Desymmetrizing Reductive Aldol Cyclizations of Enethioate Derivatives of 1, 3-Diones Catalyzed by Chiral Copper Hydride

Jun Ou, Wing-Tak Wong, and Pauline Chiu^{*} Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China

Supporting Information

Table of Contents

1.	General Experimental	p. S2
2.	Preparation of 3f-h, 3k, 3l-u	p.S3
3.	Reductive cyclizations/reductions of 3d , 3f , 3g , 3j , 3k-m , 3o-r , 3u	p.S8
4.	Other synthetic procedures: Synthesis of 7d , 8d , 9	p.S15
5.	References	p. S16
6.	¹ H and ¹³ C NMR spectra/HPLC data	p. S17
7.	X-ray crystallographic data for 9, (–)-4i, (–)-8d	.p. S77

1. General Experimental

<u>Preparative</u>: All reactions were performed in oven-dried round-bottomed flasks under a positive pressure of dry argon. Reactions were monitored by thin layer chromatography (TLC) using E. Merck silica gel plates, Kieselgel 60 F_{254} with 0.2 mm thickness. Components were visualized by illumination with short-wavelength ultra-violet light and/or staining. Flash column chromatography was performed with E. Merck silica gel 60 (230-400 mesh ASTM). Solvents and chemicals were purified according to standard procedures. HPLC grade dichloromethane (DCM) was used as received. Toluene was distilled from CaH₂ under argon. Reagents were used as received.

<u>Analytical</u>: All ¹H and ¹³C NMR spectra were recorded in deuteriochloroform (CDCl₃), with tetramethylsilane (TMS) as an internal standard at ambient temperature on a Bruker DPX 400, or 500 MHz Fourier Transform Spectrometer, operating at 400 MHz, or 500 MHz respectively for ¹H, and at 100 MHz, or 125 MHz respectively for ¹³C. All spectra were calibrated at δ 7.26 ppm for ¹H and δ 77.03 ppm for ¹³C. Spectral features are designated as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = mutiplet and br = broad. IR absorption spectra were recorded as a solution in CH₂Cl₂ on a BioRad Fourier Transform 165 Spectrophotometer from 4000 cm⁻¹ to 400 cm⁻¹. Mass Spectra were recorded on a Finnigan MAT 95 mass spectrometer or API QSTAR PULSAR LC/MS/TOF System for both low resolution and high resolution, with accurate mass reported for the molecular ion (M⁺) or next largest fragment thereof. Optical rotations were obtained on a Perkin Elmer polarimeter operating at 589 nm. Analytical HPLC was carried out on a Waters HPLC system equipped with a 1525 Binary HPLC Pump, Waters 2707 autosampler with a Waters 2489 variable wavelength UV/Visible detector or Waters 2998 PDA detector, operated using Breeze2 software. The enantiomeric excesses of the products were determined using a Daicel CHIRALCEL AS-3 column.

A. General procedure for the preparation of keto-enethioates 3

The thioester derived phosphoranes were prepared as previously described.¹

To a solution of 1,3-dione **1** (1.0 equiv.) in H_2O/THF (30 mL, 1:1) was added acrolein (2.0 equiv.). The reaction mixture was stirred for 24-48 h. The solvent was removed to give the crude aldehyde, which was used in the next reaction without further purification.

To the crude aldehyde in CH_2Cl_2 was added the phosphorane 2 (1.2 equiv.). The reaction mixture was stirred at room temperature for 12 h. The solvent was removed by in vacuo, and the residue was subjected to flash chromatography on silica gel to give the corresponding enethioates **3** as mixture of (*E*)- and (*Z*)-isomers.

The preparation of enethioates **3a-e**, **i-j**, have been previously reported.²

(*E*)-**3f**: According to the general procedure A, the reaction of **1a** (0.499 g, 4.46 mmol), and acrolein (0.445 g, 8.92 mmol) produced a crude aldehyde which was treated with phosphorane **2f** (2.58 g, 5.35 mmol) in CH₂Cl₂ (30 mL). After workup and purification by flash chromatography, **3f** (0.54 g, 32% yield, *E*: *Z* >98:2) was obtained as white solid. (*E*)-**3f**: mp = 92-93 °C; R_f (25% EtOAc in hexane): 0.43; IR (CH₂Cl₂): 3047, 2978, 1720 (C=O, ketone), 1666 (C=O, unsaturated thioester), 1627 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, *J* = 8.2 Hz, 2H), 7.22 (d, *J* = 8.2 Hz, 1H), 6.73 (dt, *J* = 15.0, 6.9 Hz, 1H), 6.04 (d, *J* = 15.0 Hz, 1H), 4.15 (s, 2H), 2.88-2.51 (m, 4H), 2.12-2.04 (m, 2H), 1.83-1.79 (m, 2H), 1.29 (s, 9H), 1.14 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 215.8, 189.1, 150.2, 143.5, 134.3, 129.1, 128.5, 125.6, 56.1, 34.9, 34.5, 32.6, 32.5, 31.3, 27.3, 20.1 ppm. LRMS (EI, 20 eV): m/z 372.1 (M⁺, 6), 193.1 (M⁺-SC₁₁H₁₅, 9), 165.1 (M⁺-COSC₁₁H₁₅, 11); HRMS (EI, 20 eV): calcd for C₂₂H₂₈O₃S (M⁺), 372.1759, found 372.1754.

(*E*)-3g: According to the general procedure A, the reaction of 1a (0.499 g, 4.46 mmol), and acrolein (0.445 g, 8.92 mmol) produced a crude aldehyde which was treated with phosphorane 2g (2.51 g, 5.35 mmol) in CH₂Cl₂ (30 mL). After workup and purification by flash chromatography, 3g (1.05 g, 66% yield, *E*: *Z* >98:2) was obtained as a yellow oil. (*E*)-3g: R_f (25% EtOAc in hexane): 0.44; IR (CH₂Cl₂): 3063, 2985, 1720 (C=O, ketone), 1666 (C=O, unsaturated thioester), 1627 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.26 (s, 2H), 6.73 (td, *J* = 15.2, 6.9 Hz, 1H), 6.04 (d, *J* = 15.2 Hz, 1H), 4.21 (s, 2H), 2.84-2.69 (m, 4H), 2.29 (s, 6H), 2.24 (s, 3H), 2.08 (td, *J* = 15.2, 7.0 Hz, 2H), 1.80 (t, *J* = 8.0 Hz, 2H), 1.14 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 215.8, 190.1, 143.3, 137.2, 137.0, 129.2, 129.0, 56.1, 34.9, 32.6, 28.0, 27.3, 20.9, 20.0, 19.8 ppm; LRMS (EI, 20 eV): m/z 358.1 (M⁺, 1); HRMS (EI, 20 eV): calcd for C₂₁H₂₆O₃S (M⁺), 358.1603, found 358.1597.

(*E*)-**3h**: According to the general procedure A, the reaction of **1a** (1.14 g, 10.2 mmol), and acrolein (1.14 g, 20.4 mmol) produced a crude aldehyde which was treated with phosphorane **2d** (4.85 g, 11.0 mmol) in CH₂Cl₂ (30 mL). After workup and purification by flash chromatography, **3h** (2.13 g, 64% yield, *E*: *Z* >95:5) was obtained as a yellow oil. (*E*)-**3h**: R_f (25% EtOAc in hexane): 0.44; IR (CH₂Cl₂): 3047, 2985, 1720 (C=O, ketone), 1658 (C=O, unsaturated thioester) cm⁻¹; ⁻¹H NMR (300 MHz, CDCl₃): δ 7.30-7.22 (m, 5H), 6.53 (t, *J* = 9.0 Hz, 1H), 4.14 (s, 2H), 2.84-2.66 (m, 4H), 2.09-2.04 (m, 2H), 1.84 (s, 3H), 1.82-1.76 (m, 2H), 1.10 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 215.8, 192.8, 138.6, 137.7, 136.9, 128.9, 128.6, 127.2, 56.2, 35.1, 35.0, 34.6, 33.2, 32.9, 23.9, 20.0, 12.4 ppm; LRMS (EI, 20 eV): m/z 330.2 (M⁺, 1); HRMS (EI, 20 eV): calcd for C₁₉H₂₂O₃S (M⁺), 330.1284, found 330.1284.

(*E*)-3k: To a 10 mL EtOH solution of 3-bromobenzaldehyde (0.56 g, 3.0 mmol) and 1,3-indanedione (0.44 g, 3.0 mmol) was added *L*-proline (69 mg, 0.60 mmol) and diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (0.76 g, 3 mmol). The resulting mixture was stirred for 12 h, after which the volatiles were removed, and the crude product was purified by flash chromatography to afford 2-(3-bromobenzyl)-1H-indene-1,3(2H)-dione (1k) as a yellow oil (0.47 g, 50% yield). 1k: R_f (10% EtOAc in hexane): 0.32; ¹H NMR (300 MHz, CDCl₃): 7.93-7.89 (m, 2H), 7.81-7.76 (m, 2H), 7.36 (s, 1H), 7.25-7.22 (m,1H), 7.12 (d, J = 7.6 Hz, 1H), 7.03 (t, J = 12.9 Hz, 1H), 3.35-3.27 (m, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): 199.4, 142.3, 139.5, 135.7, 132.5, 129.8, 128.2, 123.2, 122.3, 54.8, 31.5 ppm, LRMS (EI, 20 eV): m/z 314.0 (M⁺, 62), 316.0 (M⁺, 57); HRMS (EI, 20 eV): calcd for C₁₆H₁₁⁷⁹BrO₂ (M⁺), 313.9942, C₁₆H₁₁⁸¹BrO₂ (M⁺), 315.9922, found 313.9950, 315.9937.

According to the general procedure A, the reaction of acrolein (0.18 g, 3.0 mmol) and **1k** (0.47 g, 1.5 mmol) produced a crude aldehyde which was treated with phosphorane **2d** (0.78 g, 1.8 mmol) in CH₂Cl₂ (20 mL). After workup and purification by flash chromatography, **3k** (0.57 g, 73% yield, *E*: *Z*= >95:5) was obtained as a yellow oil. (*E*)-**3k**: R_f (25% EtOAc in hexane): 0.45; IR (CH₂Cl₂): 3067, 2995, 2093, 1736, 1715, 1565 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.79-7.78 (m, 2H), 7.67-7.64 (m, 2H), 7.29-7.26 (m, 5H), 7.10-7.07 (m, 2H), 6.87-6.85 (m, 2H), 6.68(dt, *J* = 8.7, 6.7 Hz, 1H), 5.85 (d, *J* = 14.3 Hz, 1H), 4.12 (s, 2H), 3.07 (s, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃): 203.7, 189.4, 144.0, 142.9, 138.3, 138.0, 136.6, 136.4, 133.4, 130.7, 130.3, 129.7, 129.6, 129.2, 127.9, 123.5, 122.8, 60.1, 41.4, 33.8, 33.6, 28.3 ppm; LRMS (EI, 20 eV): m/z 518.1 (M⁺, 2.4), 520.1 (M⁺, 2.6); HRMS (EI, 20 eV): calcd for C₂₈H₂₃⁷⁹BrO₃S (M⁺) 518.0551, C₂₈H₂₃⁸¹BrO₃S (M⁺) 520.0531; found 518.0536, 520.0540.

(*E*)-**3**1: According to the general procedure A, the reaction of **1**1 (1.28 g, 10.2 mmol), and acrolein (1.14 g, 20.4 mmol) produced a crude aldehyde which was treated with phosphorane **2d** (5.10 g, 12.0 mmol) in CH₂Cl₂ (30 mL). After workup and purification by flash chromatography, **3**I (2.42 g, 73% yield, *E*: *Z* = 9:1) was obtained as a yellow oil. (*E*)-**3**I: R_f (25% EtOAc in hexane): 0.25; IR (CH₂Cl₂): 3047, 2978, 1728 (C=O, ketone), 1697 (C=O, unsaturated thioester), 1627 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.30-1.23 (m, 5H), 6.80 (dt, *J* = 15.6, 6.7, Hz, 1H), 6.08 (dt, *J* = 15.3, 1.5 Hz, 1H), 4.17 (s, 2H), 2.69-2.63 (m, 4H), 2.04-1.90 (m, 6H), 1.28 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 209.8, 189.1, 144.2, 137.6, 128.9, 128.7, 128.6, 127.3, 64.8, 37.9, 34.1, 33.7, 32.9, 27.6, 21.7, 17.5 ppm; LRMS (EI, 20 eV): m/z 330.1 (M⁺, 1); HRMS (EI, 20 eV): calcd for C₁₉H₂₂O₃S (M⁺), 330.1290, found 330.1286.

(*E*)-**3m**: According to the general procedure A, the reaction of **11** (0.76 g, 6.0 mmol), and acrolein (0.67 g, 12 mmol) produced a crude aldehyde which was treated with phosphorane **2f** (3.5 g, 7.2 mmol) in CH₂Cl₂ (30 mL). After workup and purification by flash chromatography, **3m** (1.53 g, 66% yield, *E*: *Z* >95:5) was obtained as a white solid. (*E*)-**3m**: mp = 79-81 °C; R_f (25% EtOAc in hexane): 0.35; IR (CH₂Cl₂): 3047, 2970, 1728 (C=O, ketone), 1697 (C=O, unsaturated thioester), 1627 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, *J* = 7.8 Hz, 2H) 7.23 (d, *J* = 7.8, 2H), 6,82 (dt, *J* =15.6, 6.4, 1H), 6.07 (dt, *J* = 15.6, 1.5, 1H), 4.15 (s, 2H), 2.73-2.58 (m, 4H), 2.06-1.90 (m, 6H), 1.29 (s, 9H), 1.27 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 209.8, 189.2, 150.2, 144.1, 134.4, 128.8, 128.5, 125.6, 64.8, 37.9, 34.5, 33.8, 32.6, 31.3, 27.6, 21.6, 17.5 ppm; LRMS (EI, 20 eV): m/z 386.2 (M⁺, 1); HRMS (EI, 20 eV): calcd for C₂₃H₃₀O₃S (M⁺), 386.1916, found 386.1910.

(*E*)-**3**n: According to the general procedure A, the reaction of **11** (0.76 g, 6.0 mmol), and acrolein (0.67 g, 12 mmol) produced a crude aldehyde which was treated with phosphorane **2a** (2.63 g, 7.2 mmol) in CH₂Cl₂ (30 mL). After workup and purification by flash chromatography, **3n** (1.0 g, 62% yield, *E*: *Z* >95:5) was obtained as a yellow oil. (*E*)-**3n**: R_f (25% EtOAc in hexane): 0.22; IR (CH₂Cl₂): 3047, 2985, 1728 (C=O, ketone), 1666 (C=O, unsaturated thioester), 1627 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.76 (dt, *J* = 15.4, 6.4, Hz, 1H), 6.06 (dt, *J* = 15.2, 1.5 Hz, 1H), 2.93 (q, *J* = 7.3 Hz, 2H), 2.69-2.63 (m, 4H), 2.06-1.90 (m, 6H), 1.26-1.24 (m, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 209.9, 189.9, 143.5, 129.2, 64.8, 37.9, 33.8, 27.5, 23.1, 21.5, 21.5, 17.5, 14.8 ppm. LRMS (EI, 20 eV): m/z 268.1 (M⁺, 1); HRMS (EI, 20 eV): calcd for C₁₄H₂₀O₃S (M⁺), 268.1133, found 268.1126.

