( <i>M</i> 1)  | -3032.81705546 | 1.08 | 3  | 1.76 | 1  |
| <b>4e</b> ( <i>M</i> 2)  | -3032.81858179 | 0.13 | 17 | 0.20 | 19 |
| <b>4e</b> ( <i>M</i> 3)  | -3032.81794225 | 0.53 | 9  | 0.50 | 11 |
| <b>4e</b> ( <i>M</i> 4)  | -3032.81864704 | 0.09 | 18 | 0.30 | 16 |
| <b>4e</b> ( <i>P</i> 1)  | -3032.81616632 | 1.64 | 1  | 2.24 |    |
| <b>4e</b> ( <i>P</i> 2)  | -3032.81838173 | 0.25 | 14 | 0.43 | 12 |
| <b>4e</b> ( <i>P</i> 3)  | -3032.81878449 | 0.00 | 22 | 0.33 | 15 |
| <b>4e</b> ( <i>P</i> 4)  | -3032.81853489 | 0.16 | 16 | 0.00 | 26 |
| <b>4f</b> ( <i>M</i> 1a) | -573.85036476  | 1.13 | 4  | 1.49 | 2  |
| <b>4f</b> ( <i>M</i> 1b) | -573.84535663  | 4.27 |    | 4.38 |    |
| <b>4f</b> ( <i>M</i> 2a) | -573.85216017  | 0.00 | 28 | 0.00 | 23 |
| <b>4f</b> ( <i>M</i> 2b) | -573.84641244  | 3.61 |    | 3.47 |    |
| <b>4f</b> ( <i>M</i> 3a) | -573.85126861  | 0.56 | 11 | 0.06 | 21 |
| <b>4f</b> ( <i>M</i> 3b) | -573.84616815  | 3.76 |    | 3.23 |    |
| <b>4f</b> ( <i>M</i> 4a) | -573.85195105  | 0.13 | 22 | 0.00 | 23 |
| <b>4f</b> ( <i>M</i> 4b) | -573.84678075  | 3.38 |    | 2.93 |    |
| <b>4f</b> ( <i>P</i> 1a) | -573.84908161  | 1.93 | 1  | 7.13 |    |
| <b>4f</b> ( <i>P</i> 1b) | -573.84195287  | 6.41 |    | 5.99 |    |
| <b>4f</b> ( <i>P</i> 2b) | -573.84331373  | 5.55 |    | 3.88 |    |
| <b>4f</b> ( <i>P</i> 3a) | -573.85206462  | 0.06 | 25 | 0.07 | 21 |
| <b>4f</b> ( <i>P</i> 3b) | -573.84368279  | 5.32 |    | 4.82 |    |
| <b>4f</b> ( <i>P</i> 4a) | -573.85115333  | 0.63 | 9  | 0.53 | 10 |
| <b>4f</b> ( <i>P</i> 4b) | -573.84341928  | 5.48 |    | 4.79 |    |
| <b>4g</b> ( <i>M</i> 2)  | -597.87503669  | 3.40 |    | 3.11 |    |
| <b>4g</b> ( <i>M</i> 3)  | -597.87380314  | 4.17 |    | 0.43 | 22 |
| <b>4g</b> ( <i>M</i> 4)  | -597.87359201  | 4.31 |    | 3.90 |    |
|                          |                |      |    |      |    |

\_

| <b>4g</b> ( <i>P</i> 1)             | -597.87678554 | 2.30 |    | 2.88 |    |
|-------------------------------------|---------------|------|----|------|----|
| <b>4g</b> ( <i>P</i> 2)             | -597.88045504 | 0.00 | 65 | 0.00 | 45 |
| <b>4g</b> ( <i>P</i> 4)             | -597.87987332 | 0.37 | 35 | 0.19 | 33 |
| <i>ent-</i> <b>4i</b> ( <i>M</i> 1) | -958.213616   | 3.24 |    | 3.37 |    |
| <i>ent</i> -4i(M2)                  | -958.2153897  | 2.12 |    | 2.45 |    |
| <i>ent</i> -4i( <i>M</i> 3)         | -958.2138227  | 3.11 |    | 2.90 |    |
| <i>ent-</i> <b>4i</b> ( <i>M</i> 4) | -958.2145679  | 2.64 |    | 2.95 |    |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 1) | -958.2172679  | 0.94 | 9  | 1.24 | 5  |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 2) | -958.218772   | 0.00 | 44 | 0.11 | 33 |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 3) | -958.2184069  | 0.23 | 30 | 0.00 | 41 |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 4) | -958.2179049  | 0.54 | 17 | 0.40 | 21 |
| <b>5g</b> ( <i>M</i> 1)             | -597.87827223 | 1.16 | 6  | 0.88 | 9  |
| <b>5g</b> ( <i>M</i> 2)             | -597.87951638 | 0.38 | 25 | 0.2  | 29 |
| <b>5g</b> ( <i>M</i> 3)             | -597.88011916 | 0.00 | 48 | 0.00 | 41 |
| <b>5g</b> ( <i>M</i> 4)             | -597.87933478 | 0.49 | 21 | 0.38 | 21 |
| <b>5g</b> ( <i>P</i> 1)             | -597.87314245 | 4.38 |    | 4.43 |    |
| <b>5g</b> ( <i>P</i> 2)             | -597.87615153 | 2.49 |    | 2.29 |    |
| <b>5g</b> ( <i>P</i> 4)             | -597.87565705 | 2.80 |    | 2.70 |    |
| <i>ent</i> -5i(M1)                  | -958.2172436  | 0.56 | 11 | 1.06 | 6  |
| <i>ent</i> -5i(M2)                  | -958.2181375  | 0.00 | 29 | 0.00 | 39 |
| <i>ent-</i> 5i( <i>M</i> 4)         | -958.2176604  | 0.30 | 18 | 0.34 | 22 |
| <i>ent</i> -5i(P1)                  | -958.2161766  | 1.23 | 4  | 1.81 | 2  |
| <i>ent</i> -5i(P2)                  | -958.2175949  | 0.34 | 16 | 0.84 | 9  |
| <i>ent-</i> <b>5i</b> ( <i>P</i> 3) | -958.2174446  | 0.43 | 14 | 0.56 | 15 |
| <i>ent</i> -5i(P4)                  | -958.2168958  | 0.78 | 8  | 1.06 | 7  |
|                                     |               |      |    |      |    |

[a] Labels a-b refer to the rotamers due to the OMe or Ph substituents; [b] optimized at the COSMO(MeCN)/B3LYP/Aug-cc-pVDZ level.

| Conformer <sup>a</sup>               | $E_{tot}$    | ΔE   | Population | $\Delta G$ | Population |
|--------------------------------------|--------------|------|------------|------------|------------|
| <b>4a</b> $(M1)^{b}$                 | -754.379912  | 0.84 | 6          | 0.63       | 7          |
| $4a(M2)^{b}$                         | -754.380705  | 0.34 | 13         | 0.78       | 5          |
| <b>4a</b> ( <i>M</i> 3) <sup>b</sup> | -754.379676  | 0.99 | 4          | 0.42       | 10         |
| $4a(M4)^{b}$                         | -754.380455  | 0.50 | 10         | 0.21       | 14         |
| <b>4a</b> ( <i>P</i> 1) <sup>b</sup> | -754.379975  | 0.80 | 6          | 0.16       | 15         |
| $4a(P2)^{b}$                         | -754.381254  | 0.00 | 23         | 0.23       | 13         |
| $4a(P3)^{b}$                         | -754.381088  | 0.10 | 20         | 0.00       | 20         |
| $4a(P4)^{b}$                         | -754.381007  | 0.15 | 18         | 0.14       | 16         |
| <b>4b</b> ( <i>M</i> 1)              | -796.419509  | 0.86 | 6          | 1.09       | 4          |
| <b>4b</b> ( <i>M</i> 2)              | -796.420779  | 0.06 | 24         | 0.00       | 27         |
| <b>4b</b> ( <i>M</i> 3)              | -796.419417  | 0.91 | 6          | 0.16       | 21         |
| <b>4b</b> ( <i>M</i> 4)              | -796.420386  | 0.31 | 16         | 0.16       | 21         |
| <b>4b</b> ( <i>P</i> 1)              | -796.41917   | 1.07 | 5          | 1.68       | 2          |
| <b>4b</b> ( <i>P</i> 2)              | -796.420874  | 0.00 | 27         | 0.33       | 16         |
| <b>4b</b> ( <i>P</i> 4)              | -796.420375  | 0.31 | 16         | 0.62       | 9          |
| <b>4c</b> ( <i>M</i> 1a)             | -690.3895368 | 0.58 | 8          | 0.62       | 6          |
| <b>4c</b> ( <i>M</i> 1b)             | -690.3899706 | 0.30 | 12         | 0.71       | 5          |
| <b>4c</b> ( <i>M</i> 2a)             | -690.3898505 | 0.38 | 11         | 0.00       | 17         |
| <b>4c</b> ( <i>M</i> 2b)             | -690.389098  | 0.85 | 5          | 0.64       | 6          |
| <b>4c</b> ( <i>M</i> 3a)             | -690.3890224 | 0.90 | 5          | 0.35       | 10         |
| <b>4c</b> ( <i>M</i> 3b)             | -690.3895757 | 0.55 | 8          | 0.27       | 11         |
| <b>4c</b> ( <i>M</i> 4a)             | -690.3897271 | 0.46 | 10         | 0.34       | 10         |
| <b>4c</b> ( <i>M</i> 4b)             | -690.3904564 | 0.00 | 21         | 0.17       | 13         |
| <b>4c</b> ( <i>P</i> 1a)             | -690.3885016 | 1.23 | 3          | 1.36       | 2          |
| <b>4c</b> ( <i>P</i> 1b)             | -690.3855818 | 3.06 |            | 3.06       |            |
| <b>4c</b> ( <i>P</i> 2a)             | -690.3893495 | 0.69 | 6          | 0.51       | 7          |
| <b>4c</b> ( <i>P</i> 2b)             | -690.3863629 | 2.57 |            | 2.18       |            |
| <b>4c</b> ( <i>P</i> 3a)             | -690.3892501 | 0.76 | 6          | 0.63       | 6          |
| <b>4c</b> ( <i>P</i> 3b)             | -690.3865445 | 2.45 |            | 1.48       | 2          |
| <b>4c</b> ( <i>P</i> 4a)             | -690.3891194 | 0.84 | 5          | 0.78       | 5          |
| <b>4c</b> ( <i>P</i> 4b)             | -690.3862331 | 2.65 |            | 2.29       |            |

**Table A2.** Total energies ( $E_{tot}$ , in Hartree), relative energies ( $\Delta E$ ,  $\Delta G$  in kcal mol<sup>-1</sup>) and percentage populations of individual conformers of **4a-4g**, *ent*-**4i**, **5g** and *ent*-**5i** calculated at the PCM(MeOH)/B3LYP/6-311++G(2d,2p) level.

