Atom-Economical Route to β -Heteroarylated (C–N Bond) Ketones from

Cs₂CO₃ Promoted Reaction between Propargyl Alcohols and Nitrogen-

Heterocycles

M. Bhanuchandra, Malleswara Rao Kuram and Akhila K. Sahoo*

School of Chemistry, University of Hyderabad, Hyderabad 500046, India

Table of Contents	Page
General Experimental	S2
Materials	S2
Detailed Optimization of Reaction Conditions	S3–S4
¹ H NMR and ¹³ C NMR Spectral copies	\$5-\$132
HMBC Spectra of compound 8ac	S90–S91
HMBC Spectra of compound 8ad	\$95-\$96
HMBC Spectra of compound 8ae	S99-S100
HMBC Spectra of compound 8ae'	S103
HMBC Spectra of compound 8ub	S108-S109
HMBC Spectra of compound 8uf	S112
X-Ray data	S133–S142

SUPPORTING INFORMATION

General Experimental

All the reactions were performed in an oven-dried Schlenk flask under an argon atmosphere. Commercial grade solvents were distilled prior to use. Column chromatography was performed using either 100-200 Mesh or 230-400 Mesh silica gel. Thin layer chromatography (TLC) was performed on silica gel GF254 plates. Spots on TLC plate was visualized with UV light (254 nm) and staining over I₂ chamber or an aqueous alkaline KMnO₄ solution followed by heating. Proton, carbon, and fluorine nuclear magnetic resonance spectra (¹H NMR, ¹³C NMR and ¹⁹F NMR) were recorded based on the resonating frequencies as follows: (¹H NMR, 400 MHz; ¹³C NMR, 101 MHz; ¹⁹F NMR, 376 MHz) and (¹H NMR, 500 MHz; ¹³C NMR, 126 MHz; ¹⁹F NMR, 470 MHz) having the solvent resonance as internal standard (¹H NMR, CHCl₃ at 7.26 ppm; ¹³C NMR, CDCl₃ at 77.0 ppm). Few cases tetramethylsilane (TMS) at 0.00 ppm was used as reference standard. Data for ¹H NMR are reported as follows: chemical shift (ppm), multiplicity (s = singlet; br s = broad singlet; d = doublet; br d = broad doublet, t = triplet; br t = broad triplet; q = quartet; m = multiplet), coupling constants, J, in (Hz), and integration. Data for ${}^{13}C$ NMR, ¹⁹F NMR were reported in terms of chemical shift (ppm). GC analysis was performed using the ZB-1 column (30 m x 0.25 mm, pressure = 20.0 kPa, detector = EI, 300 °C) with helium gas as carrier. IR spectra were reported in cm⁻¹. LC-MS spectra were obtained with ionization voltage of 70ev; data was reported in the form of m/z (intensity relative to base peak = 100). HPLC analysis of the samples was performed using Chiralpak AS-H column/Chiralcel OD-H column, hexanes-*i*-PrOH as eluent, flow rate = 0.3-1.0 mL/min at λ = 254 nm. Elemental (C, H, N) analysis were carried out using FLASH EA 1112 analyzer. Melting points were determined by electro-thermal heating and are uncorrected. X-ray data was collected at 298K using graphite monochromated Mo-K α radiation (0.71073 Å),

Materials: Unless otherwise noted, all the reagents and intermediates were obtained commercially and used without purification. Toluene was distilled over sodium/benzophenone ketyl under dry nitrogen. Cesium carbonate, terminal alkynes, pyrazole and pyrazole derivatives were purchased from Sigma Aldrich Ltd. and used as received. Analytical and spectral data of all those known compounds are exactly matching with the reported values.

Detailed Optimization of Reaction Conditions:

TABLE 1. Screening of Bases^{*a,b*}

entry	2a	Base	solvent	time	yield	d (%)
	(equiv)	(1.0 equiv)		(h)	3a	4a
1	2.0	Na ₂ CO ₃	toluene	12	00	17
2	2.0	Li_2CO_3	toluene	12	00	27
3	2.0	NaHCO ₃	toluene	12	00	36
4	2.0	pyridine	toluene	12	00	22
5	2.0	2,6-lutidine	toluene	12	00	07
6	2.0	CsOPiv	toluene	12	02	28
7	2.0	DBU	toluene	12	85	15

^{*a*}Reactions were carried out using **1a** (50 mg, 0.25 mmol) in solvent (0.5 mL) at 70 °C. ^{*b*}NMR yield.