(*E*)-**30**: According to the general procedure A, the reaction of **10** (0.81 g, 4.0 mmol), and acrolein (0.45 g, 8.0 mmol) produced a crude aldehyde which was treated with phosphorane **2d** (2.1 g, 4.8 mmol) in CH₂Cl₂ (30 mL). After workup and purification by flash chromatography, **30** (0.5 g, 30 % yield, *E*: *Z* >98:2) was obtained as a yellow oil. (*E*)-**30**: R_f (25% EtOAc in hexane): 0.35; IR (CH₂Cl₂): 3047, 2978, 1722 (C=O, ketone), 1669 (C=O, unsaturated thioester) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.23 (m, 8H), 7.01-6.89 (m, 2H), 6,77 (dt, *J* =15.5, 6.7, 1H), 6.07 (d, *J* = 15.6, 1H), 4.19 (s, 2H), 3.07 (s, 2H), 2.46 (dd, *J* = 7.4, 4.7 Hz, 1H), 2.42 (dd, *J* = 7.4, 4.7 Hz, 1H), 2.18 (dd, *J* = 9.4, 5.1 Hz, 1H), 2.14 (dd, *J* = 9.4, 5.1 Hz, 1H), 2.09-2.04 (m, 2H), 2.01-1.94 (m, 2H), 1.64 (dtt, *J* = 14.1, 9.4, 4.7 Hz, 1H), 1.38-1.31 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 212.5, 189.7, 144.5, 138.3, 136.5, 134.7, 134.6, 130.5, 130.1, 129.5, 129.3, 129.2, 1280, 127.9, 127.6, 69.5, 46.6, 41.4, 35.9, 33.6, 28.7, 16.5 ppm; LRMS (EI, 20 eV): m/z 406.2 (M⁺, 1); HRMS (EI, 20 eV): calcd for C₂₅H₂₆O₃S (M⁺), 406.1597, found 406.1596.

(*E*)-**3p**: According to the general procedure A, the reaction of acrolein (1.36 g, 24.0 mmol) and 3-allylpentane-2,4-dione³ (1.73 g, 12.4 mmol) produced aldehyde (2.43 g, 12.4 mmol) which was treated with phosphorane **2d** (5.80 g, 13.6 mmol) in CH₂Cl₂ (30 mL). After workup and purification by flash chromatography, **3p** (1.0 g, 55 % yield, *E*: *Z* >95:5) was obtained as a pale yellow oil. (*E*)-**3p**: R_f (25% EtOAc in hexane): 0.45; IR (CH₂Cl₂): 3047, 2986, 1697, 1666 (C=O, unsaturated thioester), 1635 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.23 (m, 5H), 6.86 (dt, *J* = 15.4, 6.4 Hz, 1H), 6.12 (d, *J* = 16.0 Hz, 1H), 5.47 (ddt, *J* = 16.0, 11, 7.5 Hz, 1H), 5.15-5.09 (m, 2H), 4.18 (s, 2H), 2.66 (d, *J* = 7.3 Hz, 2H), 2.10 (s, 6H), 2.04-1.94 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 205.7, 189.0, 143.8, 137.6, 131.6, 128.9, 128.8, 128.7, 127.3, 119.4, 69.9, 34.9, 32.9, 28.7, 26.9, 26.3 ppm; LRMS (EI, 20 eV): m/z 344.2 (M⁺, 1); HRMS (EI, 20 eV): calcd for C₂₀H₂₄O₃S (M⁺), 344.1446, found 344.1437.

(*E*)-3t: According to the general procedure A, the reaction of acrolein (1.36 g, 24.0 mmol) and 2-allyl-5,5-dimethylcyclohexane-1,3-dione⁴ (1.8 g, 10.0 mmol) produced a crude aldehyde which was treated with phosphorane 2d (5.2 g, 12.0 mmol) in CH₂Cl₂ (40 mL). After purification by chromatography, 3n (2.0 g, 52% yield, *E*: *Z* >95:5) was obtained as an orange oil. (*E*)-3t: R_f (25% EtOAc in hexane): 0.40; IR (CH₂Cl₂): 3047, 2962, 1720 (C=O, ketone), 1689 (C=O, unsaturated thioester), 1635 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.30-7.21 (m, 5H), 6.86 (dt, *J* = 15.5, 6.9 Hz, 1H), 6.10 (dt, *J* = 15.6, 1.4 Hz, 1H), 5.55 (ddt, *J* = 17.4, 10.1, 7.5 Hz, 1H), 5.11-5.06 (m, 2H), 4.18 (s, 2H), 2.16-2.46 (m, 6H), 2.05-2.00 (m, 2H), 1.88-1.84 (m, 2H), 1.06 (s, 3H), 0.92 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): 208.5, 189.2, 144.6, 131.3, 128.9, 128.6, 128.5, 127.3,

119.9, 67.9, 51.6, 40.8, 32.9, 30.7, 30.5, 29.5, 27.7, 27.2 ppm; LRMS (EI, 20 eV): m/z 384.2; HRMS (EI, 20 eV): calcd for $C_{23}H_{28}O_3S$ (M⁺),384.1754, found 384.1759.

(*E*)-**3u**: To a solution of **3a** (0.805 g, 3.00 mmol) in acetone (100 mL) was added Pd(OAc)₂ (0.067 g, 0.3 mmol) under Ar, then Et₃SiH (2.1 g, 18.0 mmol) was added by syringe. After stirring for 2 h at RT, MeOH was added to quench the reaction. The volatiles were removed in vacuo to give an aldehyde, which was treated with phosphorane **2f** (1.24 g, 2.56 mmol) in CH₂Cl₂ (40 mL). After workup and purification by flash chromatography, **3u** (0.620 g, 50% yield over two steps, *E*: *Z*= 100:0) was obtained as an orange oil. (*E*)-**3u**: R_f (25% EtOAc in hexane): 0.42; IR (CH₂Cl₂): 2962, 1720 (C=O, ketone), 1689 (C=O, unsaturated thioester), 1627 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.33-7.31 (m, 2H), 7.25-7.23 (m, 2H), 6.86 (dt, *J* = 16.0, 4.0 Hz, 1H), 6.08 (dt, *J* = 16.0, 4.0 Hz, 1H), 4.16 (s, 2H), 2.71-2.58 (m, 4H), 2.16 (q, *J* = 8.0 Hz, 2H), 2.03-1.84 (m, 2H), 1.80-1.75 (m, 2H), 1.45-1.37 (m, 2H), 1.30 (s, 9H), 1.23 (s, 3H), 1.18-1.09 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃): 210.3, 189.4, 150.2, 145.1, 134.5, 128.5, 125.6, 65.4, 38.0, 36.7, 34.5, 32.6, 31.8, 31.3, 28.2, 24.4, 19.9, 17.6 ppm; LRMS (EI, 20 eV): m/z 414.3; HRMS (EI, 20 eV): calcd for C₂₅H₃₄O₃S (M⁺),414.2229, found 414.2224.

B. General procedure for the synthesis of 3q-3s

To a solution of **1r** or **1s** (1.0 equiv.) in THF (22 mL) and H₂O (4.5 mL) was added OsO₄ (0.1 eq.) in *t*BuOH (0.5 mL). When the reaction mixture turned black, NMO (2.0 eq.) was added in portions to the reaction mixture. The black color faded and stirring was continued overnight at room temperature. The crude mixture was filtered through a Celite pad (1 inch). The filtrate was extracted with Et₂O (3 × 30 mL). The combined organic extracts were dried over anhydrous MgSO₄ and concentrated in vacuo.

To the crude residue in DCM (15 mL) and H_2O (6 mL) was added NaIO₄ (2.2 eq.). The reaction mixture was stirred overnight at room temperature. The mixture was filtered through a Celite pad (1 inch). The filtrate was extracted with DCM (3 x 3 mL). The combined organic extracts were dried over anhydrous MgSO₄ and concentrated in vacuo.

The residue dissolved in CH_2Cl_2 was treated with phosphorane **2c** or **2d** (0.55 eq.). The reaction mixture was stirred at room temperature for 12 h. The solvent was removed in vacuo, and the residue was subjected to flash chromatography on silica gel to give the corresponding enethioates **3q-s**.

(*E*)-**3q**: 2.0 g, 26% yield overteps; orange solid; mp = 45-48 °C; R_f (25% EtOAc in hexane): 0.45; IR (CH₂Cl₂): 3039, 2978, 1728 (C=O, ketone), 1674 (C=O, unsaturated thioester), 1635 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.22 (m, 5H), 6.63 (dt, *J* = 16.0, 8.0 Hz, 1H), 6.10 (dt, *J* = 15.4, 1.2 Hz, 1H), 4.16 (s, 2H), 2.87-2.64 (m, 4H), 2.47 (dd, *J* = 7.7, 1.3 Hz, 2H), 1.16 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 214.9, 188.6, 137.6, 137.3, 128.9, 128.6, 127.3, 56.1, 36.7, 35.1, 33.1, 20.1 ppm; LRMS (EI, 20 eV): m/z 302.1 (M⁺, 3); HRMS (EI, 20 eV): calcd for C₁₇H₁₈O₃S (M⁺), 302.0974, found 302.0971.

(*E*)-**3r**: 1.1 g, 13% yield over 3 steps; orange solid; mp = 68-71 °C; R_f (25% EtOAc in hexane): 0.45; IR (CH₂Cl₂): 3047, 2986, 1728 (C=O, ketone), 1697 (C=O, unsaturated thioester), 1635 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.23 (m, 5H), 6.65 (dt, J = 16.0, 8.0 Hz, 1H), 6.11 (dt, J = 15.4, 1.3 Hz, 1H), 4.14 (s, 2H), 2.75 (dd, J = 8.0, 4.0 Hz, 1H), 2.70 (dd, J = 9.5, 5.6 Hz, 1H), 2.66 (dd, J = 7.6, 1.2 Hz, 2H), 2.59 (dd, J = 7.1, 5.1 Hz, 1H), 2.55 (dd, J = 7.1, 5.1 Hz, 1H), 2.07-1.97 (m, 1H), 1.91-1.81 (m, 1H), 1.32 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 209.1, 188.9, 139.7, 137.5, 131.5, 128.9, 128.6, 127.3, 64.6, 37.9, 36.9, 33.0, 23.0, 17.3 ppm; LRMS (EI, 20 eV): m/z 316.2 (M⁺, 5); HRMS (EI, 20 eV): calcd for C₁₈H₂₀O₃S (M⁺), 316.1128, found 316.1142.

(*E*)-3s: 2.0 g, 26% yield over 3 steps; orange oil;. R_f (25% EtOAc in hexane): 0.55; IR (CH₂Cl₂): 3047, 2985, 1728 (C=O, ketone), 1697 (C=O, unsaturated thioester), 1627 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.63 (dt, J = 20.0, 8.0 Hz, 1H), 6.11 (d, J = 20 Hz, 1H), 2.78-2.55 (m, 6H), 2.08-1.85 (m, 2H), 1.47 (s, 9H), 1.32 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 209.1, 190.3, 137.6, 132.6, 64.6, 48.06, 37.9, 37.1, 29.8, 22.5 ,17.3 ppm; LRMS (EI, 20 eV): m/z 282.2 (M⁺, 1); HRMS (EI, 20 eV): calcd for C₁₅H₂₂O₃S (M⁺), 282.1284, found 282.1282.

C. General procedure for asymmetric reductive aldol cyclizations

Cu(OAc)₂•H₂O (0.015 mmol), **L8** (TaniaPhos SL-T001-1, 0.015 mmol) and bipy (0.015 mmol) were transferred into an oven-dried 5 mL round-bottomed flask, to which anhydrous PhMe (1.0 mL) and phenylsilane (0.75 mmol) were added under argon. The reaction mixture was stirred at room temperature until a characteristic greenish-yellow color was observed. The reaction mixture was cooled to -20 °C. Substrate **3** (0.15 mmol) in PhMe (1.0 mL) was added to the reaction mixture via cannula. The progress of the reaction was monitored by TLC. The reaction was quenched by the addition of 1 M HCl (1.0 mL), The organic layer was separated, and the aqueous layer was back-extracted with EtOAc (3 x 5 mL). The combined organics were dried over

anhydrous MgSO₄ and concentrated *in vacuo*. Flash chromatography of the residue on silica gel using 5%-20% EtOAc in hexane afforded the aldol products.

The corresponding reductive aldol reactions to obtain racemic products were similarly executed, but using either BDP or dppf as achiral ligands.

The reductions of **3a-c**, **e**, **i** have been previously reported.²

Reduction of 3d: According to general procedure C, L8 (10.0 mg, 0.015 mmol), Cu(OAc)₂•H₂O (3.0 mg, 0.015 mmol), bipyridine (2.3 mg, 0.015 mmol) and PhSiH₃ (76.0 µL, 0.60 mmol) in 2.0 mL PhMe at -20 °C were treated with 3d (94.8 mg, 0.30 mmol) in PhMe (2 x 0.5 mL) at -20 °C for 18 h. After workup and chromatographic purification, 4d was obtained as a colourless oil (77 mg, 81% yield, 91% ee). **4d**: $[\alpha]_D^{20} = -58.7$ (c = 1, CH₂Cl₂); DAICEL CHIRALCEL AY-3, *n*-hexane/2-propanol = 96/4, flow rate = 0.5 mL/min, λ = 254 nm, retention times: 30.890 min (major), 38.272 min (minor); R_f (25% EtOAc in hexane): 0.40; IR (CH₂Cl₂): 3053, 1739 (C=O, cyclopentanone), 1652 (C=O, thioester) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.33-7.24 (m, 5H), 4.27 (br s, 1H), 4.18 (d, J = 13.9 Hz, 1H), 4.14 (d, J = 13.9 Hz, 1H), 2.55 (ddd, J = 19.7, 10.3, 2.4 Hz, 1H), 2.39 (dd, J = 11.9, 3.4 Hz, 1H), 2.23 (ddd, J = 19.2, 10.0, 9.6 Hz, 1H), 2.11 (dt, J = 13.5, 10.1 Hz, 1H), 2.00 (ddd, J = 13.2, 9.3, 1.9 Hz, 1H), 1.90 (dm, J = 13.9 Hz, 1H), 1.83 (dtd, J = 12.7, 12.5, 3.4 Hz, 1H), 1.72 (dm, J= 13.0 Hz, 1H), 1.71-1.60 (m, 1H), 1.37 (ddd, J = 13.6, 13.3, 4.5 Hz, 1H), 1.19 (dtt, J = 13.3, 13.0, 3.8 Hz, 1H), 1.02 (s, 3H) ppm; ¹³C NMR (125) MHz, CDCl₃): δ 217.7, 204.2, 136.6, 128.8, 128.7, 127.6, 77.9, 56.2, 53.8, 34.5, 33.5, 30.9, 28.3, 26.0, 22.5, 19.1 ppm; LRMS (EI, 20 eV): m/z 318.2 (M^+ , 3), 195.1 (M^+ -SC₇H₇, 5), 167.1 $(M^+-COSC_7H_7, 18)$; HRMS (EI, 20 eV): calcd for $C_{18}H_{22}O_3S$ (M⁺), 318.1284, found 318.1285.