\_

| <b>4d</b> ( <i>M</i> 1)  | -918.8913331   | 0.80 | 6  | 1.32 | 3  |
|--------------------------|----------------|------|----|------|----|
| <b>4d</b> ( <i>M</i> 2)  | -918.8923292   | 0.17 | 17 | 0.31 | 17 |
| <b>4d</b> ( <i>M</i> 3)  | -918.8910392   | 0.98 | 4  | 0.55 | 11 |
| <b>4d</b> ( <i>M</i> 4)  | -918.8919791   | 0.39 | 11 | 0.63 | 10 |
| <b>4d</b> ( <i>P</i> 1)  | -918.8913462   | 0.79 | 6  | 1.27 | 3  |
| <b>4d</b> ( <i>P</i> 2)  | -918.8925969   | 0.01 | 22 | 0.33 | 16 |
| <b>4d</b> ( <i>P</i> 3)  | -918.8926013   | 0.00 | 22 | 0.00 | 28 |
| <b>4d</b> ( <i>P</i> 4)  | -918.891996    | 0.38 | 12 | 0.50 | 12 |
| <b>4e</b> ( <i>M</i> 1)  | -3032.81715796 | 1.10 | 4  | 1.63 | 1  |
| <b>4e</b> ( <i>M</i> 2)  | -3032.81859734 | 0.20 | 18 | 0.00 | 23 |
| <b>4e</b> ( <i>M</i> 3)  | -3032.81784649 | 0.67 | 9  | 0.47 | 10 |
| <b>4e</b> ( <i>M</i> 4)  | -3032.81856322 | 0.22 | 17 | 0.22 | 17 |
| <b>4e</b> ( <i>P</i> 1)  | -3032.81622499 | 1.69 | 1  | 2.05 |    |
| <b>4e</b> ( <i>P</i> 2)  | -3032.81836769 | 0.34 | 14 | 0.32 | 13 |
| <b>4e</b> ( <i>P</i> 3)  | -3032.81891445 | 0.00 | 25 | 0.11 | 19 |
| <b>4e</b> ( <i>P</i> 4)  | -3032.81821873 | 0.44 | 12 | 0.20 | 17 |
| <b>4f</b> ( <i>M</i> 1a) | -573.8394912   | 1.21 | 6  | 1.64 | 3  |
| <b>4f</b> ( <i>M</i> 1b) | -573.8340909   | 4.60 |    | 4.66 |    |
| <b>4f</b> ( <i>M</i> 2a) | -573.8405366   | 0.55 | 18 | 0.64 | 17 |
| <b>4f</b> ( <i>M</i> 2b) | -573.8336237   | 4.89 |    | 4.51 |    |
| <b>4f</b> ( <i>M</i> 3a) | -573.8393641   | 1.29 | 5  | 1.00 | 9  |
| <b>4f</b> ( <i>M</i> 3b) | -573.8338856   | 4.73 |    | 4.12 |    |
| <b>4f</b> ( <i>M</i> 4a) | -573.8402057   | 0.76 | 12 | 1.05 | 8  |
| <b>4f</b> ( <i>M</i> 4b) | -573.8346764   | 4.23 |    | 4.17 |    |
| <b>4f</b> ( <i>P</i> 1a) | -573.8390678   | 1.48 | 4  | 1.8  | 2  |
| <b>4f</b> ( <i>P</i> 1b) | -573.832109    | 5.84 |    | 5.79 |    |
| <b>4f</b> ( <i>P</i> 2a) | -573.8395862   | 1.15 | 6  | 1.26 | 6  |
| <b>4f</b> ( <i>P</i> 2b) | -573.8324129   | 5.65 |    | 5.04 |    |
| <b>4f</b> ( <i>P</i> 3a) | -573.8414202   | 0.00 | 45 | 0.00 | 50 |
| <b>4f</b> ( <i>P</i> 3b) | -573.8311129   | 6.47 |    | 5.64 |    |
| <b>4f</b> ( <i>P</i> 4a) | -573.8388952   | 1.58 | 4  | 1.55 | 5  |
| <b>4f</b> ( <i>P</i> 4b) | -573.8315158   | 6.22 |    | 5.98 |    |
| <b>4g</b> ( <i>M</i> 1)  | -597.8645665   | 1.81 | 3  | 2.04 |    |

\_

| <b>4g</b> ( <i>M</i> 2)             | -597.8625819 | 3.05 |    | 2.66 |    |
|-------------------------------------|--------------|------|----|------|----|
| <b>4g</b> ( <i>M</i> 3)             | -597.8604377 | 4.40 |    | 3.52 |    |
| <b>4g</b> ( <i>M</i> 4)             | -597.8609482 | 4.08 |    | 3.70 |    |
| <b>4g</b> ( <i>P</i> 1)             | -597.8648995 | 1.60 | 6  | 1.75 | 4  |
| <b>4g</b> ( <i>P</i> 2)             | -597.867449  | 0.00 | 73 | 0.00 | 80 |
| <b>4g</b> ( <i>P</i> 4)             | -597.8661301 | 0.83 | 18 | 0.96 | 16 |
| <i>ent-</i> <b>4i</b> ( <i>M</i> 1) | -958.2135581 | 3.23 |    | 3.34 |    |
| <i>ent-</i> <b>4i</b> ( <i>M</i> 2) | -958.2153355 | 2.11 |    | 2.44 |    |
| <i>ent-</i> <b>4i</b> ( <i>M</i> 3) | -958.2137648 | 3.10 |    | 2.89 |    |
| <i>ent-</i> <b>4i</b> ( <i>M</i> 4) | -958.214504  | 2.64 |    | 2.94 |    |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 1) | -958.217207  | 0.94 | 9  | 1.23 | 5  |
| <i>ent</i> -4i(P2)                  | -958.2187039 | 0.00 | 44 | 0.10 | 34 |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 3) | -958.2183477 | 0.22 | 30 | 0.00 | 40 |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 4) | -958.2178286 | 0.55 | 17 | 0.39 | 21 |
| <b>5g</b> ( <i>M</i> 1)             | -597.8655892 | 0.56 | 14 | 1.16 | 7  |
| <b>5g</b> ( <i>M</i> 2)             | -597.8662542 | 0.14 | 28 | 0.40 | 25 |
| <b>5g</b> ( <i>M</i> 3)             | -597.8664815 | 0.00 | 35 | 0.00 | 48 |
| <b>5g</b> ( <i>M</i> 4)             | -597.866004  | 0.30 | 22 | 0.53 | 20 |
| <b>5g</b> ( <i>P</i> 1)             | -597.8615117 | 3.12 |    | 3.54 |    |
| <b>5g</b> ( <i>P</i> 2)             | -597.8634057 | 1.93 | 1  | 2.31 |    |
| <b>5g</b> ( <i>P</i> 4)             | -597.8629247 | 2.23 |    | 2.56 |    |
| <i>ent-</i> <b>5i</b> ( <i>M</i> 1) | -958.217183  | 0.57 | 11 | 1.06 | 6  |
| <i>ent-</i> 5i( <i>M</i> 2)         | -958.218084  | 0.00 | 29 | 0.00 | 39 |
| <i>ent-</i> 5i( <i>M</i> 4)         | -958.217597  | 0.31 | 17 | 0.34 | 22 |
| <i>ent-</i> <b>5i</b> ( <i>P</i> 1) | -958.216118  | 1.23 | 4  | 1.81 | 3  |
| <i>ent-</i> <b>5i</b> ( <i>P</i> 2) | -958.217529  | 0.35 | 16 | 0.84 | 9  |
| <i>ent-</i> <b>5i</b> ( <i>P</i> 3) | -958.217386  | 0.44 | 14 | 0.56 | 15 |
| <i>ent-</i> <b>5i</b> ( <i>P</i> 4) | -958.216821  | 0.79 | 9  | 1.07 | 6  |
|                                     |              |      |    |      |    |

[a] labels a-b refer to the rotamers due to the OMe or Ph substituents; [b] optimized at the COSMO(MeCN)/B3LYP/Aug-cc-pVDZ level.

**Table A3.** Single-point energies ( $E_{tot}$ , in Hartree), relative energies ( $\Delta E$  in kcal mol<sup>-1</sup>) and percentage populations of individual conformers of **4a-4g**, *ent*-**4i**, **5g** and *ent*-**5i** calculated at the PCM/B2PLYP(D)/Aug-cc-pVTZ//B3LYP/6-311++G(2d,2p) level.

| Conformer <sup>a</sup>               | $E_{tot(MeCN)}$ | ΔE   | Pop. | $E_{tot(MeOH)}$ | $\Delta E$ | Pop. |
|--------------------------------------|-----------------|------|------|-----------------|------------|------|
| $4a(M1)^{b}$                         | not calculated  |      |      | not calculated  |            |      |
| $4a(M2)^{b}$                         | not calculated  |      |      | not calculated  |            |      |
| $4a(M3)^{b}$                         | not calculated  |      |      | not calculated  |            |      |
| <b>4a</b> $(M4)^{b}$                 | not calculated  |      |      | not calculated  |            |      |
| <b>4a</b> ( <i>P</i> 1) <sup>b</sup> | not calculated  |      |      | not calculated  |            |      |
| $4a(P2)^{b}$                         | not calculated  |      |      | not calculated  |            |      |
| <b>4a</b> ( <i>P</i> 3) <sup>b</sup> | not calculated  |      |      | not calculated  |            |      |
| $4a(P4)^{b}$                         | not calculated  |      |      | not calculated  |            |      |
| <b>4b</b> ( <i>M</i> 1)              |                 |      |      | -               | 0.04       |      |
|                                      |                 |      |      | 795.96773809858 | 0.84       | 6    |
| <b>4b</b> ( <i>M</i> 2)              | -               | 0.70 |      | -               |            |      |
|                                      | 795.96742913525 | 0.70 | 11   | 795.96902957660 | 0.03       | 24   |
| <b>4b</b> ( <i>M</i> 3)              | -               |      |      | -               | 0.92       |      |
|                                      | 795.96656380994 | 1.25 | 4    | 795.96777289290 | 0.82       | 6    |
| <b>4b</b> ( <i>M</i> 4)              | -               | 0.64 |      | -               |            |      |
|                                      | 795.96752969804 | 0.04 | 12   | 795.96855410669 | 0.33       | 15   |
| <b>4b</b> ( <i>P</i> 1)              | -               |      |      | -               |            |      |
|                                      | 795.96688187865 | 1.05 | 6    | 795.96766734693 | 0.89       | 6    |
| <b>4b</b> ( <i>P</i> 2)              | -               |      |      | -               |            |      |
|                                      | 795.96855141389 | 0.00 | 38   | 795.96907902508 | 0.00       | 26   |
| <b>4b</b> ( <i>P</i> 3)              | -               |      |      |                 |            |      |
|                                      | 795.96745600423 | 0.69 | 11   |                 |            |      |
| <b>4b</b> ( <i>P</i> 4)              | -               |      |      | -               |            |      |
|                                      | 795.96787374682 | 0.43 | 18   | 795.96865054180 | 0.27       | 17   |
| <b>4c</b> ( <i>M</i> 1a)             | -               | 0.00 |      | -               | 0.00       |      |
|                                      | 689.90613583256 | 0.00 | 26   | 689.90627504512 | 0.09       | 16   |
| <b>4c</b> ( <i>M</i> 1b)             | -               |      |      | -               |            |      |
|                                      | 689.90523583256 | 0.56 | 10   | 689.90608604512 | 0.21       | 13   |
| <b>4c</b> ( <i>M</i> 2a)             | -               | 1.08 | 4    | -               | 0.67       | 6    |