TABLE 2. Screening of Solvents^{a,b}

optry	22	Basa	colvort	timo	viola	1 (9/.)
entry	2a	Dase	solvent	ume	yield	J (70)
	(equiv)	(1.0 equiv)		(h)	3a	4a
1	2.0	K_2CO_3	THF	12	00	02
2	2.0	DBU	THF	12	76	19
3	2.0	<i>i</i> -Pr₂NEt	THF	12	00	00
4	2.0	pyridine	THF	12	00	00
5	2.0	K_2CO_3	dioxane	12	00	02
6	2.0	DBU	dioxane	12	82	16
7	2.0	<i>i-</i> Pr ₂ NEt	dioxane	12	00	00
8	2.0	pyridine	dioxane	12	00	03
9	2.0	K ₂ CO ₃	CH₃CN	12	88	05
10	2.0	DBU	CH₃CN	12	83	17
11	2.0	<i>i-</i> Pr ₂ NEt	CH₃CN	12	00	00
12	2.0	pyridine	CH₃CN	12	00	00
13	2.0	Cs_2CO_3	CH₃CN	01	74	26
14	2.0	Cs_2CO_3	dioxane	01	50	23
15	2.0	Cs ₂ CO ₃	THF	01	92	08
16	2.0	Cs ₂ CO ₃	DCE	01	18	16
17	2.0	Cs ₂ CO ₂	MeOH	01	34	10

^{*a*}Reactions were carried out using **1a** (50 mg, 0.25 mmol) in solvent (0.5 mL) at 70 °C. ^{*b*}NMR yield.

TABLE 3. Effect of Temperature^{a,b}

entry	2a	Base	solvent	temp	time	yield (%)	
	(equiv)	(1.0 equiv)		(°C)	(h)	3a	4a
1	2.0	Cs_2CO_3	toluene	rt	12	34	13
2	2.0	Cs_2CO_3	toluene	50	12	92	08
3	2.0	Cs_2CO_3	toluene	60	05	94	06
4	2.0	Cs ₂ CO ₃	toluene	70	01	95	05

^{*a*}Reactions were carried out using **1a** (50 mg, 0.25 mmol) in solvent (0.5 mL). ^{*b*}NMR yield.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

S12

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

0

mdd

20

10

0

mdd

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This jour Chemistry 2012

S39

ppm

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

S110

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

S112

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

S122

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

S126

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

X-ray crystallography: Single crystal X-ray data for the compound **8ab**, **8ac** and **8af** were collected using the detector system [λ (Mo-K α) = 0.71073 Å] at 298K, graphite monochromator with a ω scan width of 0.3°, crystal-detector distance 60 mm, collimator 0.5 mm. The SMART software^{S1} was used for the intensity data acquisition and the SAINTPLUS Software^{S1} was used for the data extraction. In each case, absorption correction was performed with the help of SADABS program,^{S1} an empirical absorption correction using equivalent reflections was performed with the program. The structure was solved using SHELXS-97,^{S2} and full-matrix least-squares refinement against F² was carried out using SHELXL-97.^{S2} All non-hydrogen atoms were refined anisotropically. Aromatic and methyl hydrogens were introduced on calculated positions and included in the refinement riding on their respective parent atoms.

1) X-ray crystal structure and data for 8ab:

Figure 1. Thermal ellipsoidal plot of compound **8ab** with atom labeling scheme. Displacement ellipsoids are drawn at 50% probability level except for the H atoms, which are shown as circles of arbitrary radius.

2) X-ray crystal structure and data for 8ac:

Figure 2. Thermal ellipsoidal plot of compound **8ac** with atom labeling scheme. Displacement ellipsoids are drawn at 50% probability level except for the H atoms, which are shown as circles of arbitrary radius.

3) X-ray crystal structure and data for 8af:

Figure 3. Thermal ellipsoidal plot of compound **8af** with atom labeling scheme. Displacement ellipsoids are drawn at 50% probability level except for the H atoms, which are shown as circles of arbitrary radius.

Table 1. Crystal data.