Reduction of 3f: According to general procedure C, **L8** (10.0 mg, 0.015 mmol), Cu(OAc)₂•H₂O (3.0 mg, 0.015 mmol), bipyridine (2.3 mg, 0.0.15 mol) and PhSiH₃ (76 μL, 0.6 mmol) in 2.0 mL PhMe at -20 °C were treated with **3f** (55.9 mg, 0.15 mmol) in PhMe (2 x 0.3 mL) and stirred at -20 °C for 15 h. After workup and chromatographic purification, **4f** was obtained as a pale-yellow solid (105 mg, 94% yield, 90% ee). **4f**: mp = 76-78 °C; $[\alpha]_D^{20} = -34.9$ (c = 2, CH₂Cl₂); DAICEL CHIRALCEL OD-3, *n*-hexane/2-propanol = 96/4, flow rate = 0.5 mL/min, λ = 254 nm, retention times: 16.538 min (minor), 17.324 min (major); *R_f* (25% EtOAc in hexane): 0.50; IR (CH₂Cl₂): 3680 (OH), 3487 (hydrogen-bonded OH), 3047, 2970, 1735 (C=O, ketone), 1658 (C=O, thioester), 1604 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.33 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 4.30 (br, 1H), 4.14 (s, 2H), 2.55 (ddd, *J* = 19.7, 10.3, 2.4 Hz, 1H), 2.39 (dd, *J* = 11.9, 3.4 Hz, 1H), 2.23 (ddd, *J* = 19.2, 10.0, 9.6 Hz, 1H), 2.11 (dt, *J* = 13.5, 10.1 Hz, 1H), 2.00 (ddd, *J* = 13.2, 10.0 (bdd, *J* = 13.2, 10.0 (bdd, *J* = 13.2, 10.0 (bd, *J* = 13.2)

9.3, 1.9 Hz, 1H), 1.90 (dm, J = 13.9 Hz, 1H), 1.83 (dtd, J = 12.7, 12.5, 3.4 Hz, 1H), 1.75-1.72 (m, J = 13.0 Hz, 1H), 1.71-1.60 (m, 1H), 1.37 (ddd, J = 13.6, 13.3, 4.5 Hz, 1H), 1.30 (s, 9H), 1.19 (dtt, J = 13.3, 13.0, 3.8 Hz, 1H), 1.02 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 217.8, 204.4, 150.6, 133.4, 128.4, 125.7, 77.9, 56.1, 53.8, 34.5, 33.1, 31.3, 30.9, 28.4, 26.0, 22.5, 19.1 ppm; LRMS (EI, 20 eV): m/z 374.2 (M⁺, 6), 195.1 (M⁺-SC₇H₇, 5); HRMS (EI, 20 eV): calcd for C₂₂H₃₀O₃S (M⁺), 374.1910, found 374.1901.

Reduction of 3g: According to general procedure C, L8 (10.0 mg, 0.015 mmol), Cu(OAc)₂•H₂O (3.0 mg, 0.015 mmol), bipyridine (2.3 mg, 0.0.15 mol) and PhSiH₃ (76 µL, 0.6 mmol) in 2.0 mL PhMe at -20 °C were treated with 3g (112.0 mg, 0.31 mmol) in PhMe (2 x 0.6 mL) and stirred at -20 °C for 15 h. After workup and chromatographic purification, 4g was obtained as a colourless oil (107 mg, 93% yield, 93% ee). 4g: $\left[\alpha\right]_{D}^{20} = -30.4$ (c=1, CH₂Cl₂); DAICEL CHIRALCEL OD-3, *n*-hexane/2-propanol = 96/4, flow rate = 0.5 mL/min, λ = 254 nm, retention times: 15.572 min (minor), 27.364 min (major); R_f (25% EtOAc in hexane): 0.65; IR (CH₂Cl₂): 3680 (OH), 3487 (hydrogen-bonded OH), 2939, 1735 (C=O, ketone), 1658 (C=O, thioester), 1604 cm⁻¹;¹H NMR (500 MHz, CDCl₃): δ 6.85 (s, 2H), 4.26 (d, J = 13.4 Hz, 1H), 4.18 (d, J = 13.4 Hz, 1H), 2.55 (ddd, J = 19.7, 10.3, 2.4 Hz, 1H), 2.39 (dd, J = 11.9, 3.4 Hz, 1H), 2.28 (s, 10.3 Hz, 10.3 Hz, 10.3 Hz)6H), 2.25 (s, 3H), 2.23 (ddd, J = 19.2, 10.0, 9.6 Hz, 2H), 2.11 (dt, J = 13.5, 10.1 Hz, 1H), 2.00 (ddd, J = 13.2, 9.3, 1.9 Hz, 1H), 1.90 (dm, J = 13.9 Hz, 1H), 1.83 (dtd, J = 12.7, 12.5, 3.4 Hz, 1H),1.72 (dm, J= 13.0 Hz, 1H), 1.71-1.60 (m, 1H), 1.37 (ddd, J = 13.6, 13.3, 4.5 Hz, 1H), 1.19 (dtt, J = 13.3, 13.0, 3.8 Hz, 1H), 1.03 (s, 3H) ppm; 13 C NMR (125 MHz, CDCl₃): δ 217.7, 205.1, 137.4, 137.1, 129.2, 128.6, 77.9, 56.2, 53.8, 34.5, 30.9, 28.3, 28.2, 26.1, 22.5, 20.9, 19.8, 19.1 ppm; LRMS (EI, 20 eV): m/z 360.1 (M⁺, 3); HRMS (EI, 20 eV): calcd for C₂₁H₂₈O₃S (M⁺), 360.1754, found 360.1751.

Reduction of 3j: According to general procedure C, Cu(OAc)₂•H₂O (4.0 mg, 0.020 mmol), L8 (14.0 mg, 0.020 mmol), bipyridine (3.0 mg, 0.19 mol) and PhSiH₃ (100 μL, 0.80 mmol) in anhydrous PhMe (3.0 mL) were treated with **3j** (153.4 mg, 0.39 mmol) in PhMe (1.0 mL) and stirred at -20 °C for 48 h. After workup and chromatographic purification, **4j** was obtained as a yellow oil (80.1 mg, 52% yield, 95% ee), and **6j** was obtained as a yellow oil (12.6 mg, 8 % yield, 73 % ee). **4j**: $[\alpha]_D^{20} = -137.8$ (c = 1, CH₂Cl₂); DAICEL CHIRALCEL AS-3, *n*-hexane/2-propanol = 96/4, flow rate = 1 mL/min, λ = 254 nm, retention times: 9.29 min (major), 28.43 min (minor); *R_f* (25% EtOAc in hexane): 0.55; IR (CH₂Cl₂): 3456 (OH), 2939, 2862, 1712 (C=O, ketone), 1651 (C=O, thioester), 1604 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.71-7.70 (m, 1H), 7.39-7.23 (m, 8H), 5.55 (dddd, *J* = 23.4, 15.0, 8.4, 6.5 Hz, 1H), 5.3, (s, 1H), 4.90 (dd, *J* =

10.1, 0.78 Hz,1H), 4.85 (dd, J = 16.9, 1.4 Hz, 1H), 4.15 (d, J = 13.9 Hz, 1H), 4.00 (d, J = 13.9 Hz, 1H), 2.42 (dd, J = 14.2, 8.5 Hz, 1H), 2.29 (dt, J = 14.2, 3.1 Hz, 1H), 2.21 (dd, J = 12.3, 3.3 Hz, 1H), 1.88-1.73 (m, 3H), 1.53 (td, J = 14.1, 4.5 Hz, 1H), 1.30-1.21 (m, 1H) ppm; ¹³C NMR (125) MHz, CDCl₃): δ 204.8, 203.8, 155.9, 136.7, 134.1, 133.9, 133.4, 128.8, 128.7, 128.6, 127.5, 123.7, 123.5, 117.7, 78.7, 62.5, 60.2, 41.9, 33.4, 26.7, 25.9, 22.7 ppm; LRMS (EI, 20 eV): m/z 392.1 (M⁺, 0.6), 268.1 (M⁺-SC₇H₇, 2.59); HRMS (EI, 20 eV): calcd for C₂₄H₂₄O₃S (M⁺), 392.1446, found 392.1441. **6i**: $[\alpha]_{D}^{20} = -65.9$ (c= 0.88, CH₂Cl₂); DAICEL CHIRALCEL AD-3, *n*-hexane/2-propanol = 96/4, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 67.504 min (minor), 72.897 min (major); R_f (10% EtOAc in hexane): 0.23; IR (CH₂Cl₂): 2955, 1713 (ketone, C=O), 1643 (thioester, C=O), 1604 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 9.6 Hz, 1H), 7.39 (t, J = 7.4 Hz, 1H), 7.34-7.29 (m, 6H), 7.11 (d, J = 7.7 Hz, 1H), 5.68 (ddt, J = 16.0, 12.0, 7.2Hz, 1H), 4.98 (d, J = 16.0 Hz, 1H), 4.89 (d, J = 12.0 Hz, 1H), 4.18 (s, 2H), 3.14 (dd, J = 13.8, 3.0 Hz, 1H), 2.37 (d, J = 7.2 Hz, 2H), 1.91 (dt, J = 14.2, 5.3 Hz, 1H), 1.86-1.80 (m, 1H), 1.70-1.64 (m, 1H), 1.61-1.56 (m, 2H), 1.01-0.91 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 205.9, 203.2, 152.1, 137.0, 135.9, 134.8, 134.6, 129.5, 129.1, 128.6, 127.4, 125.4, 122.9, 117.6, 81.2, 59.2, 56.5, 39.2, 33.5, 26.5, 20.4, 18.0 ppm; LRMS (EI, 20 eV): m/z 392.1 (M⁺, 2), 268.1 (M⁺-SC₇H₇, 7.1); HRMS (EI, 20 eV): calcd for C₂₄H₂₄O₃S: 392.1446, found 392.1439.

Reduction of 3k: According to the general procedure, L8 (10.3 mg, 0.015 mmol), Cu(OAc)₂-H₂O (3.0 mg, 0.015 mmol), bipyridine (2.3 mg, 0.015 mol), and PhSiH₃ (76.0 µL, 0.60 mmol) in 2.0 mL PhMe were treated with 3k (155.4 mg, 0.30 mmol) in PhMe (2×0.5 mL) and stirred at -20 °C for 30 h. After workup and chromatographic purification, 4k was obtained as a yellow oil (80.0 mg, 51% yield, 98% ee) and 6k was obtained as a yellow oil (22.5 mg, 14% yield, 91% ee). 4k: $\left[\alpha\right]_{D}^{20} = -133.4$ (c = 1, CH₂Cl₂); DAICEL CHIRALCEL AD-3, *n*-hexane/2-propanol = 96/4, flow rate = 0.5 mL/min, λ = 254 nm, retention times: 48.097 min (major), 59.360 min (minor); R_f (25% EtOAc in hexane): 0.56; IR (CH₂Cl₂): 3688 (OH), 3063, 2985, 2306, 1712 (C=O, ketone), 1651 (C=O, thioester), 1604, 1550 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.68-7.66 (m, 1 H), 7.37-7.30 (m, 4H), 7.25-7.19 (m, 4H), 7.05 (t, J = 1.5 Hz, 1H), 6.97 (t, J = 7.7 Hz, 1H), 6.75 (d, J = 7.7 Hz, 1H), 5.44 (s, 1H), 4.14 (d, J = 13.9, 1H), 4.00 (d, J = 13.9, 1H), 2.87 (d, J = 13.6 Hz, 1H), 2.62 (d, J = 13.6, 1H), 2.20 (dd, J = 12.6, 7.2 Hz, 1H), 2.13 (dm, J = 13.9 Hz, 1H), 1.90-1.73 (m, 3H), 1.63 (dt, J = 13.7, 4.6 Hz, 1H), 1.27-1.20 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): 205.5, 203.7, 156.5, 139.8, 137.3, 134.9, 134.7, 134.0, 130.1, 129.7, 129.6, 129.5, 129.4, 129.3, 128.2, 124.3, 124.1, 122.3, 79.3, 63.5, 62.4, 43.8, 34.1, 27.9, 26.7, 23.5 ppm; LRMS (EI, 20 eV): m/z 520.1 (5.4), 522.1 (5.8); HRMS (EI, 20 eV): calcd for C₂₈H₂₅⁷⁹BrO₃S: 520.0708,

 $C_{28}H_{25}^{81}BrO_3S$ 522.0687; found 520.0706, 522.0694. **6k**: $[\alpha]_D^{20} = -35.3$ (c = 0.5, CH₂Cl₂); DAICEL CHIRALCEL AD-3, *n*-hexane/2-propanol = 96/4, flow rate = 0.5 mL/min, λ = 254 nm, retention times: 92.032 min (major), 102.633 min (minor); R_f (25% EtOAc in hexane): 0.56; ¹H NMR (400 MHz, CDCl₃): 7.65 (d, J = 7.4 Hz, 1H), 7.35-7.21 (m, 10H), 7.09-7.00 (m, 3H), 4.64 (s, 1H), 4.12 (d, J = 7.1, 2H), 3.06 (dd, J = 13.2, 2.9 Hz, 1H), 2.96 (d, J = 13.7 Hz, 1H), 2.88 (d, J = 13.7 Hz, 1H), 1.85-1.80 (m, 2H), 1.75-1.69 (m, 1H), 1.49-1.44 (m, 1H), 1.10-0.90 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): 205.8, 204.7, 152.4, 140.4, 137.4, 136.3, 135.2, 134.7, 130.4, 130.0, 129.9, 129.7, 129.3, 128.2, 125.9, 123.9, 122.3, 81.7, 60.9, 57.2, 39.7, 34.1, 27.3, 21.1, 19.2 ppm; LRMS (EI, 20 eV): m/z 520.1 (M⁺, 1.6), 522.1 (M⁺, 1.9); HRMS (EI, 20 eV): calcd for $C_{28}H_{25}^{79}BrO_3S$ 520.0708, $C_{28}H_{25}^{81}BrO_3S$ 522.0687; found 520.0692, 522.0676.