|                          | 689.90441338565 |      |    | 689.90535460003 |      |    |
|--------------------------|-----------------|------|----|-----------------|------|----|
| <b>4c</b> ( <i>M</i> 2b) | -               |      |    | -               |      |    |
|                          | 689.90474963244 | 0.87 | 6  | 689.90520144073 | 0.77 | 5  |
| <b>4c</b> ( <i>M</i> 3a) | -               |      |    | -               |      |    |
|                          | 689.90390758355 | 1.40 | 3  | 689.90471259007 | 1.08 | 3  |
| <b>4c</b> ( <i>M</i> 3b) | -               |      |    | -               |      |    |
|                          | 689.90095003877 | 3.25 |    | 689.90571859795 | 0.44 | 9  |
| <b>4c</b> ( <i>M</i> 4a) | -               |      |    | -               |      |    |
|                          | 689.90439505731 | 1.09 | 4  | 689.90522542108 | 0.75 | 5  |
| <b>4c</b> ( <i>M</i> 4b) | -               |      |    | -               |      |    |
|                          | 689.90548434818 | 0.41 | 13 | 689.90642608555 | 0.00 | 19 |
| <b>4c</b> ( <i>P</i> 1a) | -               |      |    | -               |      |    |
|                          | 689.90341696385 | 1.71 | 1  | 689.90465633661 | 1.11 | 3  |
| <b>4c</b> ( <i>P</i> 1b) | -               |      |    | -               |      |    |
|                          | 689.90102002943 | 3.21 |    | 689.90121002943 | 3.27 |    |
| <b>4c</b> ( <i>P</i> 2a) | -               |      |    | -               |      |    |
|                          | 689.90435600772 | 1.12 | 4  | 689.90508632981 | 0.84 | 4  |
| <b>4c</b> ( <i>P</i> 2b) | -               |      |    | -               |      |    |
|                          | 689.90107803816 | 3.17 |    | 689.90160392655 | 3.03 |    |
| <b>4c</b> ( <i>P</i> 3a) | -               |      |    | -               |      |    |
|                          | 689.90599289631 | 0.09 | 24 | 689.90592524245 | 0.31 | 11 |
| <b>4c</b> ( <i>P</i> 3b) | -               |      |    | -               |      |    |
|                          | 689.90253177959 | 2.26 |    | 689.90246575173 | 2.49 |    |
| <b>4c</b> ( <i>P</i> 4a) | -               |      |    | -               |      |    |
|                          | 689.90459417944 | 0.97 | 5  | 689.90499564792 | 0.90 | 5  |
| <b>4c</b> ( <i>P</i> 4b) | -               |      |    | -               |      |    |
|                          | 689.90166419218 | 2.81 |    | 689.90158580904 | 3.04 |    |
| <b>4d</b> ( <i>M</i> 1)  |                 |      |    | -               | 0 99 |    |
|                          |                 |      |    | 918.45520398292 | 0.77 | 6  |
| <b>4d</b> ( <i>M</i> 2)  | -               |      |    | -               |      |    |
|                          | 918.45525551966 | 0.09 | 21 | 918.45607648108 | 0.44 | 15 |
| <b>4d</b> ( <i>M</i> 3)  | -               | 0.84 |    | -               | 1.12 |    |
|                          | 918.45405333068 |      | 6  | 918.45499009696 | . –  | 5  |

| <b>4d</b> ( <i>M</i> 4)           | -                        |       |    | -               |       |     |
|-----------------------------------|--------------------------|-------|----|-----------------|-------|-----|
|                                   | 918.45467990060          | 0.45  | 11 | 918.45572700753 | 0.66  | 10  |
| <b>4d</b> ( <i>P</i> 1)           | -                        |       |    | -               |       |     |
|                                   | 918.45399255804          | 0.88  | 5  | 918.45528803404 | 0.93  | 6   |
| <b>4d</b> ( <i>P</i> 2)           | -                        |       |    | -               |       |     |
|                                   | 918.45532772212          | 0.04  | 22 | 918.45622945238 | 0.34  | 17  |
| <b>4d</b> ( <i>P</i> 3)           | -                        |       |    | -               |       |     |
|                                   | 918.45539776694          | 0.00  | 24 | 918.45677701722 | 0.00  | 31  |
| <b>4d</b> ( <i>P</i> 4)           | _                        |       |    | _               |       |     |
|                                   | 918.45458489344          | 0.51  | 11 | 918.45568548713 | 0.68  | 10  |
| <b>4e</b> ( <i>M</i> 1)           | -                        |       |    | -               |       |     |
|                                   | 3032.1689791660          | 0.65  | 7  | 3032.1688771305 | 0.70  | 7   |
| <b>4e</b> ( <i>M</i> 2)           | -                        |       |    | -               |       |     |
|                                   | 3032,1698441558          | 0.11  | 18 | 3032,1698217325 | 0.11  | 18  |
| 4e(M3)                            | _                        |       |    | -               |       |     |
|                                   | 3032 1684060242          | 1.01  | 4  | 3032 1684041382 | 1.00  | 4   |
| <b>4</b> e( <i>M</i> 4)           | _                        |       | ·  | -               |       | ·   |
| <b>HC</b> (1011)                  | 3032 1692652301          | 0.47  | 10 | 3032 1692759330 | 0.45  | 10  |
| $\Delta e(P1)$                    | -                        | 0.17  | 10 | -               | 0.15  | 10  |
| <b>HC</b> (1 1)                   | 3032 1687273044          | 0.81  | 6  | 3032 1686948221 | 0.81  | 6   |
| <b>4</b> e( <i>P</i> <b>?</b> )   | -                        | 0.01  | Ū  | -               | 0.01  | 0   |
| <b>HC</b> (1 2)                   | 3032 1700123227          | 0.00  | 22 | 3032 1699604878 | 0.02  | 24  |
| $A_0(P_3)$                        | 5052.1700125227          | 0.00  |    | 5052.1077004070 | 0.02  | 27  |
| 40(13)                            | -                        | 0.05  | 20 | -               | 0.00  | าา  |
| $A_{0}(DA)$                       | 3032.1099304703          | 0.05  | 20 | 5052.1079754528 | 0.00  |     |
| <b>4</b> C(1 4)                   | -                        | 0.24  | 12 | -               | 0.27  | 10  |
| <b>Af</b> (M1a)                   | 3032.1094708383          | 0.34  | 15 | 5052.1094077040 | 0.37  | 12  |
| <b>41</b> ( <i>M</i> 1 <b>a</b> ) | -                        | 0.90  | o  | -               | 1.24  | 6   |
| <b>4f</b> (1/11)                  | 373.43810204424          |       | 0  | 575.45914996519 |       | 0   |
| <b>41</b> ( <i>M</i> 10)          | -                        | 116   |    | -               | 1 5 1 |     |
|                                   | <i>J</i> / J.43290848498 | 4.10  |    | 3/3.433889/6062 | 4.54  |     |
| 41( <i>M2</i> a)                  | -                        | 0.27  | 24 |                 | 0.70  | 1.7 |
|                                   | 573.45916307753          | 4 • • | 24 | 5/3.46000/61969 | 4.62  | 15  |
| <b>41</b> ( <i>M</i> 2b)          | -                        | 4.14  |    | -               | 4.83  |     |

\_

|                                  | 573.45300769731 |      |    | 573.45341749693 |       |    |
|----------------------------------|-----------------|------|----|-----------------|-------|----|
| <b>4f</b> ( <i>M</i> 3a)         | -               |      |    | -               |       |    |
|                                  | 573.45785615828 | 1.09 | 6  | 573.45905097111 | 1.30  | 5  |
| <b>4f</b> ( <i>M</i> 3b)         | -               |      |    | -               |       |    |
|                                  | 573.45256228706 | 4.42 |    | 573.45374582576 | 4.63  |    |
| <b>4f</b> ( <i>M</i> 4a)         | _               |      |    | -               |       |    |
|                                  | 573.45880422480 | 0.50 | 16 | 573.45969940444 | 0.89  | 11 |
| <b>4f</b> ( <i>M</i> 4b)         | _               |      |    | -               |       |    |
|                                  | 573 45333139450 | 3 93 |    | 573 45430078508 | 4 28  |    |
| <b>4f</b> ( <i>P</i> 1a)         | _               |      |    | _               |       |    |
| ()                               | 573 45752625270 | 1 30 | 4  | 573 45892623955 | 1 38  | 5  |
| <b>4f</b> ( <i>P</i> 1b)         | -               | 1.50 | •  | _               | 1.20  | Ũ  |
| <b>H</b> (110)                   | 573 45082988050 | 5 50 |    | 573 45191107473 | 5 78  |    |
| $Af(P_{2})$                      | 575.45002700050 | 5.50 |    | 575.45171107475 | 5.70  |    |
| <b>HI</b> (1 2a)                 |                 |      |    | -               | 1 2 9 | 5  |
| <b>1f</b> ( <b>D)</b> h)         |                 |      |    | 575.45892000075 | 1.38  | 5  |
| <b>41</b> ( <i>F</i> 20)         | -               | 5 15 |    | -               | 5.07  |    |
| $AE(D2_{a})$                     | 5/5.45090/88921 | 5.45 |    | 5/5.45159//6526 | 5.97  |    |
| <b>41</b> ( <i>P</i> <b>5</b> a) | -               | 0.00 | 27 | -               | 0.00  | 50 |
|                                  | 5/3.45960086344 | 0.00 | 31 | 5/3.46111829323 | 0.00  | 50 |
| <b>41</b> ( <i>P</i> 3b)         | -               | 6.01 |    |                 |       |    |
|                                  | 573.45001917495 | 6.01 |    |                 |       |    |
| <b>4f</b> ( <i>P</i> 4a)         | -               |      |    | -               |       |    |
|                                  | 573.45771869746 | 1.18 | 5  | 573.45836490888 | 1.73  | 3  |
| <b>4f</b> ( <i>P</i> 4b)         | -               |      |    | -               |       |    |
|                                  | 573.45012491521 | 5.95 |    | 573.45102701728 | 6.33  |    |
| <b>4g</b> ( <i>M</i> 1)          |                 |      |    | -               | 1.61  |    |
|                                  |                 |      |    | 597.48391307675 |       | 5  |
| <b>4g</b> ( <i>M</i> 2)          | -               | 3 27 |    | -               |       |    |
|                                  | 597.48046859907 |      |    | 597.48130902477 | 3.25  |    |
| <b>4g</b> ( <i>M</i> 3)          | -               |      |    | -               | 4 50  |    |
|                                  | 597.47821025926 | 4.69 |    | 597.47931465763 |       |    |
| <b>4g</b> ( <i>M</i> 4)          | -               | 471  |    | -               |       |    |
|                                  | 597.47817258091 | т./1 |    | 597.47966665535 | 4.28  |    |

