# Selective Deuteration of Aromatic Compounds via

# Deutero-decarboxylation of (Hetero)aromatic Carboxylic Acids

Rachel Grainger, Arif Nikmal, Josep Cornella and Igor Larrosa\*

School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London.

## **General Information**

All reactions were carried out under nitrogen atmosphere. Anhydrous DMSO and all other reagents were purchased from commercial suppliers and used without further purification,  $D_2O$  (99.9 % D) was purchased from Cambridge Isotope Laboratories Inc. and used without further treatment. Melting points were obtained using a hot-stage apparatus and are uncorrected. IR spectra were recorded using a Bruker Tensor 37 FTIR machine and quoted in cm<sup>-1</sup>. Unless otherwise noted, <sup>1</sup>H NMR spectra, recorded at 400 MHz are referenced to the residual solvent peak at 7.26 ppm (CDCl<sub>3</sub>). <sup>2</sup>H NMR spectra, recorded at 61 MHz, are referenced using CDCl<sub>3</sub> as an internal reference (7.26 ppm in CDCl<sub>3</sub> or 8.32 ppm in d<sub>6</sub>-DMSO). <sup>13</sup>C NMR spectra, recorded at 101 MHz, are referenced to the residual solvent peak at 77.02 ppm (CDCl<sub>3</sub>). Chemical shifts ( $\delta$ ) are quoted in ppm. Impurity peaks observed at 1.43, 1.25 and 0.88 ppm in the <sup>1</sup>H NMR and 29.8 ppm in the <sup>13</sup>C NMR are likely due to high order alkanes such as icosane. A superfluous peak observed at 4.73 ppm in the <sup>2</sup>H NMR is an artefact due to the spectrometer and not a deuterium resonance signal. Mass spectra were recorded on an Agilent GC-MS, comprising a 6890 GC and 5973 MS.

# General procedure for the Ag-catalysed deutero-decarboxylation of *ortho*-substituted benzoic acids.

A mixture of benzoic acid (0.5 mmol),  $Ag_2CO_3$  (14 mg, 0.05 mmol) and  $D_2O$  (452 µL, 25.0 mmol) in dry DMSO (2.5 mL) was stirred for 16 hours at 120 °C in a sealed vessel. After this time the reaction was partitioned with Et<sub>2</sub>O (10 mL) and saturated aqueous NaHCO<sub>3</sub> (10 mL). The two layers were separated and the aqueous layer was re-extracted with Et<sub>2</sub>O (2 × 10

mL). The organic extracts were combined and washed with saturated aqueous NaHCO<sub>3</sub> (2  $\times$  30 mL) and brine (2  $\times$  30 mL). The ethereal layer was dried over anhydrous MgSO<sub>4</sub>, filtered and evaporated to dryness under reduced pressure. No further purification was necessary.

Exemplar spectra to indicate how the extent of deuteration was calculated are included on pages SI-8 and SI-17.

#### 1-Chloro-4-nitro-6-deuterobenzene (2a)



The reaction was carried out following the general procedure with 2-chloro-5-nitrobenzoic acid (0.102 g, 0.5 mmol) to afford **2a** as a pale yellow solid (0.072 g, 91%, (93% deuteration)). m.p.: 81-83 °C; IR: 2928, 2860, 1573, 1519, 1342, 748; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.17-8.20 (2H, m), 7.52 (1.067H, app d, J = 9.2 Hz); <sup>2</sup>H NMR (61 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (1D, s); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  146.7 (C4), 141.4 (C1), 129.7 (C6), 129.4 (1:1:1 t, J = 27.2 Hz) (C2), 125.1 (C5/3), 125.0 (C3/5); MS (EI) m/z 158 (M<sup>+</sup>, 100).

# 1,5-Difluoro-6-deuterobenzene (2b)



The reaction was carried out following the general procedure in a sealed vessel with 2,6difluorobenzoic acid (0.016 g, 0.1 mmol)) and  $d_6$ -DMSO (0.5 mL) to afford **2b** (96%, (95% deuteration)) as calculated by <sup>1</sup>H NMR using mesitylene as the internal standard. <sup>1</sup>H NMR (400 MHz,  $d_6$ -DMSO)  $\delta$  7.44 (1H, app quin, (J = 7.6 Hz); 7.11-7.17 (0.047H, m); 7.05 (2H, t, J = 6.8 Hz). <sup>2</sup>H NMR (61 MHz,  $d_6$ -DMSO)  $\delta$  7.23 (1D, s); MS (EI) m/z 115 (M<sup>+</sup>, 100).

## 1-Bromo-4-nitro-6-deuterobenzene (2c)



The reaction was carried out following the general procedure with 2-bromo-5-nitrobenzoic acid (0.123 g, 0.5 mmol) to afford **2c** as a white solid (0.096 g, 94%, (90% deuteration)). m.p.: 124- 126 °C; IR: 3097, 2919, 2850, 1571, 1510, 1336, 739. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09-8.12 (2H, m), 7.69 (1.104H, app d, J = 9.2 Hz); <sup>2</sup>H NMR (61 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (1D, s); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  147.2 (C4), 132.8 (C6), 132.5 (1:1:1 t, J = 17.4 Hz) (C2), 130.0 (C1), 125.2 (C5/3), 125.1 (C3/5); MS (EI) *m/z* 204 (M<sup>+</sup>, 100), 202 (M<sup>+</sup>, 100).