Reduction of 31: According to the general procedure, L8 (10.3 mg, 0.015 mmol), Cu(OAc)₂-H₂O (3.0 mg, 0.015 mmol), and PhSiH₃ (76.0 µL, 0.60 mmol) in 2.0 mL PhMe were treated with **31** (99 mg, 0.30 mmol) in PhMe (2 x 0.6 mL) and stirred at -20 °C for 15 h. After workup and chromatographic purification, 41 (72.3 mg, 72%,93%ee) was obtained as a $[\alpha]_{D}^{20} = -2.4$ (c = 0.7, CH₂Cl₂); DAICEL CHIRALCEL AS-3, pale-yellow oil: **4l**: *n*-hexane/2-propanol = 96/4, flow rate = 0.5 mL/min, λ = 254 nm, retention times: 11.555 min (minor), 4.674 min (major); R_f (25% EtOAc in hexane): 0.65; IR (CH₂Cl₂): 3680 (OH), 3502 (hydrogen-bonded OH), 3063, 2955, 1705 (C=O, ketone), 1651 (C=O, thioester), 1604 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.33-7.23 (m, 5H), 4.13 (d, J = 2.7, 2H), 3.76 (s, 1H), 2.65-2.54 (m, 2H), 2.26 (ddt, J = 16.0, 4.0, 1.6 Hz, 1H), 2.18 (td, J = 16.0, 4.0 Hz, 1H), 2.01-1.92 (m, 2H), 1.09-1.82 (m, 1H), 1.75-1.45 (m, 6H), 1.19 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 213.3, 204.1, 136.7, 128.7, 127.5, 75.4, 55.3, 54.4, 36.4, 33.3, 32.1, 28.9, 26.6, 22.4, 21.7, 19.5 ppm; LRMS (EI, 20 eV): m/z 332.1 (M^+ , 3); HRMS (EI, 20 eV): calcd for $C_{19}H_{24}O_3S$: 332.1441, found 332.1444.

Reduction of 3m According to the general procedure, **L8** (10.0 mg, 0.015 mmol), $Cu(OAc)_2 \cdot H_2O$ (3.0 mg, 0.015 mmol), bipyridine (2.3 mg, 0.015 mmol) and PhSiH₃ (76.0 µL, 0.60 mmol) in 2.0 mL PhMe at -10 °C were treated with **3m** (116 mg, 0.30 mmol) in PhMe (2 x 0.5 mL) and stirred at -20 °C for 20 h. After workup and chromatographic purification, **4m** was obtained as a pale-yellow oil (89.2 mg, 77% yield, 88% ee) and **6m** was obtained as a pale-yellow oil (10.8 mg, 9% yield, 74% ee); **4m**: $[\alpha]_D^{20} = -11.8$ (c = 2, CH₂Cl₂); DAICEL CHIRALCEL AS-3, *n*-hexane/2-propanol = 96/4, flow rate = 0.5 mL/min, $\lambda = 254$ nm, retention times: 16.910 min (minor), 21.141 min(major); *R_f* (25% EtOAc in hexane): 0.79; IR (CH₂Cl₂): 3688 (OH), 3063,

2962, 1705 (C=O, ketone), 1643 (C=O, thioester), 1604 cm⁻¹;¹H NMR (500 MHz, CDCl₃): δ 7.31 (d, *J* = 8.3 Hz, 2H), 7.17 (d, *J* = 8.3 Hz, 2H), 4.10 (q, *J* = 13.8 Hz, 2H), 3.79 (s, 1H), 2.65-2.54 (m, 2H), 2.26-2.18 (m, 2H), 2.01-1.81 (m, 3H), 1.75-1.50 (m, 6H), 1.29 (s, 9H), 1.19 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ213.2, 204.2, 150.5, 133.4, 128.3, 125.6, 75.3, 55.2, 54.4, 36.4, 34.5, 32.9, 32.0, 31.3, 28.9, 26.5, 22.4, 21.7, 19.5 ppm; LRMS (EI, 20 eV): m/z 388.3 (M⁺, 2); HRMS (EI, 20 eV): calcd for C₂₃H₃₂O₃S (M⁺), 388.2067, found 388.2070. **6m**: $[\alpha]_D^{20} = -1.9$ (c = 1, CH₂Cl₂); DAICEL CHIRALCEL OD-3, *n*-hexane/2-propanol = 96/4, flow rate = 1 mL/min, $\lambda = 254$ nm, retention times: 40.865 min (minor), 46.578 min (major); *R_f* (25% EtOAc in hexane): 0.76; ¹H NMR (500 MHz, CDCl₃): δ 7.32 (d, *J* = 6.5 Hz, 2H), 7.20 (d, *J* = 6.5 Hz, 2H), 4.10 (q, *J* = 13.8 Hz, 2H), 3.22 (s, 1H), 2.92 (dd, *J* = 13.2, 4.1 Hz, 1H), 2.56 (ddd, *J* = 14.1, 14.1, 6.8 Hz, 1H), 2.31-2.25 (m, 2H), 2.23-2.04 (m, 2H), 1.90 (ddd, J = 27.4, 13.5, 4.4 Hz, 1H), 1.85-1.75 (m, 2H), 1.74-1.62 (m, 1H), 1.60-1.55 (m, 1H), 1.30 (s, 9H), 1.20 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 214.1, 203.5, 150.5, 133.7, 128.5, 125.7, 78.0, 56.5, 54.7, 36.9, 34.5, 33.9, 33.0, 31.3, 28.0, 25.3, 20.3, 19.9, 14.7 ppm; LRMS (EI, 20 eV): m/z 388.2 (M⁺, 5); HRMS (EI, 20 eV): calcd for C₂₃H₃₂O₃S 388.2067, found 388.2061.

Reduction of 3o: According to the general procedure, **L8** (10 mg, 0.015 mmol), Cu(OAc)₂•H₂O (3.0 mg, 0.015 mmol), bipyridine (2.30 mg, 0.015 mmol) and PhSiH₃ (76 μL, 0.6 mmol) in 2.0 mL PhMe were treated with **3o** (121 mg, 0.30 mmol) in PhMe (2 x 0.5 mL) and stirred at -20 °C for 20 h. After workup and chromatographic purification, **3o** was obtained as a colorless oil (80 mg, 66% yield, 93% ee). **4o**: $[\alpha]_D^{20} = -4.5$ (c = 1, CH₂Cl₂); DAICEL CHIRALCEL AD-3, *n*-hexane/2-propanol = 96/4, flow rate = 0.5 mL/min, λ = 254 nm, retention times: 42.577 min (minor), 45.459 min (major); *R_f* (25% EtOAc in hexane): 0.70; IR (CH₂Cl₂): 3688 (OH), 3063, 2993, 2337, 1705 (C=O, ketone), 1658 (C=O, thioester), 1604 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.32-7.25 (m, 5H), 7.24-7.15 (m, 3H), 6.96 (dd, *J* = 6.4, 1.7 Hz, 2H), 4.14 (q, *J* = 13.9 Hz, 2H), 3.93, (s, 1H), 3.26 (d, *J* = 13.9 Hz, 1H), 3.14 (d, *J* = 13.9 Hz, 1H), 2.91 (ddd, *J* = 21.9, 13.7, 7.9 Hz, 1H), 2.68 (dd, *J* = 12.5, 3.3 Hz, 1H), 2.44-2.36 (m, 2H), 2.00- 1.91 (m, 2H), 1.79 (ddt, *J* = 32.9, 14.0, 5.1 Hz, 1H), 1.71 (dm, *J* = 16.7 Hz, 1H), 1.64 (dm, *J* = 16.7 Hz, 1H), 1.54-1.35 (m, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 211.5, 204.2, 136.7, 136.6, 130.0, 128.7, 128.0, 127.5, 126.6, 75.9, 58.8, 55.6, 39.6, 37.6, 33.4, 31.9, 26.4, 26.2, 21.4, 19.9 ppm; LRMS (EI, 20 eV): m/z 408.2 (M⁺, 1); HRMS (EI, 20 eV): calcd for C₂₅H₂₈O₃S (M⁺), 408.1754, found 408.1753.

Reduction of 3p: According to the general procedure, **L8** (5.0 mg, 0.0075 mmol), $Cu(OAc)_2 \cdot H_2O$ (1.5 mg, 0.0075 mmol) and PhSiH₃ (38 µL, 0.3 mmol) in 1.0 mL PhMe at -10 °C

were treated with 3p (51.7 mg, 0.15 mmol) in PhMe (2 x 0.3 mL) and stirred at -10 °C for 18 h. After workup and chromatographic purification, 4p was obtained as a colorless oil (17.6 mg, 35% yield, 68% ee) and conjugate reduction product $3p-H_2$ as a colorless oil (8.4 mg, 17% yield) 4p: $\left[\alpha\right]_{D}^{20} = +4.8$ (c = 1.2, CH₂Cl₂); DAICEL CHIRALCEL AS-3, *n*-hexane/2-propanol = 96/4, flow rate = 0.5 mL/min, λ = 254 nm, retention times: 10.603 min (minor), 13.602 min (major); R_f (25%) EtOAc in hexane): 0.55; IR (CH₂Cl₂): 3680 (OH), 3479 (hydrogen-bonded OH), 3047, 2985, 1681 (C=O, ketone), 1604 (C=O, thioester), 1604 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.31-7.21 (m, 5H), 5.49 (ddt, J = 17.4, 10.1, 7.5 Hz, 1H), 5.11-5.06 (m, 2H), 4.16 (d, J = 11.1 Hz, 1H), 4.10 (d = 11.1 Hz, 1H), 3.01 (ddd, J = 14.3, 6.8, 1.1 Hz, 1H), 2.94 (dd, J = 12.9, 3.7 Hz, 1H), 2.45 (dd, J = 12.9, 3.7 Hz, 1H), 3.01 (ddd, J = 12.9, 3.8 Hz, 1H), 3.8 14.3, 6.8 Hz, 1H), 2.23 (s, 3H), 1.89 (dm, J = 8.4 Hz, 1H), 1.82 (dm, J = 8.4 Hz, 1H), 1.72-1.62 (m, 3H), 1.47 (tt, J = 13.7, 4.5 Hz, 1H), 1.19 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 216.2, 202.2, 137.2, 133.1, 128.8, 128.6, 127.3, 118.8, 74.7, 58.6, 56.5, 33.6, 30.3, 26.5, 257, 20.9, 19.7 ppm; LRMS (EI, 20 eV): m/z 346.2 (M^+ , 5); HRMS (EI, 20 eV): calcd for $C_{20}H_{26}O_3S$ (M^+), 346.1597, found 346.1596. **3p-H**₂: IR (CH₂Cl₂): 3047, 2970, 1740, 1657 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.31-7.22 (m, 5H), 5.49 (ddt, J = 17.4, 10.1, 7.5 Hz, 1H), 5.11-5.06 (m, 2H), 4.11 (s, 2H), 2.61 (d, J = 7.4 Hz, 2H), 2.56 (t, J = 7.4 Hz, 2H), 2.07 (s, 6H), 1.88-1.85 (m, 2H), 1.67 (g, 2H), 2.56 (t, J = 7.4 Hz, 2H), 2.07 (s, 6H), 1.88-1.85 (m, 2H), 1.67 (g, 2H), 2.56 (t, J = 7.4 Hz, 2H), 2.56 (t, J = 7.4 Hz, 2H), 2.07 (s, 6H), 1.88-1.85 (m, 2H), 1.67 (g, 2H), 2.56 (t, J = 7.4 Hz, 2H), 2.56 (t, J = 7.4 Hz, 2H), 2.07 (s, 6H), 1.88-1.85 (m, 2H), 1.67 (g, 2H), 2.56 (t, J = 7.4 Hz, 2H), 2.56 (t, J = 7.4 Hz, 2H), 2.07 (s, 6H), 1.88-1.85 (m, 2H), 1.67 (g, 2H), 2.56 (t, J = 7.4 Hz, 2H), 2.56 (t, J = 7.4 Hz, 2H), 2.07 (s, 6H), 1.88-1.85 (m, 2H), 1.67 (g, 2H), 2.56 (t, J = 7.4 Hz, 2H), 2.56 (t, J = 7.4 Hz, 2H), 2.07 (s, 6H), 1.88-1.85 (m, 2H), 1.67 (g, 2H), 2.56 (t, J = 7.4 Hz, 2H), 2.57 (s, 6H), 1.88-1.85 (m, 2H), 1.67 (g, 2H), 2.56 (t, J = 7.4 Hz, 2H), 2.56 (t, J = 7.4, 2H, 1.11-1.04 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 206.2, 198.3, 137.6, 132.1, 128.8, 128.6, 127.3, 119.0, 70.4, 43.2, 34.8, 33.2, 30.9, 30.0, 29.7, 26.9, 25.8, 22.8, 14.1 ppm; LRMS (EI, 20 eV): m/z 346.2 (M⁺, 10); HRMS (EI, 20 eV): calcd for C₂₀H₂₆O₃S 346.1597, found 346.1602.

Reduction of 3q: According to the general procedure, **L8** (10 mg, 0.015 mmol), Cu(OAc)₂•H₂O (3.0 mg, 0.015 mmol), bipyridine (2.30 mg, 0.015 mmol) and PhSiH₃ (76 μL, 0.6 mmol) in 2.0 mL PhMe were treated with **3q** (91.0 mg, 0.30 mmol) in PhMe (2 x 0.3 mL) and stirred at -20 °C for 15 h. After workup and chromatographic purification, **4q** was obtained as a colorless oil (52.6 mg, 56% yield, 27% ee). **4q**: $[\alpha]_D^{20} = -17.2$ (c = 0.92, CH₂Cl₂); DAICEL CHIRALCEL AS-3, *n*-hexane/2-propanol = 96/4, flow rate = 1 mL/min, $\lambda = 254$ nm, retention times: 34.123 min (minor), 41.514 min (major); *R_f* (25% EtOAc in hexane): 0.55; IR (CH₂Cl₂): 3680 (OH), 2970, 1735 (C=O, ketone), 1666 (C=O, thioester), 1604 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.33-7.24 (m, 5H), 4.17 (s, 2H), 3.32 (s, 1H), 2.87 (dd, *J* = 10.0, 7.8 Hz, 1H), 2.56 (ddd, *J* = 19.2, 10.4, 4.3 Hz, 1H), 2.33 (ddd, *J* = 10.5, 10.5, 9.1 Hz, 1H), 2.24 (ddd, *J* = 13.3, 9.0, 4.1 Hz, 1H), 2.19-1.91 (m, 4H), 1.70 (ddd, *J* = 10.4, 9.7, 3.8 Hz, 1H), 1.10 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 201.2, 136.7, 128.8, 128.7, 127.5, 88.0, 60.2, 59.8, 35.5, 33.5, 33.1, 31.1, 28.1, 16.4 ppm; LRMS (EI, 20 eV): m/z 304.1 (M⁺, 3); HRMS (EI, 20 eV): calcd for C₁₇H₂₀O₃S (M⁺), 304.1128, found

304.1119.