	Compound1	Compound2	Compound3
Identification code Formula	8ab C ₂₄ H ₂₀ N ₂ O	8ac C ₂₄ H ₁₉ BrN ₂ O	8af C ₂₂ H ₁₈ N ₂ O
F_w	352.42	431.31	326.38
<i>T</i> (K)	298(2)	298(2)	298(2)
λ (Å)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Triclinic	orthorhombic
Space group	$P2_{1}/c$	$P^{\overline{1}}$	$Pca2_1$
<i>a</i> (Å)	10.9862(9)	8.4392(16)	19.7487(16)
<i>b</i> (Å)	19.4309(13)	9.3575(16)	9.7599(8)
<i>c</i> (Å)	9.9118(9)	13.599(3)	18.4670(12)
α (°)	90.00	103.140(16)	90.00
β (°)	115.173(10)	91.434(16)	90.00
$\gamma(^{\rm o})$	90.00	104.756(15)	90.00
$V(\text{\AA}^3)$	1914.9(3)	1007.4(3)	3559.4(5)
Ζ	4	2	8
ρ_{calcd} (Mg m ⁻³)	1.222	1.422	1.218
μ (mm ⁻¹)	0.075	2.057	0.076
F (000)	744.0	440.0	1376.0
Crystal Size (mm)	$0.20\times0.18\times0.16$	$0.22\times0.18\times0.12$	$0.24 \times 0.22 \times 0.18$
20 range/deg	3.09 / 24.68	2.83 / 28.95	2.93 / 29.15
Reflections collected	3254	4434	6639
Unique reflections	2181	1946	3376
Completeness to 2θ (%)	24.68 (100)	28.95 (100.0)	29.15 (100)
T _{max} , T _{min}	1.00000, 0.91047	1.00000, 0.66383	0.9865, 0.9821
Parameters	248	253	460
$GOF(F^2)$	1.068	0.983	1.040
R1, wR2 [I> $2\sigma(I)$] R1, wR2 (all data)	0.0962, 0.1026 0.0371, 0.0620	0.1253, 0.1669 0.0634, 0.1573	0.0918, 0.1178 0.0554, 0.1286
Largest diff. Peak and hole $(e \cdot Å^{-3})$	0.118and -0.114	0.288 and -0.514	0.097 and -0.104

Check CIF/ Platon report (full structure check) for 8ab:

Bond precisi	on: C-C =	0.0024 A	Wavelength=0.71073	
Cell:	a=10.9862(9)	b=19.4309(13)	c=9.9118(9)	
	alpha=90	beta=115.173(10)gamma=90	
Temperature:	298 К			
	Calcula	ted	Reported	
Volume	1914.9(3)	1914.9(3)	
Space group	P 21/c		P21/c	
Hall group	-P 2ybc		?	
Moiety formu	la C24 H20	N2 O	?	
Sum formula	С24 Н20	N2 O	C24 H20 N2 O	
Mr	352.42		352.42	
Dx,g cm-3	1.222		1.222	
Z	4		4	
Mu (mm-1)	0.075		0.075	
F000	744.0		744.0	
F000'	744.28			
h,k,lmax	12,22,1	1	12,22,11	
Nref	3261		3254	
Tmin,Tmax	0.985,0	.988	0.910,1.000	
Tmin'	0.985			
Correction m	ethod= MULTI-S	CAN		
Data complet	eness= 0.998	Theta(max	(x) = 24.680	
R(reflection	s)= 0.0371(21	.81) wR2(re	eflections)= 0.1026(3254)	
S = 1.068	Npar	= 248		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level A

SHFSU01_ALERT_2_AThe absolute value of parameter shift to su ratio > 0.20Absolute value of the parameter shift to su ratio given4.308Additional refinement cycles may be required.PLAT080_ALERT_2_APLAT080_ALERT_2_AMaximum Shift/Error4.31

●Alert level C

THETM01_	_ALERT_3_C	The	value	of	sine(t	theta_	max)/w	vavele	ength is	less	than	0.590
	Calcul	ated	sin(tł	heta	_max),	/wavel	ength	=	0.5875			
PLAT166_	_ALERT_4_C	S.U's	Giver	n on	Coord	linate	s for	calc-	flagged			Н9
PLAT230_	_ALERT_2_C	Hirsh	feld :	ſest	Diff	for	C12		- C13	• •		5.5
su												