# 1-Nitro-2-deuterobenzene (2d)



The reaction was carried out following the general procedure with 2-nitrobenzoic acid (0.084 g, 0.5 mmol) to afford **2d** as a yellow oil (0.58 g, 93%, (98% deuteration)). IR: 3019, 2923, 2855, 1697, 1547, 1215, 750; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.23 (1.025H, dd, J = 8.4, 0.8 Hz), 7.70 (1H, td, J = 7.6, 1.2 Hz), 7.56 (1H, m); <sup>2</sup>H NMR (61 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (1D, s); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  148.3 (C1), 134.7 (C4), 129.4 (C5/3), 129.3 (C3/5), 123.6 (C6), 123.4 (1:1:1 t, J = 17.2 Hz) (C2); MS (EI) m/z 124 (M<sup>+</sup>, 100).

# 3-Nitro-2-deuterotoluene (2e)



The reaction was carried out following the general procedure with 2-methyl-6-nitrobenzoic acid (0.091g, 0.5 mmol) to afford **2e** as a pale yellow oil (0.057g, 82%, (97% deuteration)). IR: 2924, 2864, 1521, 1346, 1091, 930, 801; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (1.035H,

app d, J = 8.4 Hz ), 7.49 (1H, d, J = 7.2 Hz), 7.41 (1H, t, J = 8.0 Hz); 2.47 (3H, s); <sup>2</sup>H NMR (61 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (1D, s); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  148.4 (C1), 139.8 (C3), 135.4 (C4), 129.2 (C5), 123.7 (1:1:1 t, J = 25.6 Hz) (C2), 120.8 (C6), 21.3 (C7); MS (EI) m/z 138 (M<sup>+</sup>, 100).

1-Methoxy-3-nitro-4-deuterobenzene (2f)



The reaction was carried out following the general procedure with 4-methoxy-2-nitrobenzoic acid (0.099g, 0.5 mmol) to afford **2f** as a pale yellow solid (0.075 g, 97%, (95% deuteration)). m.p.: 35-37 °C; IR: 2936, 2845, 1523, 1347, 1235, 1036; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.81 (0.050H, ddd, J = 8.0, 2.0, 0.8 Hz), 7.71 (1H, d, J = 2.4 Hz), 7.42 (0.048H, t, J = 8.2 Hz), 7.41 (0.952H, d, 8.4 Hz), 7.21 (1H, dd, 8.4, 2.8 Hz), 3.88 (3H, s); <sup>2</sup>H NMR (61 MHz, CDCl<sub>3</sub>)  $\delta$  7.87 (1D, s); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.3 (C5), 149.4 (C1), 129.9 (C3), 121.3 (C4), 115.6 (1:1:1 t, J = 26.2 Hz) (C2), 108.3 (C6), 55.9 (C7); MS (EI) *m/z* 154 (M<sup>+</sup>, 100).

# 2-Deutero-3-methylbenzofuran (2g)



The reaction was carried out following the general procedure with 3-methylbenzofuran-2carboxylic acid (0.088g, 0.5 mmol) to afford **2g** as an orange-red oil (0.54 g, 81%, (93% deuteration)). IR: 2923, 2855, 1722, 1461, 1218, 1122, 1070; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 7.55 (1H, d, *J* = 7.6 Hz); 7.48 (1H, d, *J* = 7.6 Hz); 7.42 (0.075H, s); 7.31 (1H, t, *J* = 7.6 Hz); 7.26 (1H, t, *J* = 7.6 Hz); 2.27 (3H, s); <sup>2</sup>H NMR (61 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 (1D, s); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  155.3 (C8), 141.2 (1:1:1 t, *J* = 30.5 Hz) (C1), 129.2 (C3), 124.2 (C6), 122.3 (C5), 119.5 (C4), 115.5 (C2), 111.4 (C7), 7.9 (C9). MS (EI) *m/z* 133 (M<sup>+</sup>, 100).

#### 2-Deutero-5-(p-tolyl)furan (2h)



The reaction was carried out following the general procedure with 5-(*p*-tolyl)furan-2carboxylic acid (0.088g, 0.5 mmol) to afford **2h** as an yellow oil (0.64 g, 81%, (95% deuteration)). IR: 2919, 2852, 1458, 1208, 1017, 817; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 (2H, d, 8.4 Hz); 7.46 (0.054H, dd, 2.0, 0.8 Hz); 7.21 (2H, d, 8.0 Hz), 6.61 (1H, d, 3.2 Hz); 6.47 (1H, d, 3.2 Hz); <sup>2</sup>H NMR (61 MHz, CDCl<sub>3</sub>)  $\delta$  7.49; <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 154.3 (C4), 141.6 (1:1:1 t, *J* = 31.1 Hz) (C1), 137.3 (C8), 129.5 (C7 & 9), 128.5 (C5), 123.9 (C6 & 10), 111.5 (C3), 104.3 (C2), 21.4 (C11); MS (EI) *m*/*z* 159 (M<sup>+</sup>, 100).