Reduction of 3r: According to the general procedure, **L8** (10 mg, 0.015 mmol), Cu(OAc)₂•H₂O (3.0 mg, 0.015 mmol), bipyridine (2.30 mg, 0.015 mmol) and PhSiH₃ (76 μL, 0.6 mmol) in 2.0 mL PhMe were treated with **3r** (95.0 mg, 0.30 mmol) in PhMe (2 x 0.3 mL) and stirred at -20 °C for 15 h. After workup and chromatographic purification, **3r** was obtained as a colorless oil (41.8 mg, 44% yield, 59% ee). **4r**: $[\alpha]_D^{20} = -6.3$ (c = 1, CH₂Cl₂); DAICEL CHIRALCEL AD-3, *n*-hexane/2-propanol = 96/4, flow rate = 0.5 mL/min, λ = 254 nm, retention times: 44.257 min (minor), 57.504 min (major); *R*_f (25% EtOAc in hexane): 0.56; IR (CH₂Cl₂): 3680 (OH), 3502 (hydrogen-bonded OH), 3063, 2947, 1705 (C=O, ketone), 1666 (C=O, thioester), 1604 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.32-7.23 (m, 5H), 4.15 (s, 2H), 3.58 (s, 1H), 2.85 (t, *J* = 9.8 Hz, 1H), 2.63 (ddd, *J* = 13.8, 9.6, 4.7 Hz, 1H), 2.55 (ddd, *J* = 14.2, 14.2, 6.9 Hz, 1H), 2.27 (dm, *J* = 12.6 Hz, 1H), 2.05-1.88 (m, 5H), 1.61-1.52 (m, 2H), 1.22 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 212.6, 202.2, 136.7, 128.8, 128.7, 127.5, 84.4, 62.2, 56.1, 36.7, 33.4, 30.6, 29.5, 25.1, 20.2, 18.5 ppm; LRMS (EI, 20 eV): m/z 318.1 (M⁺, 1); HRMS (EI, 20 eV): calcd for C₁₈H₂₂O₃S (M⁺), 318.1284, found 318.1283.

Reduction of 3u: According to the general procedure, **L8** (10 mg, 0.015 mmol), Cu(OAc)₂•H₂O (3.0 mg, 0.015 mmol), bipyridine (2.3 mg, 0.0015 mmol) and PhSiH₃ (76 μL, 0.6 mmol) in 2.0 mL PhMe at -20 °C were treated with **3u** (47.4 mg, 0.15 mmol) in PhMe (2 x 0.5 mL) and stirred at -20 °C for 18 h. After workup and chromatographic purification, conjugate reduction product **3u**-H₂ was obtained as a colorless oil (95.4 mg, 76% yield). **3u**-H₂: *R_f* (25% EtOAc in hexane): 0.55; IR (CH₂Cl₂): 2939, 1720 (C=O, ketone), 1689 (C=O, unsaturated thioester) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.31 (d, *J* = 8.3 Hz, 2H), 7.17 (d, *J* = 8.3 Hz, 2H), 4.09 (s, 2H), 2.69-2.60 (m, 4H), 2.53 (t, *J* = 7.5 Hz, 2H), 2.05-1.96 (m, 1H), 1.89-1.81 (m, 1H), 1.78-1.72 (m, 2H), 1.66-1.58 (m, 2H), 1.29-1.23 (m, 13H), 1.21 (s, 3H), 1.12-1.08 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 210.3, 198.8, 150.1, 134.4, 128.4, 125.5, 65.6, 43.7, 37.9, 37.4, 34.5, 32.7, 31.3, 29.5, 28.6, 25.4, 24.5, 19.1, 17.7 ppm; LRMS (EI, 20 eV): m/z 416.3 (M⁺, 3); HRMS (EI, 20 eV): calcd for C₂₅H₃₆O₃S (M⁺), 416.2380, found 416.2375.

D. Other synthetic procedures

Synthesis of 7d: To a solution of 4d (38 mg, 0.12 mmol) in acetone (4 mL) was added $Pd(OAc)_2$ (8.8 mg, 0.039 mmol) under Ar, then Et₃SiH (195 mg, 1.70 mmol) was added by

syringe. After stirring for 15 min at room temperature, MeOH was added to quench the reaction. The volatiles were removed in vacuo to give a residue which was purified by flash chromatography to furnish the aldehyde **7d** as colorless oil (20.3 mg, 86% yield). **7d**: $[\alpha]_D^{20} =$ +13.4 (c = 0.25, CH₂Cl₂); *R_f* (25% EtOAc in hexane): 0.10; ¹H NMR (400 MHz, CDCl₃): δ 9.75 (d, *J* = 0.5 Hz, 1H), 3.42 (s, 1H), 2.59-2.52 (m, 1H), 2.34-2.30 (m, 1H), 2.30-2.20 (m, 2H), 2.09-2.02 (m, 1H), 1.87-1.83 (m, 3H), 1.62-1.53 (m, 1H), 1.38-1.30 (m, 2H), 1.03 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 218.3, 205.2, 78.5, 54.0, 53.8, 34.0, 31.2, 29.9, 22.5, 21.0, 17.5 ppm. The ¹H and ¹³C NMR data of **7d** were identical to that previous reported for racemic **7d**.⁵

Synthesis of 8d: To a DCM solution of **7d** (20.3 mg, 0.100 mmol) was added phosphorane **2a** (55.0 mg, 0.150 mmol). The reaction was stirred for 12 h, and the volatiles were removed in vacuo. The residue was subjected to flash chromatography and yielded **8d** as a white solid (25.1 mg, 89% yield). **8d**: mp = 67-69 °C; R_f (25% EtOAc in hexane): 0.45; IR (CH₂Cl₂): 3670 (OH), 3600 (hydrogen-bonded OH), 2060, 2984, 1736 (C=O, ketone), 1680 (C=O, unsaturated thioester), 1637 (C=C) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.06 (dd, J = 15.6, 8.6 Hz, 1H), 6.16 (dd, J = 15.7, 0.7 Hz, 1H), 2.96 (q, J = 7.4 Hz, 2H), 2.55 (ddd, J = 19.7, 10.5, 2.8 Hz, 1H), 2.27 (dd, J = 18.3, 9 Hz, 1H), 2.17-2.15 9m, 1H), 2.14-2.00 (m, 1H), 1.94-1.86 (m, 2H), 1.65-1.52 (m, 3H), 1.35-1.20 (m, 5H), 1.03 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 218.1, 190.1, 144.2, 130.5, 78.5, 53.7, 46.4, 34.1, 30.9, 29.1, 26.7, 23.2, 21.3, 19.2, 14.7 ppm; LRMS (EI, 20 eV): m/z 282.1 (M⁺, 1); HRMS (EI, 20 eV): calcd for C₁₅H₂₂O₃S (M⁺), 282.1206, found 282.1204.

Synthesis of 9: TaniaPhos (SL-T001-1, L8) (350 mg, 0.510 mmol) and CuBr•SMe₂ (102 mg, 0.510 mmol) were introduced to a round-bottomed flask under Ar. The addition of CH₃CN (6 mL) produced a clear solution. After stirring for 5 minutes, a yellow suspension started to form, and stirring was continued for 1 h. After removing the volatiles in vacuo, 9 (448 mg, 0.500 mmol) was obtained as yellow solid.

The crude **9** was dissolved in 2.0 mL DCM, then 4.0 mL CH₃CN was layered on. After slow evaporation over 1-2 days, orange crystals of **9** were obtained, which were subjected to X-ray diffraction analysis. **9**: $[\alpha]_D^{20} = +139.5$ (c = 0.47, CH₂Cl₂); IR (CH₂Cl₂): 3047, 2955, 2777, 2739, 1473, 1427, 1311, 1257, 1149, 1095, 1026 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.21 (brs, 2H), 8.06 (brs, 2H), 7.45 (brs, 6H), 7.34 (brs, 1H), 7.17 (brs, 1H), 7.08 (t, *J* = 7.4 Hz, 1H), 7.10 (s, 3H), 6.98 (brs, 2H), 6.75 (brs, 1H), 6.28 (brs, 3H), 5.68 (brs, 1H), 5.28 (s, 1H), 4.96 (brs, 1H), 4.60 (s, 1H), 4.13 (s, 1H), 4.05 (s, 4H), 1.98 (brs, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 148.1, 136.2, 136.1, 133.2, 133.1, 131.0, 130.9, 10.8, 130.7, 129.0, 128.9, 128.3, 128.2, 128.1, 127.8, 127.7, 127.6, 100.2, 71.2, 70.6, 69.9, 67.2, 67.1, 66.4, 53.4, 45.3, 41.0 ppm; LRMS (FAB): m/z 829.1

(M⁺, 10); HRMS (EI, 20 eV): calcd for $C_{43}H_{39}^{79}BrCuFeNP_2$ 829.0387, $C_{43}H_{63}^{81}BrCuFeNP_2$ 831.0366, found 829.0371, 831.0408.

References

- 1. B. J. Cowen, L. B. Saunders and S. L. Miller, J. Am. Chem. Soc., 2009, 131,6105.
- 2. J. Ou, W. -T. Wong and P. Chiu, Tetrahedron, 2011, doi:10.1016/j.tet.2011.07.057
- J. F. King, R. Rathore, J. Y. L. Lam, Z. R. Guo and D. F. Klassen, J. Am. Chem. Soc., 1992, 114, 3028.
- 4. R. D. Desai, J. Chem. Soc., 1932, 1079.
- 5. P. K. Koech and M. J. Krische, Org. Lett., 2004, 6, 691.

NMR data of all new compounds

L.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

.

.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

S28

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

HH-COSY of 4d

HH-NOESY of 4d

S34

HPLC data for 4d

Peak Summary with Statistics Peak Name:

	Sample Name	Vial	lnj.	RT (min)	Area (猩*sec)	% Area	Height (猩)
1	02-073-2	1:B,1	1	38.272	582787	4.97	8786
2	02-073-2	1:B,1	1	30.890	11142957	95.03	139600
Mean				34.581	5862872.169		74193.056
Std. Dev.				5.220	7467167.627		92499.40
% RSD				15.09	127.36		124.674

HH-COSY of 4f

NOESY of 4f

	Sample Name	Vial	<mark>ln</mark> j.	RT (min)	Area (µV*sec)	% Area	Height (µV)
1	02-135	1:D,2	1	23.021	9823667	94.82	250912
2	02-135	1:D,2	1	20.794	536944	5.18	16641
Mean				21.907	5180305.815		133776.516
Std. Dev.				1.575	6566704.876		165654.22
% RSD				7.19	126.76		123.829

HH-COSY of 4g

NOESY of 4g

	Sample Name	Vial	lnj.	RT (min)	Area (µV*sec)	% Area	Height (µV)
1	02-137c	1:D,2	1	29.282	27240195	96.59	410363
2	02-137c	1:D,2	1	23.304	960429	3.41	25353
Mean				26.293	14100312.267		217858.197
Std. Dev.				4.227	18582600.605		272243.53
% RSD				16.08	131.79		124.964

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

ī

$\operatorname{H-H}\operatorname{COSY}\operatorname{of}4j$

NOESY of 4j

HPLC data of 4j

	Sample Name	Vial	lnj.	RT (min)	Area (µV*sec)	% Area	Height (µV)
1	02-132C	1:D,2	1	28.618	1197737	2.55	15896
2	02-132C	1:D,2	1	9.199	45795210	97.45	1271689
Mean				18.908	23496473.239		643792.570
Std. Dev.				13.731	31535175.333		887980.27
% RSD				72.62	134.21		137.930

	Sample Name	Vial	lnj.	RT (min)	Area (µV*sec)	% Area	Height (µV)
1	03-037-с	1:D,2	1	59.360	3995855	1.50	47580
2	03-037-c	1:D,2	1	48.097	263225297	98.50	3083520
Mean				53.728	133610575.985		1565549.899
Std. Dev.				7.964	183302895.688		2146733.63
% RSD				14.82	137.19		137.123

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

HPLC data of 6k

	Sample Name	Vial	<mark>Inj</mark> .	RT (min)	Area (µV*sec)	% Area	Height (µV)
1	03-037-1-C	1:D,2	1	104.055	761393	3.66	5075
2	03-037-1-C	1:D,2	1	95.771	20017595	96.34	126806
Mean				99.913	10389494.014		65940.446
Std. Dev.				5.858	13616190.459		86076.87
% RSD				5.86	131.06		130.537

L

1.11

	Sample Name	Vial	lnj.	RT (min)	Area (猩*sec)	% Area	Height (猩)
1	02-119	1:b,1	1	20.701	616850	3.55	27843
2	02-119	1:b,1	1	19.499	16771820	96.45	681028
Mean				20.100	8694335.001		354435.464
Std. Dev.				0.850	11423288.798		461871.48
% RSD				4.23	131.39		130.312

ų.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

	Sample Name	Vial	lrj.	RT (min)	Area (µV*sec)	% Area	Height (µV)
1	02-149-C-1	1:d,4	1	21.141	28743386	94.29	581074
2	02-149-C-1	1:d,4	1	16.910	1740957	5.71	77202
Mean				19.025	15242171.221		329138.242
Std. Dev.				2.992	19093600.450		356291.21
% RSD				15.73	125.27		108.250

1.....

1

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

	Sample Name	Vial	lnj.	RT (min)	Area (µV*sec)	% Area	Height (µV)
1	02-149-C-2	1:d,6	1	46.578	302759	13.16	4098
2	02-149-C-2	1:d,6	1	40.865	1998293	86.84	30219
Mean				43.722	1150525.885		17158.500
Std. Dev.				4.040	1198923.290		18470.99
% RSD				9.24	104.21		107.649

E. .

	Sample Name	Vial	Inj.	RT (min)	Area (µV*sec)	% Area	Height (µV)
1	02-122C	1:d,2	1	45.459	14779761	96.36	211945
2	02-122C	1:d,2	1	42.577	557593	3.64	10386
Mean				44.018	7668676.694		111165.60
Std. Dev.				2.038	10056591.265		142523.34
% RSD				4.63	131.14		128.208

1

Peak	Summar	y with	Statistics
	Peak	Name	:

	Sample Name	Vial	Inj	RT (min)	Area (猩*sec)	% Area	Height (猩)
1	02-113-c-1	1:b,3	1	13.602	26939465	83.91	695673
2	02-113-c-1	1:b,3	1	10.603	5165224	16.09	213398
Mean				12.102	16052344.561		454535.593
Std. Dev.				2.121	15396713.679		341020.37
% RSD				17.52	95.92		75.026

Ľ.,

ppm

L

HPLC data of 4r

	Sample Name	Vial	lnj.	RT (min)	Area (猩*sec)	% Area	Height (猩)
1	02-121-C	1:B,2	1	36.082	17707962	63.47	144627
2	02-121-C	1:B,2	1	30.718	10190904	36.53	119274
Mean	-			33.400	13949432.977		131950.329
Std. Dev.				3.793	5315362.327		17927.15
% RSD				11.36	38.10		13.586

HH-COSY of 4r

NOESY of **4r**

HPLC data of 4s

Peak Summary with Statistics Peak Name:

	Sample Name	Vial	lrj.	RT (min)	Area (猩*sec)	% Area	Height (猩)
1	02-120c	1:b,2	1	57.504	132016430	79.71	821253
2	02-120c	1:b,2	1	44.257	33605839	20.29	375321
Mean				50.881	82811134.665		598287.257
Std. Dev.				9.367	69586796.660		315321.43
% RSD				18.41	84.03		52.704

2 2 4

Ľ

.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

S76

 ^{31}P NMR for **L8**-copper bromide complex **9** in CDCl₃

Crystallographic Analyses

<u>General:</u> X-ray crystallographic data was either collected on a Bruker *SMART 1000* CCD diffractometer or Bruker *SMART Apex II* CCD diffractometer with graphite monochromated Mo-K α radiation. Diffraction data were corrected for absorption. The data reduction was performed with either Bruker *SMART*¹ program package or Bruker *APEX*² suite package. Structure solutions were found with the SHELXS97³ package and were refined with SHELXL97⁴ package against F^2 . All C-bound H-atoms were could be located from difference Fourier map but were placed at calculated positions with C-H = 0.93, 0.96, 0.97 and 0.98Å for vinyl/phenyl, methyl, methylene and methine H-atoms respectively. All C-bound H-atoms were refined using riding model with $U_{iso}(H) = 1.2U_{eq}(Carrier)$. The O-bound hydrogen atoms were located from difference fourier.

