SUPPORTING INFORMATION

Manuscript title: Hexahomotrioxacalix[3]arene derivatives as ionophores for molecular recognition of dopamine, serotonin and phenylethylamine

<u>Author(s)</u>: Xin-Long Ni^{*a,b*}, Shofiur Rahman^{*a*}, Shi Wang^{*a*}, Cheng-Cheng Jin^{*a*}, Xi Zeng^{*b*}, David L. Hughes^{*c*}, Carl Redshaw^{*c*} and Takehiko Yamato^{*,*a*}

^aDepartment of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga-shi, Saga 840-8502, Japan. Fax: (internat.) + 81(0)952/28-8548; E-mail: <u>yamatot@cc.saga-u.ac.jp</u> ^bKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, Guizhou, 550025, China

^cEnergy Materials Laboratory, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK

Contents (P1 to P15 are the page numbers)

P1 – Title, authors and description of supporting information content.

- P2 Figure S1. ¹H NMR spectra of *cone-3*. Figure S2. ¹³C NMR spectra of *cone-3*.
- P3 Figure S3. ¹H NMR spectra of *partial-cone-3*. Figure S4. ¹³C NMR spectra of *partial-cone-3*.
- P4 Figure S5. ¹H NMR spectra of *cone-5*. Figure S6. ¹³C NMR spectra of *cone-5*.
- P5 Figure S7. NOESY spectra of cone-3. Figure S8. NOESY spectra of cone-3 with
 - *n*-butylammonium ion (H/G = 1:1) in CDCl₃/CD₃CN (10:1, v/v) at 300 K, 400 MHz.
- P6–**Figure S9.** NOESY spectra of *cone*-**5**. **Figure S10.** NOESY spectra of *cone*-**5** with *n*-butylammonium ion (H/G = 1:1) in CDCl₃/CD₃CN (10:1, v/v) at 300 K, 400 MHz.
- P7 **Figure S11.** Computer-generated energy-minimized (MMFF) models of the complex between *cone*-**3** and dopamine.
- P8 Figure S12. Computer-generated PM3 model of the complex between *cone-3* and the dopamine.
- P9 –**Figure S13.** Computer-generated PM3 model of the complex between *cone-***3** and the phenylethylamine.
- P10 Figure S14. Computer-generated PM3 model of the complex between *cone-3* and the serotonin.
- P11 Figure S15. Computer-generated PM3 model of the complex between *cone*-5 and the dopamine.
- P12 Figure S16. Computer-generated PM3 model of the complex between cone-5 and serotonin.
- P13 Figure S17. Computer-generated PM3 model of the complex between cone-5 and phenylethylamine.
- P14 **Figure S18.** Space-filling and Ball-and-spoke models for the free host molecules of *cone-3* and *cone-5*, as generated by Spartan' 10 V1.1.0.
- P15 **Figure S19.** Space-filling Ball-and-spoke models of the supramolecular free guest molecules, as generated by Spartan' 10 V1.1.0.
 - **Table 1.**Energy minimized for the free host, free guest and complexes of *cone-3* and *cone-5* with
guest dopamine, serotonin and phenyl ethylamine, as generated by Spartan' 10 V1.1.0.

Figure S1. ¹H NMR spectra of *cone-***3** (CDCl₃, 300 MHz).

Figure S2. ¹³C NMR spectra of *cone-***3** (CDCl₃, 300 MHz).

Figure S3. ¹H NMR spectra of *partial-cone-3* (CDCl₃, 300 MHz).

Figure S4. ¹³C NMR spectra of *partial-cone-***3** (CDCl₃, 300 MHz).

Figure S5. ¹H NMR spectra of *cone*-5 (CDCl₃, 300 MHz).

Figure S6. ¹³C NMR spectra of *cone*-5 (CDCl₃, 300 MHz).

Figure S7. NOESY spectra of cone-3 (4.0 mM) in CDCl₃ at 300 K, 400 MHz.

Figure S8. NOESY spectra of *cone-3* (4.0 mM) with *n*-butylammonium ion (H/G = 1:1) in CDCl₃/CD₃CN (10:1, v/v) at 300 K, 400 MHz.

Figure S9. NOESY spectra of cone-5 (4.0 mM) in CDCl₃ at 300 K, 400 MHz.

Figure S10. NOESY spectra of *cone*-5 (4.0 mM) with *n*-butylammonium ion (H/G = 1:1) in CDCl₃/CD₃CN (10:1, v/v) at 300 K, 400 MHz.