| <b>4g</b> ( <i>P</i> 1)             | -               |      |    | -               |      |    |
|-------------------------------------|-----------------|------|----|-----------------|------|----|
|                                     | 597.48335050149 | 1.47 | 7  | 597.48445920543 | 1.27 | 8  |
| <b>4g</b> ( <i>P</i> 2)             | -               |      |    | -               |      |    |
|                                     | 597.48568629297 | 0.00 | 78 | 597.48648039750 | 0.00 | 69 |
| <b>4g</b> ( <i>P</i> 4)             | -               |      |    | -               |      |    |
|                                     | 597.48416220972 | 0.96 | 15 | 597.48519778949 | 0.80 | 18 |
| <i>ent</i> -4i(M1)                  | -               | 2 (7 |    | -               | 2 (7 |    |
|                                     | 957.74546901898 | 2.67 |    | 957.74541169889 | 2.67 |    |
| <i>ent-</i> <b>4i</b> ( <i>M</i> 2) | -               |      |    | -               |      |    |
|                                     | 957.74708977930 | 1.66 | 2  | 957.74703801966 | 1.65 | 2  |
| <i>ent-</i> <b>4i</b> ( <i>M</i> 3) | -               | 2 (0 |    | -               | 2 (0 |    |
|                                     | 957.74558953368 | 2.60 |    | 957.74553441694 | 2.60 |    |
| <i>ent-</i> <b>4i</b> ( <i>M</i> 4) | -               |      |    | -               |      |    |
|                                     | 957.74615220352 | 2.25 |    | 957.74609069282 | 2.25 |    |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 1) | -               |      |    | -               |      |    |
|                                     | 957.74847627490 | 0.79 | 10 | 957.74841889712 | 0.79 | 10 |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 2) | -               |      |    | -               |      |    |
|                                     | 957.74964967351 | 0.05 | 35 | 957.74958482256 | 0.06 | 35 |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 3) | -               |      |    | -               |      |    |
|                                     | 957.74973127688 | 0.00 | 38 | 957.74967343921 | 0.00 | 38 |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 4) | -               |      |    | -               |      |    |
|                                     | 957.74873029288 | 0.63 | 13 | 957.74865627405 | 0.64 | 13 |
| <b>5g</b> ( <i>M</i> 1)             | -               | 0.59 |    | -               | 0.79 |    |
|                                     | 597.48341103594 | 0.38 | 16 | 597.48433692207 | 0.78 | 12 |
| <b>5g</b> ( <i>M</i> 2)             | -               |      |    | -               |      |    |
|                                     | 597.48366022580 | 0.42 | 21 | 597.48488865074 | 0.44 | 23 |
| <b>5g</b> ( <i>M</i> 3)             | -               | 0.00 |    | -               | 0.00 |    |
|                                     | 597.48432849048 | 0.00 | 42 | 597.48558787065 | 0.00 | 47 |
| <b>5g</b> ( <i>M</i> 4)             | -               |      |    | -               |      |    |
|                                     | 597.48361102234 | 0.45 | 19 | 597.48469593571 | 0.56 | 18 |
| <b>5g</b> ( <i>P</i> 1)             | -               |      |    | -               |      |    |
|                                     | 597.47999569131 | 2.72 |    | 597.48095020561 | 2.91 |    |
| <b>5g</b> ( <i>P</i> 2)             | -               | 1.68 | 2  | -               | 2.06 |    |
|                                     |                 |      |    |                 |      |    |

|                                     | 597.48164799104 |      |    | 597.48230469157 |      |    |
|-------------------------------------|-----------------|------|----|-----------------|------|----|
| <b>5g</b> ( <i>P</i> 3)             |                 |      |    | -               |      |    |
|                                     |                 |      |    | 597.48185131165 | 2.34 |    |
| <b>5g</b> ( <i>P</i> 4)             | -               |      |    | -               |      |    |
|                                     | 597.48060546830 | 2.34 |    | 597.48185072083 | 2.35 |    |
| <i>ent-</i> 5i( <i>M</i> 1)         | -               | 070  |    | -               | 0.77 |    |
|                                     | 957.74812014614 | 0.76 | 8  | 957.74806085064 | 0.77 | 8  |
| <i>ent-</i> 5i( <i>M</i> 2)         | -               |      |    | -               |      |    |
|                                     | 957.74895554290 | 0.24 | 19 | 957.74890431111 | 0.24 | 19 |
| <i>ent-</i> 5i( <i>M</i> 4)         | -               | 0.54 |    | -               | 0.54 |    |
|                                     | 957.74847837578 | 0.54 | 11 | 957.74841704220 | 0.54 | 11 |
| <i>ent-</i> <b>5i</b> ( <i>P</i> 1) | -               |      |    | -               |      |    |
|                                     | 957.74798976016 | 0.85 | 7  | 957.74793445874 | 0.84 | 7  |
| <i>ent-</i> <b>5i</b> ( <i>P</i> 2) | -               |      |    | -               |      |    |
|                                     | 957.74898220377 | 0.22 | 19 | 957.74892015191 | 0.23 | 19 |
| <i>ent-</i> <b>5i</b> ( <i>P</i> 3) | -               |      |    | -               |      |    |
|                                     | 957.74933716604 | 0.00 | 28 | 957.74928017420 | 0.00 | 28 |
| <i>ent-</i> <b>5i</b> ( <i>P</i> 4) | -               |      |    | -               |      |    |
|                                     | 957.74828749988 | 0.66 | 10 | 957.74821509151 | 0.67 | 8  |

[a] Labels a-b refer to the rotamers due to the OMe or Ph substituents.

| Diol                     | OH···O | OH···X | <u>24,2</u> p) ievei. | Torsio      | n angle        |          |
|--------------------------|--------|--------|-----------------------|-------------|----------------|----------|
|                          | [Å]    | [Å]    |                       | ['          | °]             |          |
|                          |        |        | $\alpha^{a}$          | $\beta^{b}$ | ω <sup>c</sup> | $\phi^d$ |
| $4a(M1)^{e}$             | 2.317  |        | 165.1                 | 164.7       | -177.1         |          |
| $4a(M2)^{e}$             | 2.295  | 3.530  | 29.2                  | 166.8       | -178.3         |          |
| $4a(M3)^{e}$             | 2.344  |        | -61.1                 | -54.9       | -178.6         |          |
| $4a(M4)^e$               | 2.295  |        | -70.6                 | 38.4        | 180.0          |          |
| $4a(P1)^{e}$             | 2.219  |        | -160.2                | -169.0      | -179.6         |          |
| $4a(P2)^{e}$             | 2.175  |        | -161.4                | 38.8        | 177.3          |          |
| $4a(P3)^{e}$             | 2.271  | 3.013  | 44.5                  | 65.0        | 177.3          |          |
| $4a(P4)^{e}$             | 2.257  |        | -31.5                 | 70.6        | 176.9          |          |
| <b>4b</b> ( <i>M</i> 2)  | 2.665  |        | -18.8                 | -173.9      | -179.0         |          |
| <b>4b</b> ( <i>M</i> 3)  | 2.645  | 2.618  | -40.4                 | -45.2       | -179.0         |          |
| <b>4b</b> ( <i>M</i> 4)  | 2.608  |        | -49.5                 | 38.9        | 178.9          |          |
| <b>4b</b> ( <i>P</i> 1)  | 2.337  |        | -163.0                | 165.4       | 176.7          |          |
| <b>4b</b> ( <i>P</i> 2)  | 2.324  |        | -166.4                | -36.8       | 175.3          |          |
| <b>4b</b> ( <i>P</i> 3)  | 2.487  | 2.718  | 14.9                  | 52.8        | 176.1          |          |
| <b>4b</b> ( <i>P</i> 4)  | 2.467  |        | -30.3                 | 58.9        | 175.6          |          |
| <b>4c</b> ( <i>M</i> 1a) | 2.244  |        | 160.3                 | 160.7       | -177.4         | 34.6     |
| <b>4c</b> ( <i>M</i> 1b) | 2.275  | 2.505  | 159.3                 | 163.3       | -178.1         | -26.3    |
| <b>4c</b> ( <i>M</i> 2a) | 2.243  |        | 36.2                  | 163.4       | -178.6         | 35.9     |
| <b>4c</b> ( <i>M</i> 2b) | 2.592  | 2.566  | -29.6                 | -173.5      | -179.6         | -27.8    |
| <b>4c</b> ( <i>M</i> 3a) | 2.263  |        | -67.1                 | -62.2       | -179.4         | 34.4     |
| <b>4c</b> ( <i>M</i> 3b) | 2.256  | 2.570  | -68.6                 | -65.9       | 179.9          | -25.9    |
| <b>4c</b> ( <i>M</i> 4a) | 2.253  |        | -72.3                 | 37.4        | 179.7          | 34.5     |
| <b>4c</b> ( <i>M</i> 4b) | 2.255  | 2.526  | -72.4                 | 38.5        | 179.3          | -25.8    |
| <b>4c</b> ( <i>P</i> 1a) | 2.167  |        | -156.3                | -170.3      | -179.3         | 36.7     |
| <b>4c</b> ( <i>P</i> 1b) | 2.169  |        | -154.4                | -171.6      | 179.6          | -49.9    |
| <b>4c</b> ( <i>P</i> 2a) | 2.133  |        | -158.6                | -37.9       | 177.6          | 37.1     |
| <b>4c</b> ( <i>P</i> 2b) | 2.132  |        | -156.3                | -39.6       | 176.3          | -51.5    |
| <b>4c</b> ( <i>P</i> 3a) | 2.166  |        | 73.4                  | 74.6        | 178.0          | 41.1     |
| <b>4c</b> ( <i>P</i> 3b) | 2.262  |        | 53.0                  | 68.5        | 177.6          | -57.7    |

**Table B1.** Structural parameters that characterize low-energy conformers of **4a-4g**, *ent*-**4i**, **5g** and *ent*-**5i** calculated at the PCM(MeCN)/B3LYP/6-311++G(2d,2p) level.

| <b>4c</b> ( <i>P</i> 4a) | 2.191 |       | -37.2  | 76.0   | 177.6  | 38.4   |
|--------------------------|-------|-------|--------|--------|--------|--------|
| <b>4c</b> ( <i>P</i> 4b) | 2.232 |       | -33.4  | 73.2   | 176.8  | -51.2  |
| <b>4d</b> ( <i>M</i> 1)  | 2.513 |       | 157.8  | 177.6  | -177.5 |        |
| <b>4d</b> ( <i>M</i> 2)  | 2.488 | 3.327 | 25.2   | 178.5  | -179.1 |        |
| <b>4d</b> ( <i>M</i> 3)  | 2.583 |       | -44.9  | -51.5  | -179.0 |        |
| <b>4d</b> ( <i>M</i> 4)  | 2.597 |       | -50.4  | 38.9   | 179.5  |        |
| <b>4d</b> ( <i>P</i> 1)  | 2.439 |       | -173.8 | -165.2 | 178.5  |        |
| <b>4d</b> ( <i>P</i> 2)  | 2.393 |       | -174.3 | -34.0  | 177.2  |        |
| <b>4d</b> ( <i>P</i> 3)  | 2.491 | 2.948 | 32.1   | 50.1   | 177.0  |        |
| <b>4d</b> ( <i>P</i> 4)  | 2.515 |       | -35.6  | 53.8   | 177.3  |        |
| <b>4e</b> ( <i>M</i> 1)  | 2.524 |       | 159.3  | 178.1  | -178.4 |        |
| <b>4e</b> ( <i>M</i> 2)  | 2.498 |       | 24.1   | 179.6  | -179.2 |        |
| <b>4e</b> ( <i>M</i> 3)  | 2.616 | 3.436 | -41.6  | -44.6  | -178.6 |        |
| <b>4e</b> ( <i>M</i> 4)  | 2.594 |       | -50.0  | 38.8   | 179.5  |        |
| <b>4e</b> ( <i>P</i> 1)  | 2.454 |       | -174.8 | -166.6 | 178.1  |        |
| <b>4e</b> ( <i>P</i> 2)  | 2.398 |       | -174.4 | -35.5  | 176.8  |        |
| <b>4e</b> ( <i>P</i> 3)  | 2.499 | 3.069 | 28.9   | 49.5   | 176.9  |        |
| <b>4e</b> ( <i>P</i> 4)  | 2.480 |       | -33.1  | 56.7   | 177.0  |        |
| <b>4f</b> ( <i>M</i> 1a) | 2.524 |       | 157.3  | 178.0  | -179.5 | 1.5    |
| <b>4f</b> ( <i>M</i> 1b) | 2.534 |       | 161.3  | 179.0  | 180.0  | -178.5 |
| <b>4f</b> ( <i>M</i> 2a) | 2.503 | 2.998 | 33.6   | 179.6  | 179.7  | 1.7    |
| <b>4f</b> ( <i>M</i> 2b) | 2.668 |       | -34.7  | -170.0 | 179.0  | -179.2 |
| <b>4f</b> ( <i>M</i> 3a) | 2.581 |       | -46.9  | -45.2  | 180.0  | 1.5    |
| <b>4f</b> ( <i>M</i> 3b) | 2.551 |       | -46.9  | -46.2  | 179.5  | -179.6 |
| <b>4f</b> ( <i>M</i> 4a) | 2.544 |       | -56.4  | 41.8   | 178.6  | 1.1    |
| <b>4f</b> ( <i>M</i> 4b) | 2.542 |       | -54.0  | 39.5   | 178.1  | 179.2  |
| <b>4f</b> ( <i>P</i> 1a) | 2.513 |       | -178.0 | -166.8 | -179.9 | -0.2   |
| <b>4f</b> ( <i>P</i> 1b) | 2.277 |       | -165.2 | -164.3 | -179.0 | -159.8 |
| <b>4f</b> ( <i>P</i> 2b) | 2.235 |       | -166.0 | -31.5  | 179.2  | -149.7 |
| <b>4f</b> ( <i>P</i> 3a) | 2.464 | 2.488 | 51.7   | 54.1   | 178.8  | 0.4    |
| <b>4f</b> ( <i>P</i> 3b) | 2.545 |       | 173.7  | 31.8   | 178.8  | -145.2 |
| <b>4f</b> ( <i>P</i> 4a) | 2.440 |       | -42.2  | 62.6   | 180.0  | 0.0    |
| <b>4f</b> ( <i>P</i> 4b) | 2.713 |       | -29.7  | 57.9   | 179.5  | -157.9 |
|                          |       |       |        |        |        |        |