¹ Bruker AXS Inc. (2006). *SMART*, Madison, Wisconsin, USA.

² Bruker AXS Inc. (2007). APEX II, Madison, Wisconsin, USA.

³ Sheldrick, G.M. (2008). SHELX programs. SHELXL97 & SHELXS97. Acta Cryst. E64, 112-122.

⁴ Sheldrick, G.M. (2008). SHELX programs. SHELXL97 & SHELXS97. Acta Cryst. E64, 112-122.

X-ray data for L8-copper bromide complex 9

Table 1. Crystal data and structure refinement for PC_03_020.

Identification code	pc_03_020
Empirical formula	C88 H81 Br2 Cu2 Fe2 N3 P4
Formula weight	1703.04
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, P 21 21 21
Unit cell dimensions	a = 9.3018(3) A alpha = 90 deg.
	b = 16.8469(5) A beta = 90 deg.
	c = 25.9616(8) A gamma = 90 deg.
Volume	4068.4(2) A^3
Z, Calculated density	2, 1.390 Mg/m^3
Absorption coefficient	1.971 mm^-1
F(000)	1740
Crystal size	0.52 x 0.40 x 0.36 mm
Theta range for data collection	2.62 to 26.37 deg.
Limiting indices	-11<=h<=11, -21<=k<=20, -32<=l<=32
Reflections collected / unique	47426 / 8295 [R(int) = 0.0634]
Completeness to theta $= 26.37$	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.5371 and 0.4271
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8295 / 57 / 457

Goodness-of-fit on F ²
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole

1.072 R1 = 0.0566, wR2 = 0.1375 R1 = 0.0811, wR2 = 0.1487 0.044(15) 0.555 and -0.320 e.A^-3

	Х	У	Z	U(eq)
Fe(1)	1110(1)	-792(1)	4517(1)	59(1)
Cu(1)	-1534(1)	131(1)	3304(1)	54(1)
Br(1)	-2027(1)	-1134(1)	2988(1)	99(1)
P(1)	-1624(2)	428(1)	4148(1)	45(1)
P(2)	-647(2)	1137(1)	2818(1)	58(1)
N(1)	3293(6)	409(3)	3470(2)	63(1)
C(1)	1072(10)	-1737(4)	4014(5)	101(3)
C(2)	2176(11)	-1814(5)	4379(5)	102(3)
C(3)	1587(13)	-1847(4)	4856(5)	110(4)
C(4)	11(13)	-1737(4)	4821(5)	109(3)
C(5)	-235(9)	-1687(4)	4285(5)	91(3)
C(6)	1972(7)	29(3)	5010(3)	63(2)
C(7)	455(7)	117(4)	4955(2)	59(1)
C(8)	140(6)	294(3)	4424(2)	46(1)
C(9)	1499(6)	285(2)	4156(2)	46(1)
C(10)	2577(6)	123(3)	4526(2)	51(1)
C(11)	-2847(6)	-100(3)	4577(3)	58(1)
C(12)	-3449(6)	-812(4)	4411(3)	73(2)
C(13)	-4250(7)	-1252(5)	4762(5)	90(3)
C(14)	-4484(10)	-1017(7)	5239(5)	113(4)
C(15)	-3981(11)	-343(8)	5406(4)	119(4)
C(16)	-3084(8)	158(5)	5080(3)	88(2)
C(17)	-2093(6)	1459(3)	4307(2)	49(1)
C(18)	-3493(7)	1692(4)	4202(3)	71(2)
C(19)	-3901(9)	2469(5)	4293(4)	98(3)
C(20)	-2947(10)	2999(4)	4481(4)	92(2)
C(21)	-1570(9)	2760(4)	4603(3)	81(2)
C(22)	-1136(7)	1977(3)	4514(3)	63(2)
C(23)	1775(6)	554(3)	3611(2)	50(1)
C(24)	3547(8)	-434(5)	3374(3)	81(2)
C(25)	3791(8)	865(5)	3023(3)	81(2)
C(26)	1447(6)	1437(3)	3573(2)	51(1)
C(27)	490(6)	1773(4)	3215(2)	55(1)
C(28)	395(8)	2597(4)	3185(3)	71(2)
C(29)	1206(9)	3089(4)	3513(3)	86(2)
C(30)	2060(9)	2763(4)	3870(3)	79(2)
C(31)	2226(7)	1939(4)	3898(3)	61(2)
C(32)	-2062(8)	1781(4)	2567(3)	78(2)

<u>Table 2.</u> Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{4}$) for PC 03 020. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

C(33)	-2409(10)	1790(7)	2045(4)	116(4)
C(34)	-3619(13)	2210(8)	1886(5)	136(5)
C(35)	-4452(13)	2616(8)	2243(6)	130(4)
C(36)	-4117(12)	2597(7)	2746(6)	130(4)
C(37)	-2917(9)	2173(5)	2910(4)	99(3)
C(38)	477(8)	932(4)	2260(3)	77(2)
C(39)	625(8)	144(5)	2099(3)	94(2)
C(40)	1562(11)	-28(9)	1687(4)	134(5)
C(41)	2282(14)	596(8)	1457(4)	131(4)
C(42)	2084(12)	1376(8)	1597(4)	124(4)
C(43)	1196(9)	1549(6)	2021(3)	95(3)
N(1A)	5678(17)	-673(10)	1132(6)	100(4)
C(1A)	5765(13)	-403(7)	1520(5)	54(3)
C(2A)	5780(20)	-187(11)	2008(7)	95(5)

ole 3.	Bond lengths [A] an	d angles [deg] for PC_03_020.
	Fe(1)-C(7)	2.002(6)
	Fe(1)-C(2)	2.019(8)
	Fe(1)-C(3)	2.033(7)
	Fe(1)-C(6)	2.047(6)
	Fe(1)-C(4)	2.051(8)
	Fe(1)-C(5)	2.051(7)
	Fe(1)-C(8)	2.054(5)
	Fe(1)-C(10)	2.058(5)
	Fe(1)-C(1)	2.061(8)
	Fe(1)-C(9)	2.073(5)
	Cu(1)-P(1)	2.2484(16)
	Cu(1)-P(2)	2.2687(17)
	Cu(1)-Br(1)	2.3292(9)
	P(1)-C(8)	1.805(6)
	P(1)-C(11)	1.824(6)
	P(1)-C(17)	1.837(5)
	P(2)-C(38)	1.820(7)
	P(2)-C(27)	1.824(6)
	P(2)-C(32)	1.827(7)
	N(1)-C(24)	1.461(9)
	N(1)-C(25)	1.468(9)
	N(1)-C(23)	1.479(8)
	C(1)-C(2)	1.405(14)
	C(1)-C(5)	1.407(13)
	C(1)-H(1A)	0.9800
	C(2)-C(3)	1.356(15)
	C(2)-H(2A)	0.9800
	C(3)-C(4)	1.480(15)
	C(3)-H(3A)	0.9800
	C(4)-C(5)	1.414(14)
	C(4)-H(4A)	0.9800
	C(5)-H(5A)	0.9800
	C(6)-C(10)	1.386(9)
	C(6)-C(7)	1.426(10)
	C(6)-H(6A)	0.9800
	C(7)-C(8)	1.440(8)
	C(7)-H(7A)	0.9800
	C(8)-C(9)	1.443(8)
	C(9)-C(10)	1.414(8)
	C(9)-C(23)	1.509(8)
	C(10)-H(10A)	0.9800
	C(11)-C(12)	1.392(9)

Tab

C(11)-C(16)	1.394(11)
C(12)-C(13)	1.391(11)
C(12)-H(12A)	0.9300
C(13)-C(14)	1.317(15)
C(13)-H(13A)	0.9300
C(14)-C(15)	1.303(16)
C(14)-H(14A)	0.9300
C(15)-C(16)	1.457(13)
C(15)-H(15A)	0.9300
C(16)-H(16A)	0.9300
C(17)-C(22)	1.359(8)
C(17)-C(18)	1.387(9)
C(18)-C(19)	1.383(10)
C(18)-H(18A)	0.9300
C(19)-C(20)	1.351(12)
C(19)-H(19A)	0.9300
C(20)-C(21)	1.380(12)
C(20)-H(20A)	0.9300
C(21)-C(22)	1.398(9)
C(21)-H(21A)	0.9300
C(22)-H(22A)	0.9300
C(23)-C(26)	1.521(8)
C(23)-H(23A)	0.9800
C(24)-H(24A)	0.9600
C(24)-H(24B)	0.9600
C(24)-H(24C)	0.9600
C(25)-H(25A)	0.9600
C(25)-H(25B)	0.9600
C(25)-H(25C)	0.9600
C(26)-C(31)	1.398(8)
C(26)-C(27)	1.406(8)
C(27)-C(28)	1.394(9)
C(28)-C(29)	1.407(10)
C(28)-H(28A)	0.9300
C(29)-C(30)	1.338(11)
C(29)-H(29A)	0.9300
C(30)-C(31)	1.399(9)
C(30)-H(30A)	0.9300
C(31)-H(31A)	0.9300
C(32)-C(37)	1.364(12)
C(32)-C(33)	1.392(12)
C(33)-C(34)	1.392(15)
C(33)-H(33A)	0.9300

C(34)-C(35)	1.389(18)
C(34)-H(34A)	0.9300
C(35)-C(36)	1.342(17)
C(35)-H(35A)	0.9300
C(36)-C(37)	1.392(14)
C(36)-H(36A)	0.9300
C(37)-H(37A)	0.9300
C(38)-C(43)	1.383(9)
C(38)-C(39)	1.397(9)
C(39)-C(40)	1.410(10)
C(39)-H(39)	0.9300
C(40)-C(41)	1.383(11)
C(40)-H(40A)	0.9300
C(41)-C(42)	1.376(11)
C(41)-H(41A)	0.9300
C(42)-C(43)	1.405(10)
C(42)-H(42A)	0.9300
C(43)-H(43)	0.9300
N(1A)-C(1A)	1.108(17)
C(1A)-C(2A)	1.32(2)
C(2A)-H(2AA)	0.9600
C(2A)-H(2AB)	0.9600
C(2A)-H(2AC)	0.9600
C(7)-Fe(1)-C(2)	154.5(4)
C(7)-Fe(1)-C(3)	119.3(4)
C(2)-Fe(1)-C(3)	39.1(4)
C(7)-Fe(1)-C(6)	41.2(3)
C(2)-Fe(1)-C(6)	119.6(3)
C(3)-Fe(1)-C(6)	103.5(4)
C(7)-Fe(1)-C(4)	102.9(4)
C(2)-Fe(1)-C(4)	69.5(5)
C(3)-Fe(1)-C(4)	42.5(4)
C(6)-Fe(1)-C(4)	118.6(4)
C(7)-Fe(1)-C(5)	122.9(3)
C(2)-Fe(1)-C(5)	67.7(3)
C(3)-Fe(1)-C(5)	67.5(4)
C(6)-Fe(1)-C(5)	156.9(4)
C(4)-Fe(1)-C(5)	40.3(4)
C(7)-Fe(1)-C(8)	41.6(2)
C(2)-Fe(1)-C(8)	162.7(4)
C(3)-Fe(1)-C(8)	157.7(4)
C(6)-Fe(1)-C(8)	69.1(2)
C(4)-Fe(1)-C(8)	121.2(3)

C(5)-Fe(1)-C(8)	110.6(3)
C(7)-Fe(1)-C(10)	67.9(2)
C(2)-Fe(1)-C(10)	108.4(3)
C(3)-Fe(1)-C(10)	120.4(3)
C(6)-Fe(1)-C(10)	39.5(2)
C(4)-Fe(1)-C(10)	155.2(4)
C(5)-Fe(1)-C(10)	163.4(4)
C(8)-Fe(1)-C(10)	68.0(2)
C(7)-Fe(1)-C(1)	161.1(3)
C(2)-Fe(1)-C(1)	40.3(4)
C(3)-Fe(1)-C(1)	66.6(4)
C(6)-Fe(1)-C(1)	157.7(3)
C(4)-Fe(1)-C(1)	68.6(4)
C(5)-Fe(1)-C(1)	40.0(4)
C(8)-Fe(1)-C(1)	127.3(3)
C(10)-Fe(1)-C(1)	126.7(3)
C(7)-Fe(1)-C(9)	68.9(2)
C(2)-Fe(1)-C(9)	125.5(4)
C(3)-Fe(1)-C(9)	157.3(4)
C(6)-Fe(1)-C(9)	67.9(2)
C(4)-Fe(1)-C(9)	160.1(4)
C(5)-Fe(1)-C(9)	128.1(3)
C(8)-Fe(1)-C(9)	40.9(2)
C(10)-Fe(1)-C(9)	40.0(2)
C(1)-Fe(1)-C(9)	113.1(3)
P(1)-Cu(1)-P(2)	112.90(6)
P(1)-Cu(1)-Br(1)	122.70(5)
P(2)-Cu(1)-Br(1)	123.96(6)
C(8)-P(1)-C(11)	105.3(3)
C(8)-P(1)-C(17)	104.2(2)
C(11)-P(1)-C(17)	100.1(3)
C(8)-P(1)-Cu(1)	109.00(18)
C(11)-P(1)-Cu(1)	120.6(2)
C(17)-P(1)-Cu(1)	115.99(19)
C(38)-P(2)-C(27)	103.2(3)
C(38)-P(2)-C(32)	104.0(4)
C(27)-P(2)-C(32)	105.7(3)
C(38)-P(2)-Cu(1)	120.7(3)
C(27)-P(2)-Cu(1)	109.60(19)
C(32)-P(2)-Cu(1)	112.3(2)
C(24)-N(1)-C(25)	108.8(6)
C(24)-N(1)-C(23)	110.9(5)
C(25)-N(1)-C(23)	114.2(5)