Alert level G

PLAT005	_ALERT_5	5_G	No	_iucr_	refin	e_instruct	cior	ıs_ċ	details in CIF	' . .	••••	?
PLAT793	_ALERT_4	4_G	The	Model	has	Chirality	at	C9	(Verify)		••••	S

Check CIF/ Platon report (full structure check) for 8ac:

Bond precision	C-C = 0.0	0072 A	Wavelength=0.71073
Cell: a=	=8.4392(16)	b=9.3575(16)	c=13.599(3)
a	lpha=103.140(16))beta=91.434(1	6)gamma=104.756(15)
Temperature: 29	98 K		
	Calculated		Reported
Volume	1007.4(4)		1007.4(3)
Space group	P -1		P-1
Hall group	-P 1		?
Moiety formula	C24 H19 Br	N2 O	?
Sum formula	C24 H19 Br	N2 O	C24 H19 Br N2 O
Mr	431.31		431.32
Dx,g cm-3	1.422		1.422
Z	2		2
Mu (mm-1)	2.057		2.057
F000	440.0		440.0
F000'	439.58		
h,k,lmax	11,12,18		11,12,17
Nref	5342		4434
Tmin,Tmax	0.648,0.78	1	0.664,1.000
Tmin'	0.630		
Correction met	hod= MULTI-SCAN	I	
Data completer	less= 0.830	Theta(max)=	28.950
R(reflections)	= 0.0634(1946)	wR2(refl	ections)= 0.1669(4434)
S = 0.983	Npar= 2	53	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level A

REFLT03_ALERT_3_A Reflection count < 85% complete (theta max?) From the CIF: _diffrn_reflns_theta_max 28.95 From the CIF: _diffrn_reflng_theta_full 28.95	
From the CIF: _reflns_number_total 4434	
TEST2: Reflns within _diffrn_reflns_theta_max	
Count of symmetry unique reflns 5342	
Completeness (_total/calc) 83.00%	
<pre>PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full Low</pre>	0.830
Alert level B	
<pre>PLAT093_ALERT_1_B No su's on H-atoms, but refinement reported as .</pre>	mixed
Alert level C	
PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low	44
Perc.	
PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds	0.0072
Ang	

Alert level G
PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF ?
PLAT793_ALERT_4_G The Model has Chirality at C9 (Verify) S

Check CIF/ Platon report (full structure check) for 8af:

Bond precisi	on:	C-C = C	0.0068 A		W	avelength=0	.71073
Cell:	a=19.74	87(16)	b=9.759	9(8)	c=18.467	0(12)	
	alpha=9	0	beta=90		gamma=90)	
Temperature:	298 K						
	(Calculate	ed			Reported	
Volume		3559.4(5)			3559.4(5)	
Space group	I	?ca21				Pca2(1)	
Hall group	I	2c -2a	C			?	
Moiety formu	la (С22 Н18 1	N2 O			C22 H18 N2	0
Sum formula	(С22 Н18 1	N2 O			C22 H18 N2	0
Mr		326.38				326.38	
Dx,g cm-3	1	L.218				1.218	
Z	8	3				8	
Mu (mm-1)	(0.076				0.076	
F000	1	L376.0				1376.0	
F000'	1	L376.52					
h,k,lmax		27,13,25				24,12,24	
Nref	4	4948[96	05]			6639	
Tmin,Tmax	(0.982,0.	986			0.982,0.98	7
Tmin'	(0.982					
Correction m	ethod= 1	EMPIRICA	L				
Data complet	eness= 1	1.34/0.6	9 The	ta(max)=	29.150		
R(reflection	us)= 0.0	554(337	6)	wR2(refl	ections))= 0.1178(6639)
S = 1.040		Npar=	460				

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

CAlert level A

PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full Low 0.868

Alert level C

ABSTY02_ALERT_1_C An _exptl_absorpt_correction_type has been given without a literature citation. This should be contained in the _exptl_absorpt_process_details field. Absorption correction given as empirical STRVA01_ALERT_4_C Flack parameter is too small -0.900 From the CIF: _refine_ls_abs_structure_Flack From the CIF: _refine_ls_abs_structure_Flack_su 1.700 PLAT230_ALERT_2_C Hirshfeld Test Diff for C16 -- C17 5.8 .. su PLAT230_ALERT_2_C Hirshfeld Test Diff for C27 -- C28 6.7 . . su