| <b>4g</b> ( <i>M</i> 2)             | 2.498 |       | -8.6   | 178.8  | -175.8 |  |
|-------------------------------------|-------|-------|--------|--------|--------|--|
| <b>4g</b> ( <i>M</i> 3)             | 2.565 |       | -45.8  | -41.2  | -175.7 |  |
| <b>4g</b> ( <i>M</i> 4)             | 2.616 |       | -49.6  | 36.1   | -178.3 |  |
| <b>4g</b> ( <i>P</i> 1)             | 2.473 |       | -170.9 | -175.8 | 171.1  |  |
| <b>4g</b> ( <i>P</i> 2)             | 2.416 | 2.778 | -172.9 | -35.8  | 169.5  |  |
| <b>4g</b> ( <i>P</i> 4)             | 2.549 |       | -37.5  | 56.6   | 170.3  |  |
| <i>ent-</i> <b>4i</b> ( <i>M</i> 1) | 2.201 |       | 163.6  | 153.0  | -174.5 |  |
| <i>ent-</i> <b>4i</b> ( <i>M</i> 2) | 2.196 | 3.209 | 27.8   | 157.3  | -175.1 |  |
| <i>ent-</i> <b>4i</b> ( <i>M</i> 3) | 2.223 |       | -71.1  | -54.3  | -176.0 |  |
| <i>ent-</i> <b>4i</b> ( <i>M</i> 4) | 2.201 |       | -78.8  | 33.1   | -176.7 |  |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 1) | 2.175 |       | -156.9 | -170.6 | 175.8  |  |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 2) | 2.148 |       | -160.0 | -29.7  | 172.9  |  |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 3) | 2.207 | 2.616 | 61.9   | 70.7   | 173.1  |  |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 4) | 2.204 |       | -26.1  | 72.5   | 172.3  |  |
| <b>5g</b> ( <i>M</i> 1)             | 2.447 |       | 164.2  | 174.0  | -170.7 |  |
| <b>5g</b> ( <i>M</i> 2)             | 2.598 |       | -27.2  | -173.2 | -171.7 |  |
| <b>5g</b> ( <i>M</i> 3)             | 2.566 | 2.717 | -43.8  | -40.8  | -171.5 |  |
| <b>5g</b> ( <i>M</i> 4)             | 2.585 |       | -47.8  | 33.8   | -173.6 |  |
| <b>5g</b> ( <i>P</i> 1)             | 2.467 |       | -169.2 | -175.0 | 179.7  |  |
| <b>5g</b> ( <i>P</i> 2)             | 2.407 |       | -171.1 | -33.7  | 176.8  |  |
| <b>5g</b> ( <i>P</i> 4)             | 2.537 |       | -36.2  | 57.6   | 177.3  |  |
| <i>ent-</i> <b>5i</b> ( <i>M</i> 1) | 2.212 |       | 162.5  | 159.0  | -174.7 |  |
| <i>ent-</i> 5i( <i>M</i> 2)         | 2.197 |       | 30.5   | 162.2  | -175.1 |  |
| <i>ent-</i> 5i( <i>M</i> 4)         | 2.193 |       | -75.5  | 33.4   | -177.5 |  |
| <i>ent-</i> <b>5i</b> ( <i>P</i> 1) | 2.156 |       | -157.1 | -169.0 | 178.6  |  |
| <i>ent-</i> <b>5i</b> ( <i>P</i> 2) | 2.120 |       | -159.2 | -36.5  | 175.8  |  |
| <i>ent-</i> <b>5i</b> ( <i>P</i> 3) | 2.184 | 2.648 | 58.2   | 71.7   | 176.0  |  |
| <i>ent-</i> <b>5i</b> ( <i>P</i> 4) | 2.183 |       | -24.4  | 73.0   | 175.4  |  |

[a] H-C4-O-H; [b] H-C5-O-H; [c] C3-C2-C1=O; [d]  $\varphi$  = C2=C3-C<sub>Ar</sub>-C<sub>Ar</sub> or  $\varphi$  = C2=C3-O-CH<sub>3</sub>; [e] optimized at the COSMO(MeCN)/B3LYP/Aug-cc-pVDZ level.

| ent-5i calculated              | at the PCM( | MeCN)/B3LY                     | <u>P/6-311++G</u> | (2d,2p) level. |                |       |  |  |  |  |  |
|--------------------------------|-------------|--------------------------------|-------------------|----------------|----------------|-------|--|--|--|--|--|
| Diol                           |             | Torsion angle <sup>a</sup> [°] |                   |                |                |       |  |  |  |  |  |
|                                | $C_1$       | $C_2$                          | C <sub>3</sub>    | $C_4$          | C <sub>5</sub> | $C_6$ |  |  |  |  |  |
| $4a(M1)^{b}$                   | 0.6         | 21.8                           | -48.4             | 53.8           | -31.5          | 4.2   |  |  |  |  |  |
| $4a(M2)^{b}$                   | 0.3         | 23.5                           | -49.7             | 54.1           | -30.4          | 3.1   |  |  |  |  |  |
| $4a(M3)^{b}$                   | 1.5         | 22.1                           | -49.5             | 54.6           | -30.9          | 2.9   |  |  |  |  |  |
| $4a(M4)^{b}$                   | 1.5         | 22.5                           | -49.2             | 53.2           | -29.2          | 1.7   |  |  |  |  |  |
| <b>4a</b> $(P1)^{b}$           | 0.3         | -24.1                          | 48.2              | -50.3          | 27.1           | -1.4  |  |  |  |  |  |
| $4\mathbf{a}(P2)^{\mathrm{b}}$ | 0.6         | -22.4                          | 47.5              | -53.0          | 31.2           | -4.8  |  |  |  |  |  |
| $4a(P3)^{b}$                   | 0.5         | -21.9                          | 47.0              | -52.8          | 31.6           | -5.1  |  |  |  |  |  |
| $4\mathbf{a}(P4)^{\mathrm{b}}$ | 0.9         | -21.8                          | 46.6              | -52.2          | 31.5           | -5.6  |  |  |  |  |  |
| <b>4b</b> ( <i>M</i> 2)        | -2.0        | 28.3                           | -52.9             | 53.5           | -27.4          | 1.2   |  |  |  |  |  |
| <b>4b</b> ( <i>M</i> 3)        | -1.9        | 28.7                           | -53.8             | 54.5           | -27.8          | 1.2   |  |  |  |  |  |
| <b>4b</b> ( <i>M</i> 4)        | -1.6        | 29.5                           | -54.4             | 53.3           | -25.6          | -0.9  |  |  |  |  |  |
| <b>4b</b> ( <i>P</i> 1)        | 2.6         | -24.9                          | 48.0              | -51.5          | 29.9           | -4.8  |  |  |  |  |  |
| <b>4b</b> ( <i>P</i> 2)        | 1.2         | -23.1                          | 48.9              | -55.1          | 33.6           | -6.4  |  |  |  |  |  |
| <b>4b</b> ( <i>P</i> 3)        | 1.7         | -24.2                          | 49.4              | -54.3          | 32.4           | -5.6  |  |  |  |  |  |
| <b>4b</b> ( <i>P</i> 4)        | 1.4         | -23.3                          | 49.1              | -54.7          | 33.5           | -6.4  |  |  |  |  |  |
| <b>4c</b> ( <i>M</i> 1a)       | 1.4         | 21.2                           | -48.1             | 52.7           | -30.9          | 3.7   |  |  |  |  |  |
| <b>4c</b> ( <i>M</i> 1b)       | -2.7        | 27.3                           | -51.3             | 51.2           | -27.3          | 2.7   |  |  |  |  |  |
| <b>4c</b> ( <i>M</i> 2a)       | 0.9         | 23.5                           | -50.0             | 53.2           | -29.8          | 2.5   |  |  |  |  |  |
| <b>4c</b> ( <i>M</i> 2b)       | -2.2        | 28.6                           | -53.1             | 52.2           | -26.5          | 1.0   |  |  |  |  |  |
| <b>4c</b> ( <i>M</i> 3a)       | 2.3         | 22.5                           | -50.6             | 54.3           | -30.2          | 1.8   |  |  |  |  |  |
| <b>4c</b> ( <i>M</i> 3b)       | -1.5        | 27.9                           | -53.3             | 52.8           | -26.9          | 0.9   |  |  |  |  |  |
| <b>4c</b> ( <i>M</i> 4a)       | 2.2         | 22.6                           | -50.0             | 52.9           | -28.9          | 0.9   |  |  |  |  |  |
| <b>4c</b> ( <i>M</i> 4b)       | -1.4        | 27.7                           | -52.6             | 51.6           | -25.9          | 0.3   |  |  |  |  |  |
| <b>4c</b> ( <i>P</i> 1a)       | -0.4        | -23.5                          | 48.4              | -50.7          | 27.4           | -1.4  |  |  |  |  |  |
| <b>4c</b> ( <i>P</i> 1b)       | 0.7         | -24.2                          | 48.1              | -49.7          | 26.9           | -1.9  |  |  |  |  |  |
| <b>4c</b> ( <i>P</i> 2a)       | -0.2        | -21.4                          | 47.3              | -52.6          | 31.6           | -5.0  |  |  |  |  |  |
| <b>4c</b> ( <i>P</i> 2b)       | 0.9         | -21.9                          | 46.9              | -52.0          | 31.5           | -5.7  |  |  |  |  |  |
| <b>4c</b> ( <i>P</i> 3a)       | -0.3        | -21.6                          | 47.5              | -52.5          | 31.6           | -4.8  |  |  |  |  |  |
| <b>4c</b> ( <i>P</i> 3b)       | 2.9         | -26.0                          | 49.2              | -50.7          | 28.6           | -4.1  |  |  |  |  |  |
| <b>4c</b> ( <i>P</i> 4a)       | 0.4         | -21.7                          | 47.1              | -51.7          | 31.2           | -5.2  |  |  |  |  |  |
|                                |             |                                |                   |                |                |       |  |  |  |  |  |