Figure S11. Computer-generated energy-minimized (MMFF) models of the complex between *cone-***3** and dopamine. Top left and right: Ball-and-stick and space-filling representations, respectively, of the complex viewed from the wide rim face in which the guest dopamine ammonium cationic centre is in the cavity and is hydrogen-bonded to the bridge ether oxygen's of the host. Bottom left and right: Ball-and-stick and space-filling representations, respectively, of the complex as viewed from the side face, showing the dopamine guest which is located into the cavity of the host *cone-***3**.¹

Figure S12. Computer-generated PM3 model of the complex between *cone-3* and the dopamine. Top left and right: Ball-and- stick and space-filling representations, respectively, of the complex as viewed from the face in which the wide rim and the guest dopamine in the cavity and guest NH_3^+ ion formed hydrogen bonding with bridge ether oxygen of ArCH₂*O*CH₂Ar,can be seen. Bottom left and right: Ball-and-stick and space-filling representations, respectively, of the complex as viewed from the side face, seeing dopamine into the cavity of the host *cone-3*.¹

Figure S13. Computer-generated PM3 model of the complex between *cone-3* and the phenylethylamine. Top left and right: Ball-and- stick and space-filling representations, respectively, of the complex as viewed from the face in which the wide rim and the guest phenylethylamine in the cavity and guest NH_3^+ ion formed hydrogen bonding with bridge ether oxygen of $ArCH_2OCH_2Ar$, can be seen. Bottom left and right: Ball-and-stick and space-filling representations, respectively, of the complex as viewed from the side face, seeing phenylethylamine into the cavity of the host *cone-3*.¹

Figure S14. Computer-generated PM3 model of the complex between *cone-***3** and the serotonin. Top left and right: Ball-and- stick and space-filling representations, respectively, of the complex as viewed from the face in which the wide rim and the guest serotonin in the cavity and guest NH_3^+ ion formed hydrogen bonding with bridge ether oxygen of ArCH₂*O*CH₂Ar,can be seen. Bottom left and right: Ball-and-stick and space-filling representations, respectively, of the complex as viewed from the side face, seeing serotonin into the cavity of the host *cone-***3**.¹

Figure S15. Computer-generated PM3 model of the complex between *cone*-**5** and the dopamine. Top left and right: Ball-and- stick and space-filling representations, respectively, of the complex as viewed from the face in which the wide rim and the guest dopamine in the cavity and guest NH_3^+ ion formed hydrogen bonding with bridge ether oxygen of ArCH₂*O*CH₂Ar,can be seen. Bottom left and right: Ball-and-stick and space-filling representations, respectively, of the complex as viewed from the side face, seeing dopamine into the cavity of the host *cone*-**5**.¹

Figure S16. Computer-generated PM3 model of the complex between *cone*-**5** and serotonin. Top left and right: Ball-andstick and space-filling representations, respectively, of the complex as viewed from the face in which the wide rim and the guest serotonin.in the cavity and guest NH_3^+ ion formed hydrogen bonding with bridge ether oxygen of $ArCH_2OCH_2Ar$, can be seen. Bottom left and right: Ball-and-stick and space-filling representations, respectively, of the complex as viewed from the side face, seeing serotonin into the cavity of the host *cone*-**5**.¹

Figure S17. Computer-generated PM3 model of the complex between *cone-***5** and phenylethylamine. Top left and right: Ball-and- stick and space-filling representations, respectively, of the complex as viewed from the face in which the wide rim and the guest phenylethylamine in the cavity and guest NH_3^+ ion formed hydrogen bonding with bridge ether oxygen of ArCH₂*O*CH₂Ar,can be seen. Bottom left and right: Ball-and-stick and space-filling representations, respectively, of the complex as viewed from the side face, seeing phenylethylamine cation into the cavity of the host *cone-***5**.¹

Figure S18. Space-filling and Ball-and-spoke models for the free host molecules of *cone-3* and *cone-5*, as generated by Spartan' 10 V1.1.0.

Figure S19. Space-filling Ball-and-spoke models of the supramolecular free guest molecules, as generated by Spartan' 10 V1.1.0.

Table 1.	Energy	minimized	for t	ne free	host,	free	guest	and	complexes	of	cone-3	and	cone-5	with	guest	dopamine,
serotonin	and phe	nyl ethylam	ine, a	s gener	ated by	y Spa	irtan' 1	10 V	1.1.0.							

Free host and guest	Before complex Energy	After complex with guest (Energy minimized							
	minimized KJ/mole(free	KJ/mole)							
	host and guest)								
Free <i>cone-</i> 3	988.2015 KJ/mole	cone-3⊃Dopamine, 776.191 KJ/mole							
		<i>cone-</i> 3 ⊃Serotonin, 758.205 KJ/mole							
		<i>cone-</i> 3 ⊃Phenyl ethylamine, 826.0482 KJ/mole							
Free cone-5	937.1964 KJ/ mole	cone-5⊃Dopamine, 787.165 KJ/mole							
		cone-3⊃Serotonin, 727.672 KJ/mole							
		<i>cone-</i> 3 ⊃Phenyl ethylamine, 790.630 KJ/mole							
Free Dopamine	132.136 KJ/mole								
Serotonin	71.304 KJ/mole								
Free Phenyl- ethylamine	128.228 KJ/mole								

References

 Molecular modeling (MMFF) was conducted using Spartan 10 (V1.1.0) Molecular Modeling Software from Wavefunction, Inc. <u>www.wavefun.com</u> (http://www.wavefun.com/).