## 2-deutero-3-pyridinecarboxylic acid (2i)



The reaction was carried out following the general procedure in a sealed vessel with pyridine-2,3-dicarboxylic acid (0.017 g, 0.1 mmol)) and  $d_6$ -DMSO (0.2 mL) to afford **2i** (91%, (95% deuteration)) as calculated by <sup>1</sup>H NMR using mesitylene as the internal standard. <sup>1</sup>H NMR (400 MHz,  $d_6$ -DMSO)  $\delta$  9.05 (0.054H, s): 8.77 (1H, d, J = 1.6 Hz); 8.27 (1H, d, J = 7.6 Hz); 7.54 (1H, t, 6.2 Hz); <sup>2</sup>H NMR (61 MHz, CDCl<sub>3</sub>)  $\delta$  10.19 (1D, s).

#### 2-Chloro-3-deuteropyridine (2j)



The reaction was carried out following the general procedure in a sealed vessel with 2chloronicotinic acid (0.016 g, 0.1 mmol)) and  $d_6$ -DMSO (0.5 mL) to afford **2j** (100%, (95% deuteration)) as calculated by <sup>1</sup>H NMR using mesitylene as the internal standard. <sup>1</sup>H NMR (400 MHz,  $d_6$ -DMSO)  $\delta$  8.39 (1H, dd, J = 4.8, 2.0 Hz); 7.84 (1H, d, J = 7.2 Hz); 7.48 (0.048H, d, J = 8.0 Hz); 7.40 (1H, dd, J = 7.6, 4.8 Hz). <sup>2</sup>H NMR (61 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (1D, s); MS (EI) m/z 114 (M<sup>+</sup>, 100).

# 3-Fluoro-4-deuteropyridine (2k)



The reaction was carried out following the general procedure in a sealed vessel with 3-fluoroisonicotinic acid (0.014 g, 0.1 mmol)) and  $d_6$ -DMSO (0.5 mL) to afford **2k** (81%, (95% deuteration)) as calculated by <sup>1</sup>H NMR using mesitylene as the internal standard. <sup>1</sup>H NMR (400 MHz,  $d_6$ -DMSO)  $\delta$  8.46 (1H, s); 8.39 (1H, dd, J = 4.8, 2.0 Hz); 7.60 (0.053H, dddd, J = 8.8, 8.8, 2.8, 1.2 Hz), 7.43 (1H, t, J = 4.8 Hz). <sup>2</sup>H NMR (61 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (1D, s); MS (EI) m/z 98 (M<sup>+</sup>, 100).

#### 2-Deuteroquinoline (2l)



The reaction was carried out following the general procedure with 2-quinolinecarboxylic acid (0.087 g, 0.5 mmol)) to afford **2l** as a colourless oil (0.60 g, 93%, (97% deuteration)). IR: 2928, 2856, 1625, 1584, 1327, 1217, 898; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.90 (0.029H, dd, 4.0, 1.6 Hz); 8.11 (2H, t, 7.2 Hz); 7.79 (1H, d, 8.0 Hz); 7.70 (1H, t, 7.6 Hz); 7.52 (1H, t, 7.4 Hz); 7.36 (1H, d, 8.0 Hz); <sup>2</sup>H NMR (61 MHz, CDCl<sub>3</sub>)  $\delta$  8.95 (1D, s); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  150.1 (1:1:1 t, *J* = 27.3 Hz) (C1), 148.4 (C9), 136.1 (C3), 129.6 (C7), 129.5 (C8), 128.4 (C4), 127.9 (C5), 126.6 (C6), 121.0 (C2); MS (EI) *m/z* 130 (M<sup>+</sup>, 100).

## 1-Deuteroisoquinoline (2m)



The reaction was carried out following the general procedure with 1-isoquinolinecarboxylic acid (0.087 g, 0.5 mmol)) to afford **2l** as a colourless oil (0.59 g, 91%, (98% deuteration)). IR: 2916, 2849, 1626, 1463, 1330, 1255, 890; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.25 (0.023H, s); 8.52 (1H, d, 6.0 Hz); 7.95 (1H, d, 8.0 Hz); 7.79 (1H, t, 7.6 Hz); 7.67 (1H, t, 7.6 Hz); 7.63 (1H, d, 5.6 Hz); 7.58 (1H, t, 7.4 Hz); <sup>2</sup>H NMR (61 MHz, CDCl<sub>3</sub>)  $\delta$  9.29 (1D, s); <sup>13</sup>C NMR

(101 MHz, CDCl<sub>3</sub>)  $\delta$  152.3 (1:1:1 t, J = 31.1 Hz) (C9), 143.1 (C1), 135.9 (C3), 130.4 (C5), 128.7 (C5), 127.7 (C7), 127.3 (C6), 126.5 (C4), 120.5 (C2); MS (EI) m/z 130 (M<sup>+</sup>, 100).



SI - 8





























































![](_page_37_Figure_1.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_1.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_43_Figure_1.jpeg)