**Table B2.** Values of intra-ring torsion angles that characterize the low-energy conformers of **4a-4g**, *ent*-**4i**, **5g** and *ent*-**5i** calculated at the PCM(MeCN)/B3LYP/6-311++G(2d,2p) level.

| 1.7  | -23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -51.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.3  | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -48.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -30.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -0.2 | 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -50.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -29.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.6  | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -50.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -30.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.6  | 25.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -51.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.7  | -24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -51.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.0  | -23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -54.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.6  | -22.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -54.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.5  | -24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -53.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.3  | 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -29.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -0.4 | 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -51.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -28.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.4  | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -50.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -30.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.4  | 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -51.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -28.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.86 | -24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -51.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.00 | -23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -54.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.16 | -23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -54.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.32 | -23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0.6 | 25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -50.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.2  | 23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -49.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -28.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -0.9 | 27.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -51.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -27.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.4  | 22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -49.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -0.3 | 26.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -52.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.0  | 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -50.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -0.5 | 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -52.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -26.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.9  | 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -51.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.3  | -27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -50.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -2.8 | -19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -51.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -2.9 | -18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -53.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.3  | -26.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -52.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -3.4 | -17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -53.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.6  | -27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -51.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -1.9 | -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -53.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0  | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -44.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -30.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | $     \begin{array}{r}       1.7 \\       0.3 \\       -0.2 \\       0.6 \\       0.6 \\       1.7 \\       1.0 \\       0.6 \\       1.5 \\       0.3 \\       -0.4 \\       0.4 \\       0.4 \\       0.4 \\       1.86 \\       1.00 \\       1.16 \\       1.32 \\       -0.6 \\       1.2 \\       -0.9 \\       2.4 \\       -0.3 \\       2.0 \\       -0.5 \\       1.9 \\       2.3 \\       -2.8 \\       -2.9 \\       2.3 \\       -3.4 \\       2.6 \\       -1.9 \\       0.0 \\   \end{array} $ | 1.7 $-23.2$ $0.3$ $22.5$ $-0.2$ $25.1$ $0.6$ $24.1$ $0.6$ $25.2$ $1.7$ $-24.6$ $1.0$ $-23.8$ $0.6$ $-22.6$ $1.5$ $-24.1$ $0.3$ $23.4$ $-0.4$ $25.4$ $0.4$ $24.2$ $0.4$ $25.4$ $1.86$ $-24.9$ $1.00$ $-23.4$ $1.16$ $-23.2$ $1.32$ $-23.5$ $-0.6$ $25.7$ $1.2$ $23.3$ $-0.9$ $27.1$ $2.4$ $22.3$ $-0.3$ $26.6$ $2.0$ $23.4$ $-0.5$ $27.5$ $1.9$ $24.3$ $2.3$ $-27.6$ $-2.8$ $-19.7$ $-2.9$ $-18.7$ $2.3$ $-26.4$ $-3.4$ $-17.2$ $2.6$ $-27.5$ $-1.9$ $-20.0$ $0.0$ $19.4$ | 1.7 $-23.2$ $47.5$ $0.3$ $22.5$ $-48.5$ $-0.2$ $25.1$ $-50.8$ $0.6$ $24.1$ $-50.7$ $0.6$ $25.2$ $-51.5$ $1.7$ $-24.6$ $47.7$ $1.0$ $-23.8$ $49.1$ $0.6$ $-22.6$ $47.9$ $1.5$ $-24.1$ $48.9$ $0.3$ $23.4$ $-49.5$ $-0.4$ $25.4$ $-51.0$ $0.4$ $24.2$ $-50.9$ $0.4$ $25.4$ $-51.7$ $1.86$ $-24.9$ $48.5$ $1.00$ $-23.4$ $48.9$ $1.16$ $-23.2$ $48.4$ $1.32$ $-23.5$ $48.7$ $-0.6$ $25.7$ $-50.5$ $1.2$ $23.3$ $-49.6$ $-0.9$ $27.1$ $-51.9$ $2.4$ $22.3$ $-49.2$ $-0.3$ $26.6$ $-52.1$ $2.0$ $23.4$ $-50.7$ $-0.5$ $27.5$ $-52.6$ $1.9$ $24.3$ $-51.3$ $2.3$ $-27.6$ $50.3$ $-2.8$ $-19.7$ $45.9$ $-2.9$ $-18.7$ $46.3$ $2.3$ $-26.4$ $50.0$ $-3.4$ $-17.2$ $45.0$ $2.6$ $-27.5$ $50.6$ $-1.9$ $-20.0$ $46.7$ $0.0$ $19.4$ $-44.4$ | 1.7 $-23.2$ $47.5$ $-51.5$ $0.3$ $22.5$ $-48.5$ $53.5$ $-0.2$ $25.1$ $-50.8$ $54.0$ $0.6$ $24.1$ $-50.7$ $54.8$ $0.6$ $25.2$ $-51.5$ $54.1$ $1.7$ $-24.6$ $47.7$ $-51.1$ $1.0$ $-23.8$ $49.1$ $-54.5$ $0.6$ $-22.6$ $47.9$ $-54.1$ $1.5$ $-24.1$ $48.9$ $-53.6$ $0.3$ $23.4$ $-49.5$ $53.7$ $-0.4$ $25.4$ $-51.0$ $53.9$ $0.4$ $24.2$ $-50.9$ $55.0$ $0.4$ $24.2$ $-50.9$ $55.0$ $0.4$ $25.4$ $-51.7$ $54.1$ $1.86$ $-24.9$ $48.5$ $-51.9$ $1.00$ $-23.4$ $48.9$ $-54.6$ $1.16$ $-23.2$ $48.4$ $-54.1$ $1.32$ $-23.5$ $48.7$ $-54.0$ $-0.6$ $25.7$ $-50.5$ $52.2$ $1.2$ $23.3$ $-49.6$ $52.6$ $-0.9$ $27.1$ $-51.9$ $52.9$ $2.4$ $22.3$ $-49.2$ $52.8$ $-0.3$ $26.6$ $-52.1$ $53.7$ $2.0$ $23.4$ $-50.7$ $54.2$ $-0.5$ $27.5$ $-52.6$ $52.7$ $1.9$ $24.3$ $-51.3$ $53.4$ $2.3$ $-27.6$ $50.3$ $-50.7$ $-2.8$ $-19.7$ $45.9$ $-51.5$ $-2.9$ $-18.7$ $46.3$ $-53.9$ $2.3$ | 1.7 $-23.2$ $47.5$ $-51.5$ $30.3$ $0.3$ $22.5$ $-48.5$ $53.5$ $-30.6$ $-0.2$ $25.1$ $-50.8$ $54.0$ $29.2$ $0.6$ $24.1$ $-50.7$ $54.8$ $-30.1$ $0.6$ $25.2$ $-51.5$ $54.1$ $-28.5$ $1.7$ $-24.6$ $47.7$ $-51.1$ $28.8$ $1.0$ $-23.8$ $49.1$ $-54.5$ $31.9$ $0.6$ $-22.6$ $47.9$ $-54.1$ $32.6$ $1.5$ $-24.1$ $48.9$ $-53.6$ $31.5$ $0.3$ $23.4$ $-49.5$ $53.7$ $-29.9$ $-0.4$ $25.4$ $-51.0$ $53.9$ $-28.9$ $0.4$ $24.2$ $-50.9$ $55.0$ $-30.3$ $0.4$ $24.2$ $-50.9$ $55.0$ $-30.3$ $0.4$ $25.4$ $-51.7$ $54.1$ $-28.4$ $1.86$ $-24.9$ $48.5$ $-51.9$ $29.2$ $1.00$ $-23.4$ $48.9$ $-54.6$ $32.3$ $1.16$ $-23.2$ $48.4$ $-54.1$ $32.4$ $1.32$ $-23.5$ $48.7$ $-54.0$ $32.2$ $-0.6$ $25.7$ $-50.5$ $52.2$ $-27.6$ $1.2$ $23.3$ $-49.6$ $52.6$ $-28.4$ $-0.9$ $27.1$ $-51.9$ $52.9$ $-27.1$ $2.4$ $22.3$ $-49.2$ $52.8$ $-28.5$ $-0.3$ $26.6$ $-52.1$ $53.7$ $-26.2$ $1.9$ $24.3$ $-51.3$ $53.4$ $-27.5$ |

| <b>4g</b> ( <i>M</i> 3)             | 0.6  | 19.0  | -45.1 | 51.3  | -31.7 | 5.9   |
|-------------------------------------|------|-------|-------|-------|-------|-------|
| <b>4g</b> ( <i>M</i> 4)             | 0.6  | 209   | -46.5 | 50.3  | -28.8 | 3.4   |
| <b>4g</b> ( <i>P</i> 1)             | 3.2  | -24.0 | 50.1  | -58.1 | 38.8  | -10.5 |
| <b>4g</b> ( <i>P</i> 2)             | 3.3  | -22.8 | 49.7  | -59.2 | 40.9  | -12.4 |
| <b>4g</b> ( <i>P</i> 4)             | 3.8  | -24.2 | 51.3  | -60.1 | 41.2  | -12.2 |
| <i>ent</i> -4i(M1)                  | 1.5  | 16.1  | -42.8 | 51.5  | -33.4 | 7.9   |
| <i>ent</i> -4i(M2)                  | 1.4  | 17.1  | -43.8 | 52.0  | -33.1 | 7.2   |
| <i>ent</i> -4i(M3)                  | 2.4  | 16.5  | -44.4 | 52.5  | -32.8 | 6.4   |
| <i>ent-</i> <b>4i</b> ( <i>M</i> 4) | 2.6  | 16.4  | -43.9 | 51.9  | -32.2 | 5.9   |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 1) | 0.7  | -22.0 | 48.2  | -54.2 | 32.7  | -6.1  |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 2) | 0.7  | -19.8 | 47.1  | -55.9 | 36.5  | -9.4  |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 3) | 1.2  | -20.9 | 48.0  | -56.2 | 36.7  | -9.5  |
| <i>ent-</i> <b>4i</b> ( <i>P</i> 4) | 1.0  | -19.3 | 46.6  | -55.6 | 37.2  | -10.4 |
| <b>5g</b> ( <i>M</i> 1)             | -2.1 | 21.8  | -48.1 | 55.5  | -37.0 | 9.9   |
| <b>5g</b> ( <i>M</i> 2)             | -1.3 | 21.7  | -48.8 | 56.5  | -37.4 | 9.3   |
| <b>5g</b> ( <i>M</i> 3)             | -1.5 | 23.1  | -50.5 | 57.7  | -37.2 | 8.7   |
| <b>5g</b> ( <i>M</i> 4)             | -2.0 | 24.8  | -51.3 | 56.0  | -34.6 | 6.9   |
| <b>5g</b> ( <i>P</i> 1)             | 2.0  | -26.9 | 50.3  | -505  | 26.8  | -1.7  |
| <b>5g</b> ( <i>P</i> 2)             | 2.7  | -25.1 | 48.9  | -51.7 | 30.2  | -5.2  |
| <b>5g</b> ( <i>P</i> 4)             | 3.4  | -26.4 | 49.4  | -50.8 | 29.1  | -4.5  |
| <i>ent-</i> <b>5i</b> ( <i>M</i> 1) | 0.1  | 20.0  | -46.5 | 52.8  | -32.8 | 6.8   |
| <i>ent-</i> <b>5i</b> ( <i>M</i> 2) | 0.2  | 21.0  | -47.9 | 54.2  | -33.3 | 6.5   |
| <i>ent-</i> <b>5i</b> ( <i>M</i> 4) | 1.4  | 20.5  | -47.9 | 53.2  | -31.4 | 4.3   |
| <i>ent-</i> <b>5i</b> ( <i>P</i> 1) | 0.6  | -22.4 | 47.0  | -50.9 | 28.7  | -3.6  |
| <i>ent</i> -5i(P2)                  | 0.8  | -20.4 | 46.0  | -52.6 | 32.5  | -7.0  |
| <i>ent-</i> <b>5i</b> ( <i>P</i> 3) | 1.2  | -21.2 | 46.5  | -52.5 | 32.4  | -6.9  |
| <i>ent-</i> <b>5i</b> ( <i>P</i> 4) | 1.0  | -19.8 | 45.2  | -51.9 | 32.9  | -7.7  |