C(2)-C(1)-C(5)	107.4(10)
C(2)-C(1)-Fe(1)	68.3(5)
C(5)-C(1)-Fe(1)	69.6(5)
C(2)-C(1)-H(1A)	126.3
C(5)-C(1)-H(1A)	126.3
Fe(1)-C(1)-H(1A)	126.3
C(3)-C(2)-C(1)	109.0(9)
C(3)-C(2)-Fe(1)	71.0(5)
C(1)-C(2)-Fe(1)	71.5(4)
C(3)-C(2)-H(2A)	125.5
C(1)-C(2)-H(2A)	125.5
Fe(1)-C(2)-H(2A)	125.5
C(2)-C(3)-C(4)	109.8(10)
C(2)-C(3)-Fe(1)	69.9(5)
C(4)-C(3)-Fe(1)	69.4(4)
C(2)-C(3)-H(3A)	125.1
C(4)-C(3)-H(3A)	125.1
Fe(1)-C(3)-H(3A)	125.1
C(5)-C(4)-C(3)	103.2(10)
C(5)-C(4)-Fe(1)	69.8(5)
C(3)-C(4)-Fe(1)	68.1(5)
C(5)-C(4)-H(4A)	128.3
C(3)-C(4)-H(4A)	128.3
Fe(1)-C(4)-H(4A)	128.3
C(1)-C(5)-C(4)	110.4(9)
C(1)-C(5)-Fe(1)	70.3(4)
C(4)-C(5)-Fe(1)	69.8(5)
C(1)-C(5)-H(5A)	124.8
C(4)-C(5)-H(5A)	124.8
Fe(1)-C(5)-H(5A)	124.8
C(10)-C(6)-C(7)	107.4(6)
C(10)-C(6)-Fe(1)	70.7(3)
C(7)-C(6)-Fe(1)	67.7(4)
C(10)-C(6)-H(6A)	126.3
C(7)-C(6)-H(6A)	126.3
Fe(1)-C(6)-H(6A)	126.3
C(6)-C(7)-C(8)	108.6(6)
C(6)-C(7)-Fe(1)	71.1(4)
C(8)-C(7)-Fe(1)	71.2(3)
C(6)-C(7)-H(7A)	125.7
C(8)-C(7)-H(7A)	125.7
Fe(1)-C(7)-H(7A)	125.7
C(7)-C(8)-C(9)	106.3(5)

C(7)-C(8)-P(1)	126.3(4)
C(9)-C(8)-P(1)	127.3(4)
C(7)-C(8)-Fe(1)	67.3(3)
C(9)-C(8)-Fe(1)	70.3(3)
P(1)-C(8)-Fe(1)	123.9(3)
C(10)-C(9)-C(8)	107.2(5)
C(10)-C(9)-C(23)	125.0(5)
C(8)-C(9)-C(23)	126.7(5)
C(10)-C(9)-Fe(1)	69.4(3)
C(8)-C(9)-Fe(1)	68.8(3)
C(23)-C(9)-Fe(1)	135.7(3)
C(6)-C(10)-C(9)	110.5(5)
C(6)-C(10)-Fe(1)	69.8(3)
C(9)-C(10)-Fe(1)	70.6(3)
C(6)-C(10)-H(10A)	124.8
C(9)-C(10)-H(10A)	124.8
Fe(1)-C(10)-H(10A)	124.8
C(12)-C(11)-C(16)	119.7(6)
C(12)-C(11)-P(1)	118.8(5)
C(16)-C(11)-P(1)	121.2(5)
C(13)-C(12)-C(11)	118.2(8)
C(13)-C(12)-H(12A)	120.9
C(11)-C(12)-H(12A)	120.9
C(14)-C(13)-C(12)	122.9(8)
C(14)-C(13)-H(13A)	118.5
C(12)-C(13)-H(13A)	118.5
C(15)-C(14)-C(13)	121.1(8)
C(15)-C(14)-H(14A)	119.5
C(13)-C(14)-H(14A)	119.5
C(14)-C(15)-C(16)	121.2(10)
C(14)-C(15)-H(15A)	119.4
C(16)-C(15)-H(15A)	119.4
C(11)-C(16)-C(15)	116.9(9)
C(11)-C(16)-H(16A)	121.5
C(15)-C(16)-H(16A)	121.5
C(22)-C(17)-C(18)	120.7(5)
C(22)-C(17)-P(1)	122.8(5)
C(18)-C(17)-P(1)	116.5(4)
C(19)-C(18)-C(17)	119.5(7)
C(19)-C(18)-H(18A)	120.3
C(17)-C(18)-H(18A)	120.3
C(20)-C(19)-C(18)	120.5(7)
C(20)-C(19)-H(19A)	119.7

C(18)-C(19)-H(19A)	119.7
C(19)-C(20)-C(21)	120.0(7)
С(19)-С(20)-Н(20А)	120.0
С(21)-С(20)-Н(20А)	120.0
C(20)-C(21)-C(22)	120.4(7)
C(20)-C(21)-H(21A)	119.8
C(22)-C(21)-H(21A)	119.8
C(17)-C(22)-C(21)	118.9(6)
C(17)-C(22)-H(22A)	120.6
C(21)-C(22)-H(22A)	120.6
N(1)-C(23)-C(9)	110.1(5)
N(1)-C(23)-C(26)	109.7(5)
C(9)-C(23)-C(26)	108.6(4)
N(1)-C(23)-H(23A)	109.5
C(9)-C(23)-H(23A)	109.5
C(26)-C(23)-H(23A)	109.5
N(1)-C(24)-H(24A)	109.5
N(1)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
N(1)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
N(1)-C(25)-H(25A)	109.5
N(1)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
N(1)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
C(31)-C(26)-C(27)	118.9(5)
C(31)-C(26)-C(23)	116.7(5)
C(27)-C(26)-C(23)	124.3(5)
C(28)-C(27)-C(26)	118.6(6)
C(28)-C(27)-P(2)	121.1(5)
C(26)-C(27)-P(2)	120.2(5)
C(27)-C(28)-C(29)	121.2(6)
C(27)-C(28)-H(28A)	119.4
C(29)-C(28)-H(28A)	119.4
C(30)-C(29)-C(28)	119.7(7)
C(30)-C(29)-H(29A)	120.1
C(28)-C(29)-H(29A)	120.1
C(29)-C(30)-C(31)	120.6(7)
C(29)-C(30)-H(30A)	119.7
C(31)-C(30)-H(30A)	119.7

C(26)-C(31)-C(30)	120.7(6)
C(26)-C(31)-H(31A)	119.6
C(30)-C(31)-H(31A)	119.6
C(37)-C(32)-C(33)	119.6(8)
C(37)-C(32)-P(2)	118.4(6)
C(33)-C(32)-P(2)	121.4(8)
C(32)-C(33)-C(34)	118.8(12)
C(32)-C(33)-H(33A)	120.6
C(34)-C(33)-H(33A)	120.6
C(35)-C(34)-C(33)	120.2(11)
C(35)-C(34)-H(34A)	119.9
C(33)-C(34)-H(34A)	119.9
C(36)-C(35)-C(34)	120.5(11)
C(36)-C(35)-H(35A)	119.7
C(34)-C(35)-H(35A)	119.7
C(35)-C(36)-C(37)	119.7(13)
C(35)-C(36)-H(36A)	120.1
C(37)-C(36)-H(36A)	120.1
C(32)-C(37)-C(36)	121.1(11)
C(32)-C(37)-H(37A)	119.5
C(36)-C(37)-H(37A)	119.5
C(43)-C(38)-C(39)	122.1(7)
C(43)-C(38)-P(2)	119.5(6)
C(39)-C(38)-P(2)	118.3(6)
C(38)-C(39)-C(40)	118.9(9)
C(38)-C(39)-H(39)	120.6
C(40)-C(39)-H(39)	120.6
C(41)-C(40)-C(39)	118.1(11)
C(41)-C(40)-H(40A)	120.9
C(39)-C(40)-H(40A)	120.9
C(42)-C(41)-C(40)	123.1(11)
C(42)-C(41)-H(41A)	118.4
C(40)-C(41)-H(41A)	118.4
C(41)-C(42)-C(43)	118.9(10)
C(41)-C(42)-H(42A)	120.6
C(43)-C(42)-H(42A)	120.6
C(38)-C(43)-C(42)	118.7(9)
C(38)-C(43)-H(43)	120.7
C(42)-C(43)-H(43)	120.7
N(1A)-C(1A)-C(2A)	171.0(16)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A² x 10³) for PC_03_020.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
Fe(1)	61(1)	32(1)	84(1)	7(1)	-11(1)	2(1)
Cu(1)	56(1)	45(1)	62(1)	-6(1)	-6(1)	-2(1)
Br(1)	110(1)	70(1)	117(1)	-40(1)	-7(1)	-18(1)
P(1)	48(1)	32(1)	56(1)	0(1)	4(1)	-2(1)
P(2)	57(1)	62(1)	54(1)	9(1)	-5(1)	-2(1)
N(1)	54(3)	64(3)	70(3)	0(2)	5(3)	11(2)
C(1)	82(5)	42(3)	179(9)	-29(4)	-16(6)	11(3)
C(2)	86(5)	56(4)	163(8)	-10(5)	-27(6)	15(4)
C(3)	128(8)	47(4)	156(10)	36(5)	-54(8)	-7(5)
C(4)	142(9)	32(3)	152(9)	29(4)	19(7)	-1(4)
C(5)	73(5)	34(3)	167(9)	-5(4)	-17(5)	-5(3)
C(6)	76(4)	40(3)	74(4)	-1(3)	-6(3)	-4(3)
C(7)	69(4)	55(3)	54(3)	0(3)	3(3)	-7(3)
C(8)	58(3)	27(2)	53(3)	-1(2)	2(3)	3(2)
C(9)	49(3)	25(2)	65(3)	-1(2)	-1(3)	2(2)
C(10)	55(3)	38(2)	61(3)	3(2)	-4(3)	-5(2)
C(11)	48(3)	49(3)	77(4)	11(3)	11(3)	-3(2)
C(12)	47(3)	51(3)	123(6)	25(4)	-12(4)	-7(3)
C(13)	49(4)	60(4)	160(8)	36(5)	-4(5)	-19(3)
C(14)	72(5)	114(7)	153(9)	73(7)	5(6)	-27(5)
C(15)	110(7)	161(11)	85(6)	27(6)	40(6)	16(7)
C(16)	81(5)	88(5)	96(6)	26(4)	30(4)	-14(4)
C(17)	59(3)	37(2)	52(3)	-3(2)	14(3)	-3(2)
C(18)	57(4)	54(3)	102(5)	-10(3)	-4(4)	10(3)
C(19)	68(4)	69(5)	156(8)	-4(5)	9(5)	28(4)
C(20)	103(6)	56(4)	116(6)	-16(4)	27(5)	14(4)
C(21)	83(5)	44(3)	117(6)	-24(3)	8(5)	-1(3)
C(22)	58(3)	51(3)	79(4)	-8(3)	5(3)	-4(3)
C(23)	47(3)	47(3)	55(3)	-5(2)	1(2)	6(2)
C(24)	68(4)	87(5)	87(5)	-15(4)	13(4)	17(4)
C(25)	60(4)	102(5)	81(5)	2(4)	23(4)	-5(4)
C(26)	47(3)	45(3)	62(3)	4(2)	7(3)	0(2)
C(27)	56(3)	56(3)	54(3)	7(3)	1(3)	-2(3)
C(28)	76(4)	51(3)	87(5)	27(3)	-10(4)	-1(3)
C(29)	90(5)	51(3)	116(6)	17(4)	-11(5)	-12(4)
C(30)	75(4)	55(4)	107(6)	-3(4)	-9(4)	-15(3)
C(31)	60(3)	53(3)	70(4)	6(3)	-1(3)	-7(3)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

C(32)	58(4)	75(4)	103(6)	42(4)	-16(4)	-15(3)
C(33)	80(6)	172(10)	96(6)	46(7)	-24(5)	-14(6)
C(34)	102(8)	161(11)	146(10)	71(9)	-47(8)	-20(8)
C(35)	89(6)	127(8)	173(10)	63(8)	-22(7)	-1(6)
C(36)	98(6)	106(7)	186(10)	33(7)	1(7)	11(6)
C(37)	67(5)	88(5)	142(8)	31(5)	21(5)	15(4)
C(38)	70(4)	107(6)	54(4)	-7(4)	-6(3)	2(4)
C(39)	72(4)	118(7)	92(6)	-37(5)	-6(4)	-8(5)
C(40)	121(8)	202(13)	79(6)	-53(8)	-22(6)	15(9)
C(41)	113(7)	204(11)	76(6)	-10(7)	22(5)	-4(8)
C(42)	111(7)	180(10)	81(6)	12(6)	7(5)	-18(7)
C(43)	97(6)	142(8)	46(4)	19(4)	6(4)	-7(6)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

	Х	у	Z	U(eq)
H(1A)	1192	-1710	3639	121
H(2A)	3204	-1858	4301	122
H(3A)	2128	-1909	5178	132
H(4A)	-697	-1737	5100	130
H(5A)	-1179	-1607	4125	109
H(6A)	2491	-84	5330	76
H(7A)	-251	85	5234	71
H(10A)	3603	67	4448	62
H(12A)	-3320	-988	4075	88
H(13A)	-4638	-1734	4655	108
H(14A)	-5017	-1337	5459	136
H(15A)	-4197	-179	5739	143
H(16A)	-2688	629	5202	106
H(18A)	-4152	1329	4071	85
H(19A)	-4840	2627	4225	117
H(20A)	-3218	3526	4528	110
H(21A)	-927	3121	4746	98
H(22A)	-208	1815	4595	75
H(23A)	1146	261	3375	60
H(24A)	4486	-503	3227	121
H(24B)	2835	-631	3139	121
H(24C)	3487	-721	3693	121
H(25A)	4724	679	2920	122
H(25B)	3848	1417	3112	122
H(25C)	3127	797	2743	122
H(28A)	-215	2827	2943	86
H(29A)	1149	3638	3481	103
H(30A)	2548	3088	4101	95
H(31A)	2861	1723	4137	73
H(33A)	-1844	1520	1808	139
H(34A)	-3869	2220	1539	163
H(35A)	-5249	2903	2133	156
H(36A)	-4684	2866	2984	156
H(37A)	-2695	2156	3259	119
H(39)	113	-259	2261	112
H(40A)	1692	-547	1574	160
H(41A)	2931	483	1194	157
H(42A)	2531	1782	1415	149

Table 5. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² x 10³) for PC_03_020.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

H(43)	1094	2067	2138	114
H(2AA)	5950	374	2031	142
H(2AB)	6525	-467	2186	142
H(2AC)	4865	-309	2162	142
H(2AC)	4865	-309	2162	142

Table 6. Torsion angles [deg] for PC_03_020.