PLAT230_ALERT_2_C	Hirshi	feld Test	. Diff for	r C39	-	- C40	• •	5.5
su								
PLAT234_ALERT_4_C	Large	Hirshfel	d Differe	ence C18	-	- C19	• •	0.16
Ang.								
PLAT234_ALERT_4_C	Large	Hirshfel	d Differe	ence C23	-	- C28	• •	0.16
Ang.								
PLAT241_ALERT_2_C	Check	High	Ueq as	Compared	to	Neighbors	for	C16
PLAT241_ALERT_2_C	Check	High	Ueq as	Compared	to	Neighbors	for	C19
PLAT241_ALERT_2_C	Check	High	Ueq as	Compared	to	Neighbors	for	C27
PLAT241_ALERT_2_C	Check	High	Ueq as	Compared	to	Neighbors	for	C34
PLAT241_ALERT_2_C	Check	High	Ueq as	Compared	to	Neighbors	for	C38
PLAT241_ALERT_2_C	Check	High	Ueq as	Compared	to	Neighbors	for	C40
PLAT242_ALERT_2_C	Check	Low	Ueq as	Compared	to	Neighbors	for	C1
PLAT242_ALERT_2_C	Check	Low	Ueq as	Compared	to	Neighbors	for	C10
PLAT242_ALERT_2_C	Check	Low	Ueq as	Compared	to	Neighbors	for	C23
PLAT242_ALERT_2_C	Check	Low	Ueq as	Compared	to	Neighbors	for	C32
PLAT242_ALERT_2_C	Check	Low	Ueq as	Compared	to	Neighbors	for	C39
PLAT331_ALERT_2_C	Small	Average	Phenyl	C-C Dist	. Cl	0 -C15		1.37
Ang.								
PLAT331_ALERT_2_C	Small	Average	Phenyl	C-C Dist	. C2	3 -C28		1.36
Ang.								
PLAT331_ALERT_2_C	Small	Average	Phenyl	C-C Dist	. C3	2 -C37		1.37
Ang.								
PLAT340_ALERT_3_C	Low Bo	ond Preci	sion on	C-C Bonds	s			0.0068
Ang								

●Alert level G

REFLT03_ALERT_1_G ALERT: Expected hkl max differ from CIF values	
From the CIF: _diffrn_reflns_theta_max 29.15	
From the CIF: _reflns_number_total 6639	
From the CIF: _diffrn_reflns_limit_ max hkl 24. 7. 14	•
From the CIF: _diffrn_reflns_limit_ min hkl -181224	
TEST1: Expected hkl limits for theta max	
Calculated maximum hkl 27. 13. 25.	
Calculated minimum hkl -271325.	
REFLT03_ALERT_4_G ALERT: MoKa measured Friedel data cannot be used to	
determine absolute structure in a light-atom	
study EXCEPT under VERY special conditions.	
It is preferred that Friedel data is merged in such	cases.
From the CIF: _diffrn_reflns_theta_max 29.15	
From the CIF: _reflns_number_total 6639	
Count of symmetry unique reflns 4948	
Completeness (_total/calc) 134.18%	
TEST3: Check Friedels for noncentro structure	
Estimate of Friedel pairs measured 1691	
Fraction of Friedel pairs measured 0.342	
Are heavy atom types Z>Si present no	
<pre>PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF</pre>	?
PLAT032_ALERT_4_G Std. Uncertainty on Flack Parameter Value High .	1.700
<pre>PLAT194_ALERT_1_G Missing _cell_measurement_reflns_used datum</pre>	?
<pre>PLAT195_ALERT_1_G Missing _cell_measurement_theta_max datum</pre>	?
<pre>PLAT196_ALERT_1_G Missing _cell_measurement_theta_min datum</pre>	?
PLAT792_ALERT_1_G Note: The Model has Chirality at C9 (Verify)	R
<pre>PLAT792_ALERT_1_G Note: The Model has Chirality at C31 (Verify)</pre>	R
PLAT950_ALERT_5_G Reported and Calculated Hmax Values Differ by	3

References:

S1. Bruker SMART V5.630 and SAINT-PLUS V6.45, Bruker-Nonius Analytical X-ray Systems Inc.:Madison, Wisconsin, USA 2003. SADABS, Empirical absorption correction program, Bruker AXS Inc., Madison, Wisconsin, USA 1997.

S2. Sheldrick G M, Acta Crystallogr 64A (2008) 112.