[a]  $C_1 = \tau$ ;  $C_2 = C2=C3-C4-C5$ ;  $C_3 = C3-C4-C5-C6$ ;  $C_4 = C4-C5-C6-C1$ ;  $C_5 = C5-C6-C1-C2$ ;  $C_6 = C6-C1-C2=C3$ ; [b] optimized at the COSMO(MeCN)/B3LYP/Aug-cc-pVDZ level

| Diol                   | Substit         | uent at | $\lambda_{max} [nm]$ | $\epsilon [M^{-1} cm^{-1}]$ |
|------------------------|-----------------|---------|----------------------|-----------------------------|
|                        | C3              | C6      |                      |                             |
|                        | Н               | Н       | 210 <sup>a</sup>     | 19200                       |
|                        | Me              | Н       | 224 <sup>a</sup>     | 22500                       |
| <b>4</b> a             | Ι               | Н       | 257                  | 11600                       |
| <b>4</b> b             | CF <sub>3</sub> | Н       | 198                  | 22900                       |
| 4c                     | Ph              | Н       | 277                  | 17500                       |
| <b>4d</b>              | Cl              | Н       | 228                  | 18500                       |
| <b>4e</b>              | Br              | Н       | 241                  | 17300                       |
| <b>4f</b>              | OMe             | Н       | 241                  | 22900                       |
| <b>4</b> g             | Me              | F       | 226                  | 20600                       |
| <b>4h</b> <sup>a</sup> | Me              | Me      | 225                  | 20400                       |
| <b>4i</b>              | Cl              | Me      | 233                  | 11100                       |
| <b>4j</b> <sup>a</sup> | Me              | Et      | 225                  | 19800                       |
| 5g                     | Me              | F       | 224                  | 11100                       |
| 5i                     | Cl              | Me      | 230                  | 10600                       |

| Table C1. Experimental U | V data for <i>cis</i> -ketodiols <b>4a-4</b> j | j, 5g | ; and | 5i me | easured i | n aceto | onitrile | solution |
|--------------------------|------------------------------------------------|-------|-------|-------|-----------|---------|----------|----------|
| D' 1                     | <b>a</b> 1                                     |       | •     |       |           | [] []   | -1-      |          |

[a] data taken from M. Kwit, J. Gawronski, D. R. Boyd, N. Sharma and M. Kaik, Org. Biomol. Chem. 2010, 8, 5635.

| Diol                   | Conformer             | Calci | ulated op | oical rota | tions | Mea | sured op | tical rota | tions |
|------------------------|-----------------------|-------|-----------|------------|-------|-----|----------|------------|-------|
|                        |                       | 589   | 578       | 546        | 436   | 589 | 578      | 546        | 436   |
|                        |                       | nm    | nm        | nm         | nm    | nm  | nm       | nm         | nm    |
| <b>4a</b> <sup>a</sup> | ( <i>M</i> 1)         | 22    | 27        | 48         | 633   |     |          |            |       |
|                        | ( <i>M</i> 2)         | -128  | -130      | -134       | -232  |     |          |            |       |
|                        | ( <i>M</i> 3)         | -121  | -128      | -150       | -237  |     |          |            |       |
|                        | (M4)                  | -163  | -173      | -204       | -410  |     |          |            |       |
|                        | ( <i>P</i> 1)         | -443  | -461      | -558       | -1627 |     |          |            |       |
|                        | ( <i>P</i> 2)         | -292  | -313      | -389       | -1311 |     |          |            |       |
|                        | (P3)                  | -183  | -197      | -245       | -967  |     |          |            |       |
|                        | (P4)                  | -317  | -341      | -430       | -1595 |     |          |            |       |
| ΔΕ                     | Boltzmann             | -224  | -238      | -290       | -922  | -38 | -37      | -42        | -61   |
| :                      | averaged              |       |           |            |       |     |          |            |       |
| ⊿G                     | Boltzmann             | -231  | -245      | -299       | -911  |     |          |            |       |
| :                      | averaged              |       |           |            |       |     |          |            |       |
| <b>4b</b>              | ( <i>M</i> 1)         | 41    | 47        | 68         | 394   |     |          |            |       |
|                        | ( <i>M</i> 2)         | 19    | 23        | 40         | 350   |     |          |            |       |
|                        | ( <i>M</i> 3)         | 42    | 45        | 56         | 190   |     |          |            |       |
|                        | (M4)                  | -16   | -17       | -20        | -36   |     |          |            |       |
|                        | ( <i>P</i> 1)         | -271  | -286      | -334       | -657  |     |          |            |       |
|                        | (P2)                  | -210  | -222      | -265       | -627  |     |          |            |       |
|                        | ( <i>P</i> 4)         | -211  | -223      | -262       | -541  |     |          |            |       |
| ΔΕ                     | Boltzmann             | -63   | -52       | -52        | 98    | -82 | -86      | -98        | -147  |
| :                      | averaged              |       |           |            |       |     |          |            |       |
| ⊿G                     | Boltzmann             | -77   | -80       | -85        | 24    |     |          |            |       |
| :                      | averaged              |       |           |            |       |     |          |            |       |
| ΔΕ                     | Boltzmann             | -99   | -104      | -119       | -181  |     |          |            |       |
| 8                      | averaged <sup>b</sup> |       |           |            |       |     |          |            |       |
| <b>4</b> c             | ( <i>M</i> 1a)        | -634  | -678      | -823       | -2375 |     |          |            |       |
|                        | ( <i>M</i> 1b)        | 668   | 715       | 885        | 2716  |     |          |            |       |
|                        | ( <i>M</i> 2a)        | -693  | -740      | -903       | -2469 |     |          |            |       |
|                        | ( <i>M</i> 2b)        | 648   | 694       | 855        | 2525  |     |          |            |       |

**Table C2.** Specific optical rotations for *cis*-ketodiols **4a-4g**, *ent***-4i**, **5g** and *ent***-5i**, calculated at the PCM(MeOH)/B3LYP/Aug-cc-pVTZ level and measured in methanol solution.

**4d** 

**4**e

|              | ( <i>M</i> 3a)      | -686 | -732 | -897  | -2501 |     |     |     |      |
|--------------|---------------------|------|------|-------|-------|-----|-----|-----|------|
|              | ( <i>M</i> 3b)      | 561  | 600  | 736   | 2128  |     |     |     |      |
|              | ( <i>M</i> 4a)      | -766 | -818 | -1000 | -2751 |     |     |     |      |
|              | ( <i>M</i> 4b)      | 504  | 539  | 665   | 1945  |     |     |     |      |
|              | (P1a)               | -680 | -725 | -884  | -2398 |     |     |     |      |
|              | (P1b)               | 657  | 703  | 865   | 2457  |     |     |     |      |
|              | (P2a)               | -581 | -622 | -766  | -2183 |     |     |     |      |
|              | (P2b)               | 652  | 694  | 843   | 2201  |     |     |     |      |
|              | (P3a)               | -588 | -628 | -769  | -2124 |     |     |     |      |
|              | (P3b)               | 497  | 531  | 653   | 1810  |     |     |     |      |
|              | (P4a)               | -601 | -642 | -787  | -2205 |     |     |     |      |
|              | (P4b)               | 591  | 631  | 772   | 2098  |     |     |     |      |
| <i>∆E</i> B  | oltzmann            | -95  | -101 | -120  | -271  | -20 | -21 | -21 | +32  |
| av           | eraged              |      |      |       |       |     |     |     |      |
| ⊿ <i>G</i> B | oltzmann            | -211 | -224 | -272  | -712  |     |     |     |      |
| av           | eraged              |      |      |       |       |     |     |     |      |
| <i>∆E</i> B  | oltzmann            | -74  | -79  | -93   | -203  |     |     |     |      |
| ave          | eraged <sup>b</sup> |      |      |       |       |     |     |     |      |
| 1            | ( <i>M</i> 1)       | -5   | -3   | 5     | 151   |     |     |     |      |
|              | ( <i>M</i> 2)       | -75  | -76  | -81   | -13   |     |     |     |      |
|              | ( <i>M</i> 3)       | 8    | 9    | 14    | 90    |     |     |     |      |
|              | ( <i>M</i> 4)       | -53  | -56  | -64   | -100  |     |     |     |      |
|              | ( <i>P</i> 1)       | -188 | -198 | -230  | -445  |     |     |     |      |
|              | (P2)                | -115 | -122 | -147  | -363  |     |     |     |      |
|              | (P3)                | -163 | -171 | -198  | -375  |     |     |     |      |
|              | ( <i>P</i> 4)       | -125 | -132 | -156  | -336  |     |     |     |      |
| <i>∆E</i> B  | oltzmann            | -72  | -76  | -86   | -126  | -52 | -54 | -63 | -109 |
| av           | eraged              |      |      |       |       |     |     |     |      |
| ⊿ <i>G</i> B | oltzmann            | -72  | -75  | -86   | -134  |     |     |     |      |
| av           | eraged              |      |      |       |       |     |     |     |      |
| <i>∆E</i> B  | oltzmann            | -110 | -116 | -133  | -237  |     |     |     |      |
| ave          | eraged <sup>b</sup> |      |      |       |       |     |     |     |      |
| <u>e</u>     | ( <i>M</i> 1)       | -115 | -164 | -194  | -392  |     |     |     |      |

