Supporting Information

Asymmetric synthesis of 2-alkyl-substituted tetrahydroquinolines by an enantioselective *aza*-Michael reaction

Laura L. Taylor,^a Frederick W. Goldberg^b and King Kuok (Mimi) Hii^{a,*}

^{*a*} Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K.; E-mail: mimi.hii@imperial.ac.uk

^b AstraZeneca, Mereside, Alderley Park, Cheshire SK10 4TG, U.K. E-mail: frederick.goldberg@astrazeneca.com.

Figure S1. Chiral HPLC chromatograph of **6b** before and after recrystallisation.

Copies of ¹H and ¹³C NMR spectra of isolated compounds:

Figure S2. ¹H and ¹³C NMR spectra of 7a.

- Figure S3. ¹H and ¹³C NMR spectra of 7b.
- **Figure S4.** ¹H and ¹³C NMR spectra of **7c**.
- **Figure S5.** ¹H and ¹³C NMR spectra of **7d**.
- **Figure S6.** ¹H and ¹³C NMR spectra of **6a**.

Figure S7. ¹H and ¹³C NMR spectra of **6b**.

Figure S8. ¹H and ¹³C NMR spectra of **6c**.

- **Figure S9.** ¹H and ¹³C NMR spectra of **6d**.
- Figure S10. 1 H and 13 C NMR spectra of 14.
- Figure S11. ¹H and ¹³C NMR spectra of 15.
- Figure S12. ¹H and ¹³C NMR spectra of 16.
- Figure S13. 1 H and 13 C NMR spectra of 17.
- Figure S14. 1 H and 13 C NMR spectra of 18.
- Figure S15. 1 H and 13 C NMR spectra of 19.
- **Figure S16.** ¹H and ¹³C NMR spectra of **5**.
- Figure S17. 1 H and 13 C NMR spectra of 1.
- Figure S18. 1 H and 13 C NMR spectra of 2.
- Figure S19. 1 H and 13 C NMR spectra of 4.

```
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is \textcircled{} The Royal Society of Chemistry 2012
```


Fig. S1 Chiral HPLC chromatograph of solid precipitate (left) and mother liquor (right) after recrystallisation of **6b** (84% ee) from toluene-cyclohexane.

Figure S2: ¹H and ¹³C NMR spectra of 7a.

Figure S3: ¹H and ¹³C NMR spectra of 7b.

ĺ ,0 7b

Figure S4. ¹H and ¹³C NMR spectra of 7c.

Figure S6. ¹H and ¹³C NMR spectra of 6a.

Figure S7. ¹H and ¹³C NMR spectra of 6b.

Figure S8. ¹H and ¹³C NMR spectra of 6c.

Figure S9. ¹H and ¹³C NMR spectra of **6d**.

Figure S10. ¹H and ¹³C NMR spectra of 14.

Figure S11. ¹H and ¹³C NMR spectra of 15.

160 155 150 145 140 135 130 125 120 115 110 105 100

Figure S12. ¹H and ¹³C NMR spectra of 16.

Figure S13. ¹H and ¹³C NMR spectra of 17.

Figure S14. ¹H and ¹³C NMR spectra of 18.

Figure S15. ¹H and ¹³C NMR spectra of 19.

Figure S16. ¹H and ¹³C NMR spectra of 5.

Figure S17. ¹H and ¹³C NMR spectra of 1.

Figure S18. ¹H and ¹³C NMR spectra of 2.

Figure S19. ¹H and ¹³C NMR spectra of 4.