|             | ( <i>M</i> 2)        | -44  | -84  | -103 | -271  |      |      |      |      |
|-------------|----------------------|------|------|------|-------|------|------|------|------|
|             | ( <i>M</i> 3)        | -106 | -137 | -160 | -304  |      |      |      |      |
|             | ( <i>M</i> 4)        | -81  | -118 | -139 | -294  |      |      |      |      |
|             | ( <i>P</i> 1)        | -44  | -17  | -14  | +69   |      |      |      |      |
|             | (P2)                 | -90  | -66  | -71  | -47   |      |      |      |      |
|             | (P3)                 | -15  | +13  | +20  | +119  |      |      |      |      |
|             | (P4)                 | -38  | -34  | -38  | -47   |      |      |      |      |
| ∆E I        | Boltzmann            | -69  | -79  | -91  | -156  | -45  | -47  | -55  | -96  |
| av          | veraged              |      |      |      |       |      |      |      |      |
| ⊿GI         | Boltzmann            | -69  | -77  | -88  | -149  |      |      |      |      |
| av          | veraged              |      |      |      |       |      |      |      |      |
| ∆E I        | Boltzmann            | -60  | -62  | -70  | -104  |      |      |      |      |
| av          | reraged <sup>b</sup> |      |      |      |       |      |      |      |      |
| <b>4f</b>   | ( <i>M</i> 1a)       | -32  | -32  | -34  | -8    |      |      |      |      |
|             | ( <i>M</i> 1b)       | -18  | -19  | -21  | -19   |      |      |      |      |
|             | ( <i>M</i> 2a)       | -127 | -132 | -149 | -227  |      |      |      |      |
|             | ( <i>M</i> 2b)       | -23  | -24  | -29  | -57   |      |      |      |      |
|             | ( <i>M</i> 3a)       | -27  | -28  | -33  | -68   |      |      |      |      |
|             | ( <i>M</i> 3b)       | -18  | -20  | -26  | -79   |      |      |      |      |
|             | ( <i>M</i> 4a)       | -95  | -100 | -117 | -232  |      |      |      |      |
|             | ( <i>M</i> 4b)       | -71  | -76  | -90  | -199  |      |      |      |      |
|             | (P1a)                | -154 | -161 | -184 | -314  |      |      |      |      |
|             | (P1b)                | -350 | -369 | -436 | -922  |      |      |      |      |
|             | (P2a)                | -93  | -98  | -115 | -233  |      |      |      |      |
|             | (P2b)                | -447 | -474 | -566 | -1292 |      |      |      |      |
|             | (P3a)                | -163 | -170 | -194 | -334  |      |      |      |      |
|             | (P3b)                | -447 | -474 | -566 | -1293 |      |      |      |      |
|             | (P4a)                | -99  | -104 | -120 | -219  |      |      |      |      |
|             | (P4b)                | -347 | -367 | -435 | -954  |      |      |      |      |
| <i>∆E</i> I | Boltzmann            | -126 | -132 | -151 | -258  | -120 | -127 | -145 | -219 |
| av          | veraged              |      |      |      |       |      |      |      |      |
| ⊿GI         | Boltzmann            | -128 | -133 | -152 | -261  |      |      |      |      |
| av          | veraged              |      |      |      |       |      |      |      |      |

| $\Delta E$     | Boltzmann            | -129 | -135 | -154 | -264 |      |      |      |      |
|----------------|----------------------|------|------|------|------|------|------|------|------|
| a              | veraged <sup>b</sup> |      |      |      |      |      |      |      |      |
| 4g             | ( <i>M</i> 1)        | 93   | 102  | 131  | 488  |      |      |      |      |
|                | ( <i>M</i> 2)        | 27   | 31   | 49   | 308  |      |      |      |      |
|                | ( <i>M</i> 3)        | 117  | 125  | 154  | 452  |      |      |      |      |
|                | ( <i>M</i> 4)        | 57   | 62   | 79   | 265  |      |      |      |      |
|                | ( <i>P</i> 1)        | -216 | -228 | -268 | -562 |      |      |      |      |
|                | (P2)                 | -133 | -141 | -170 | -404 |      |      |      |      |
|                | ( <i>P</i> 4)        | -136 | -144 | -172 | -393 |      |      |      |      |
| $\Delta E$     | Boltzmann            | -132 | -139 | -167 | -385 | -103 | -109 | -129 | -286 |
| a              | veraged              |      |      |      |      |      |      |      |      |
| ∆G             | Boltzmann            | -137 | -145 | -174 | -409 |      |      |      |      |
| a              | veraged              |      |      |      |      |      |      |      |      |
| $\Delta E$     | Boltzmann            | -128 | -136 | -163 | -370 |      |      |      |      |
| a              | veraged <sup>b</sup> |      |      |      |      |      |      |      |      |
| <i>ent-</i> 4i | ( <i>M</i> 1)        | 67   | 72   | 92   | 324  |      |      |      |      |
|                | ( <i>M</i> 2)        | -19  | -18  | -13  | 114  |      |      |      |      |
|                | ( <i>M</i> 3)        | 69   | 74   | 90   | 255  |      |      |      |      |
|                | ( <i>M</i> 4)        | 3    | 3    | 6    | 60   |      |      |      |      |
|                | ( <i>P</i> 1)        | -144 | -152 | -181 | -406 |      |      |      |      |
|                | (P2)                 | -86  | -92  | -115 | -328 |      |      |      |      |
|                | (P3)                 | -128 | -135 | -161 | -361 |      |      |      |      |
|                | ( <i>P</i> 4)        | -89  | -96  | -117 | -313 |      |      |      |      |
| ΔΕ             | Boltzmann            | -104 | -111 | -135 | -342 | +59  | +88  | +110 | +219 |
| a              | veraged              |      |      |      |      |      |      |      |      |
| ∆G             | Boltzmann            | -106 | -113 | -137 | -342 |      |      |      |      |
| a              | veraged              |      |      |      |      |      |      |      |      |
| ΔΕ             | Boltzmann            | -105 | -111 | -135 | -331 |      |      |      |      |
| a              | veraged <sup>b</sup> |      |      |      |      |      |      |      |      |
| 5g             | ( <i>M</i> 1)        | -74  | -75  | -76  | 13   |      |      |      |      |
|                | ( <i>M</i> 2)        | -136 | -140 | -152 | -131 |      |      |      |      |
|                | ( <i>M</i> 3)        | -78  | -81  | -87  | -74  |      |      |      |      |
|                | ( <i>M</i> 4)        | -84  | -87  | -94  | -96  |      |      |      |      |

|                 | ( <i>P</i> 1)       | -283 | -297 | -346 | -669 |     |
|-----------------|---------------------|------|------|------|------|-----|
|                 | ( <i>P</i> 2)       | -225 | -238 | -282 | -624 |     |
|                 | ( <i>P</i> 4)       | -251 | -265 | -311 | -628 |     |
| ∆E Boltzmann    |                     | -96  | -100 | -107 | -88  | -92 |
| av              | eraged              |      |      |      |      |     |
| ⊿G Boltzmann    |                     | -93  | -96  | -104 | -87  |     |
| av              | eraged              |      |      |      |      |     |
| ⊿E Boltzmann    |                     | -92  | -95  | -102 | -81  |     |
| ave             | eraged <sup>b</sup> |      |      |      |      |     |
| <i>ent-</i> 5i° | ( <i>M</i> 1)       | -69  | -70  | -71  | 38   |     |
|                 | ( <i>M</i> 2)       | -135 | -140 | -151 | -115 |     |
|                 | ( <i>M</i> 4)       | -117 | -121 | -137 | -197 |     |
|                 | ( <i>P</i> 1)       | -211 | -222 | -257 | -476 |     |
|                 | ( <i>P</i> 2)       | -141 | -150 | -178 | -402 |     |
|                 | (P3)                | -190 | -199 | -230 | -429 |     |
|                 | ( <i>P</i> 4)       | -154 | -162 | -191 | -390 |     |
| <i>∆E</i> B     | oltzmann            | -138 | -144 | -163 | -241 | +92 |
| av              | eraged              |      |      |      |      |     |
| ⊿G Boltzmann    |                     | -139 | -145 | -163 | -224 |     |
| av              | eraged              |      |      |      |      |     |
| ∆E B            | oltzmann            | -151 | -158 | -181 | -301 |     |
| ave             | eraged <sup>b</sup> |      |      |      |      |     |

[a] calculated at the COSMO(MeOH)/B3LYP/Aug-cc-pVDZ level; [b] single-point energy calculated at the PCM/B2PLYP(D)/Aug-cc-pVTZ level; [c] measured for enantiomer



Figure A2. Structures of individual conformers of keto-*cis*-diols 4a-4f calculated at the PCM/B3LYP/6-311++G(2d,2p) level. M3 M4 P1 P2 P3 P4



Figure A3. Structures of individual conformers of keto-*cis*-diols 4g, *ent*-4i, 5g and *ent*-5i calculated at the PCM/B3LYP/6-311++G(2d,2p) level.



COSMO/TD-B2LYP/Aug-cc-pVDZ

**Figure B1.** UV and ECD spectra calculated at the COSMO/B2LYP/Aug-cc-pVDZ level for individual conformers of **4a**, optimized at the COSMO/B3LYP/Aug-CC-pVDZ level. Vertical bars represent rotatory strengths. Wavelength not corrected.



IEFPCM/TD-B2LYP/Aug-cc-pVTZ

**Figure B2.** UV and ECD spectra calculated at the PCM/B2LYP/Aug-cc-pVTZ level for individual conformers of **4b**, optimized at the PCM/B3LYP/6-311++G(2d,2p) level. Vertical bars represent rotatory strengths. Wavelength not corrected.



IEFPCM/TD-B2LYP/Aug-cc-pVTZ

**Figure B3.** UV and ECD spectra calculated at the PCM/B2LYP/Aug-cc-pVTZ level for individual conformers of 4c, optimized at the PCM/B3LYP/6-311++G(2d,2p) level. Vertical bars represent rotatory strengths. Wavelength not corrected.



IEFPCM/TD-B2LYP/Aug-cc-pVTZ

**Figure B4.** UV and ECD spectra calculated at the PCM/B2LYP/Aug-cc-pVTZ level for individual conformers of **4d**, optimized at the PCM/B3LYP/6-311++G(2d,2p) level. Vertical bars represent rotatory strengths. Wavelength not corrected.



IEFPCM/TD-B2LYP/Aug-cc-pVTZ

**Figure B5.** UV and ECD spectra calculated at the PCM/B2LYP/Aug-cc-pVTZ level for individual conformers of **4e**, optimized at the PCM/B3LYP/6-311++G(2d,2p) level. Vertical bars represent rotatory strengths. Wavelength not corrected.



IEFPCM/TD-B2LYP/Aug-cc-pVTZ

Figure B6. UV and ECD spectra calculated at the PCM/B2LYP/Aug-cc-pVTZ level for individual conformers of 4f, optimized at the PCM/B3LYP/6-311++G(2d,2p) level. Vertical bars represent rotatory strengths. Wavelength not corrected.



IEFPCM/TD-B2PLYP/Aug-cc-pVTZ

**Figure B7.** UV and ECD spectra calculated at the PCM/B2LYP/Aug-cc-pVTZ level for individual conformers of 4g, optimized at the PCM/B3LYP/6-311++G(2d,2p) level. Vertical bars represent rotatory strengths. Wavelength not corrected.



**Figure B8.** UV and ECD spectra calculated at the PCM/B2LYP/Aug-cc-pVTZ level for individual conformers of *ent*-4i, optimized at the PCM/B3LYP/6-311++G(2d,2p) level. Vertical bars represent rotatory strengths. Wavelength not corrected.



**Figure B9.** UV and ECD spectra calculated at the PCM/B2LYP/Aug-cc-pVTZ level for individual conformers of **5**g, optimized at the PCM/B3LYP/6-311++G(2d,2p) level. Vertical bars represent rotatory strengths. Wavelength not corrected.



IEFPCM/TD-B2PLYP/Aug-cc-pVTZ

**Figure B10.** UV and ECD spectra calculated at the PCM/B2LYP/Aug-cc-pVTZ level for individual conformers of *ent-5i*, optimized at the PCM/B3LYP/6-311++G(2d,2p) level. Vertical bars represent rotatory strengths. Wavelength not corrected.