P(2)-Cu(1)-P(1)-C(8)	-80.56(18)
Br(1)-Cu(1)-P(1)-C(8)	92.10(18)
P(2)-Cu(1)-P(1)-C(11)	157.6(2)
Br(1)-Cu(1)-P(1)-C(11)	-29.7(2)
P(2)-Cu(1)-P(1)-C(17)	36.6(2)
Br(1)-Cu(1)-P(1)-C(17)	-150.8(2)
P(1)-Cu(1)-P(2)-C(38)	144.0(3)
Br(1)-Cu(1)-P(2)-C(38)	-28.6(3)
P(1)-Cu(1)-P(2)-C(27)	24.4(2)
Br(1)-Cu(1)-P(2)-C(27)	-148.1(2)
P(1)-Cu(1)-P(2)-C(32)	-92.7(3)
Br(1)-Cu(1)-P(2)-C(32)	94.7(3)
C(7)-Fe(1)-C(1)-C(2)	-149.4(10)
C(3)-Fe(1)-C(1)-C(2)	-37.1(6)
C(6)-Fe(1)-C(1)-C(2)	30.4(13)
C(4)-Fe(1)-C(1)-C(2)	-83.2(7)
C(5)-Fe(1)-C(1)-C(2)	-119.5(9)
C(8)-Fe(1)-C(1)-C(2)	163.2(6)
C(10)-Fe(1)-C(1)-C(2)	74.3(8)
C(9)-Fe(1)-C(1)-C(2)	118.2(7)
C(7)-Fe(1)-C(1)-C(5)	-29.9(14)
C(2)-Fe(1)-C(1)-C(5)	119.5(9)
C(3)-Fe(1)-C(1)-C(5)	82.4(7)
C(6)-Fe(1)-C(1)-C(5)	149.8(8)
C(4)-Fe(1)-C(1)-C(5)	36.2(6)
C(8)-Fe(1)-C(1)-C(5)	-77.4(7)
C(10)-Fe(1)-C(1)-C(5)	-166.3(5)
C(9)-Fe(1)-C(1)-C(5)	-122.3(6)
C(5)-C(1)-C(2)-C(3)	2.6(9)
Fe(1)-C(1)-C(2)-C(3)	61.4(6)
C(5)-C(1)-C(2)-Fe(1)	-58.8(5)
C(7)-Fe(1)-C(2)-C(3)	38.9(11)
C(6)-Fe(1)-C(2)-C(3)	74.2(7)
C(4)-Fe(1)-C(2)-C(3)	-37.9(7)
C(5)-Fe(1)-C(2)-C(3)	-81.3(7)
C(8)-Fe(1)-C(2)-C(3)	-169.2(9)
C(10)-Fe(1)-C(2)-C(3)	115.8(6)
C(1)-Fe(1)-C(2)-C(3)	-118.6(9)
C(9)-Fe(1)-C(2)-C(3)	156.9(5)
C(7)-Fe(1)-C(2)-C(1)	157.5(7)
C(3)-Fe(1)-C(2)-C(1)	118.6(9)

C(6)-Fe(1)-C(2)-C(1)	-167.2(6)
C(4)-Fe(1)-C(2)-C(1)	80.7(7)
C(5)-Fe(1)-C(2)-C(1)	37.3(6)
C(8)-Fe(1)-C(2)-C(1)	-50.6(13)
C(10)-Fe(1)-C(2)-C(1)	-125.6(6)
C(9)-Fe(1)-C(2)-C(1)	-84.5(7)
C(1)-C(2)-C(3)-C(4)	-3.7(10)
Fe(1)-C(2)-C(3)-C(4)	58.0(6)
C(1)-C(2)-C(3)-Fe(1)	-61.7(5)
C(7)-Fe(1)-C(3)-C(2)	-161.9(5)
C(6)-Fe(1)-C(3)-C(2)	-120.7(6)
C(4)-Fe(1)-C(3)-C(2)	121.5(10)
C(5)-Fe(1)-C(3)-C(2)	81.8(6)
C(8)-Fe(1)-C(3)-C(2)	171.6(7)
C(10)-Fe(1)-C(3)-C(2)	-81.8(6)
C(1)-Fe(1)-C(3)-C(2)	38.2(6)
C(9)-Fe(1)-C(3)-C(2)	-56.1(12)
C(7)-Fe(1)-C(3)-C(4)	76.5(7)
C(2)-Fe(1)-C(3)-C(4)	-121.5(10)
C(6)-Fe(1)-C(3)-C(4)	117.8(7)
C(5)-Fe(1)-C(3)-C(4)	-39.7(6)
C(8)-Fe(1)-C(3)-C(4)	50.0(12)
C(10)-Fe(1)-C(3)-C(4)	156.6(6)
C(1)-Fe(1)-C(3)-C(4)	-83.3(7)
C(9)-Fe(1)-C(3)-C(4)	-177.6(7)
C(2)-C(3)-C(4)-C(5)	3.3(9)
Fe(1)-C(3)-C(4)-C(5)	61.6(5)
C(2)-C(3)-C(4)-Fe(1)	-58.3(6)
C(7)-Fe(1)-C(4)-C(5)	126.3(5)
C(2)-Fe(1)-C(4)-C(5)	-79.2(6)
C(3)-Fe(1)-C(4)-C(5)	-114.2(9)
C(6)-Fe(1)-C(4)-C(5)	167.4(5)
C(8)-Fe(1)-C(4)-C(5)	85.6(6)
C(10)-Fe(1)-C(4)-C(5)	-168.9(6)
C(1)-Fe(1)-C(4)-C(5)	-36.0(5)
C(9)-Fe(1)-C(4)-C(5)	63.1(13)
C(7)-Fe(1)-C(4)-C(3)	-119.5(7)
C(2)-Fe(1)-C(4)-C(3)	35.0(6)
C(6)-Fe(1)-C(4)-C(3)	-78.4(8)
C(5)-Fe(1)-C(4)-C(3)	114.2(9)
C(8)-Fe(1)-C(4)-C(3)	-160.1(6)
C(10)-Fe(1)-C(4)-C(3)	-54.7(11)
C(1)-Fe(1)-C(4)-C(3)	78.2(7)

C(9)-Fe(1)-C(4)-C(3)	177.3(9)
C(2)-C(1)-C(5)-C(4)	-0.4(8)
Fe(1)-C(1)-C(5)-C(4)	-58.4(5)
C(2)-C(1)-C(5)-Fe(1)	58.0(5)
C(3)-C(4)-C(5)-C(1)	-1.7(8)
Fe(1)-C(4)-C(5)-C(1)	58.7(5)
C(3)-C(4)-C(5)-Fe(1)	-60.4(5)
C(7)-Fe(1)- $C(5)$ - $C(1)$	168.9(5)
C(2)-Fe(1)- $C(5)$ - $C(1)$	-37.5(6)
C(3)-Fe(1)- $C(5)$ - $C(1)$	-79.9(7)
C(6)-Fe(1)- $C(5)$ - $C(1)$	-151.0(7)
C(4)-Fe(1)- $C(5)$ - $C(1)$	-121.7(8)
C(8)-Fe(1)- $C(5)$ - $C(1)$	124.0(5)
C(10)-Fe(1)-C(5)-C(1)	41.9(12)
C(9)-Fe(1)- $C(5)$ - $C(1)$	80.9(6)
C(7)-Fe(1)-C(5)-C(4)	-69.4(6)
C(2)-Fe(1)-C(5)-C(4)	84.3(7)
C(3)-Fe(1)-C(5)-C(4)	41.8(7)
C(6)-Fe(1)- $C(5)$ - $C(4)$	-29.2(10)
C(8)-Fe(1)-C(5)-C(4)	-114.3(6)
C(10)-Fe(1)-C(5)-C(4)	163.6(9)
C(1)-Fe(1)-C(5)-C(4)	121.7(8)
C(9)-Fe(1)-C(5)-C(4)	-157.3(5)
C(7)-Fe(1)-C(6)-C(10)	-119.1(5)
C(2)-Fe(1)-C(6)-C(10)	83.1(6)
C(3)-Fe(1)-C(6)-C(10)	121.7(5)
C(4)-Fe(1)-C(6)-C(10)	164.6(4)
C(5)-Fe(1)-C(6)-C(10)	-174.3(7)
C(8)-Fe(1)-C(6)-C(10)	-80.4(4)
C(1)-Fe(1)-C(6)-C(10)	61.0(10)
C(9)-Fe(1)-C(6)-C(10)	-36.2(3)
C(2)-Fe(1)-C(6)-C(7)	-157.8(5)
C(3)-Fe(1)-C(6)-C(7)	-119.2(5)
C(4)-Fe(1)-C(6)-C(7)	-76.3(5)
C(5)-Fe(1)-C(6)-C(7)	-55.2(9)
C(8)-Fe(1)-C(6)-C(7)	38.7(4)
C(10)-Fe(1)-C(6)-C(7)	119.1(5)
C(1)-Fe(1)-C(6)-C(7)	-179.9(9)
C(9)-Fe(1)-C(6)-C(7)	82.9(4)
C(10)-C(6)-C(7)-C(8)	-1.8(7)
Fe(1)-C(6)-C(7)-C(8)	-61.6(4)
C(10)-C(6)-C(7)-Fe(1)	59.8(4)
C(2)-Fe(1)-C(7)-C(6)	49.6(10)

C(3)-Fe(1)-C(7)-C(6)	76.6(5)
C(4)-Fe(1)-C(7)-C(6)	119.0(5)
C(5)-Fe(1)-C(7)-C(6)	157.4(5)
C(8)-Fe(1)-C(7)-C(6)	-118.2(5)
C(10)-Fe(1)-C(7)-C(6)	-36.8(4)
C(1)-Fe(1)-C(7)-C(6)	179.9(11)
C(9)-Fe(1)-C(7)-C(6)	-80.0(4)
C(2)-Fe(1)-C(7)-C(8)	167.8(8)
C(3)-Fe(1)-C(7)-C(8)	-165.2(4)
C(6)-Fe(1)-C(7)-C(8)	118.2(5)
C(4)-Fe(1)-C(7)-C(8)	-122.8(5)
C(5)-Fe(1)-C(7)-C(8)	-84.4(5)
C(10)-Fe(1)-C(7)-C(8)	81.4(4)
C(1)-Fe(1)-C(7)-C(8)	-61.9(12)
C(9)-Fe(1)-C(7)-C(8)	38.2(3)
C(6)-C(7)-C(8)-C(9)	1.9(6)
Fe(1)-C(7)-C(8)-C(9)	-59.7(3)
C(6)-C(7)-C(8)-P(1)	177.8(4)
Fe(1)-C(7)-C(8)-P(1)	116.2(4)
C(6)-C(7)-C(8)-Fe(1)	61.6(4)
C(11)-P(1)-C(8)-C(7)	-23.3(5)
C(17)-P(1)-C(8)-C(7)	81.5(5)
Cu(1)-P(1)-C(8)-C(7)	-154.1(4)
C(11)-P(1)-C(8)-C(9)	151.8(4)
C(17)-P(1)-C(8)-C(9)	-103.3(4)
Cu(1)-P(1)-C(8)-C(9)	21.1(5)
C(11)-P(1)-C(8)-Fe(1)	61.8(4)
C(17)-P(1)-C(8)-Fe(1)	166.7(3)
Cu(1)-P(1)-C(8)-Fe(1)	-68.9(3)
C(2)-Fe(1)-C(8)-C(7)	-162.2(10)
C(3)-Fe(1)-C(8)-C(7)	36.0(9)
C(6)-Fe(1)-C(8)-C(7)	-38.4(4)
C(4)-Fe(1)-C(8)-C(7)	73.2(5)
C(5)-Fe(1)-C(8)-C(7)	116.8(5)
C(10)-Fe(1)-C(8)-C(7)	-80.9(4)
C(1)-Fe(1)-C(8)-C(7)	158.9(5)
C(9)-Fe(1)-C(8)-C(7)	-118.3(5)
C(7)-Fe(1)-C(8)-C(9)	118.3(5)
C(2)-Fe(1)-C(8)-C(9)	-43.9(11)
C(3)-Fe(1)-C(8)-C(9)	154.2(8)
C(6)-Fe(1)-C(8)-C(9)	79.8(3)
C(4)-Fe(1)-C(8)-C(9)	-168.5(5)
C(5)-Fe(1)-C(8)-C(9)	-124.9(4)

C(10)-Fe(1)-C(8)-C(9)	37.3(3)
C(1)-Fe(1)-C(8)-C(9)	-82.8(5)
C(7)-Fe(1)-C(8)-P(1)	-119.4(5)
C(2)-Fe(1)-C(8)-P(1)	78.4(11)
C(3)-Fe(1)-C(8)-P(1)	-83.4(9)
C(6)-Fe(1)-C(8)-P(1)	-157.8(4)
C(4)-Fe(1)-C(8)-P(1)	-46.2(6)
C(5)-Fe(1)-C(8)-P(1)	-2.6(5)
C(10)-Fe(1)-C(8)-P(1)	159.7(4)
C(1)-Fe(1)-C(8)-P(1)	39.5(6)
C(9)-Fe(1)-C(8)-P(1)	122.3(5)
C(7)-C(8)-C(9)-C(10)	-1.2(5)
P(1)-C(8)-C(9)-C(10)	-177.1(4)
Fe(1)-C(8)-C(9)-C(10)	-59.0(3)
C(7)-C(8)-C(9)-C(23)	-170.2(5)
P(1)-C(8)-C(9)-C(23)	13.9(7)
Fe(1)-C(8)-C(9)-C(23)	132.0(5)
C(7)-C(8)-C(9)-Fe(1)	57.8(4)
P(1)-C(8)-C(9)-Fe(1)	-118.1(4)
C(7)-Fe(1)-C(9)-C(10)	80.2(4)
C(2)-Fe(1)-C(9)-C(10)	-75.7(5)
C(3)-Fe(1)-C(9)-C(10)	-35.7(11)
C(6)-Fe(1)-C(9)-C(10)	35.7(3)
C(4)-Fe(1)-C(9)-C(10)	149.0(11)
C(5)-Fe(1)-C(9)-C(10)	-163.8(4)
C(8)-Fe(1)-C(9)-C(10)	119.0(4)
C(1)-Fe(1)-C(9)-C(10)	-120.1(4)
C(7)-Fe(1)-C(9)-C(8)	-38.8(3)
C(2)-Fe(1)-C(9)-C(8)	165.3(4)
C(3)-Fe(1)-C(9)-C(8)	-154.7(10)
C(6)-Fe(1)-C(9)-C(8)	-83.2(4)
C(4)-Fe(1)-C(9)-C(8)	30.0(12)
C(5)-Fe(1)-C(9)-C(8)	77.2(5)
C(10)-Fe(1)-C(9)-C(8)	-119.0(4)
C(1)-Fe(1)-C(9)-C(8)	120.9(4)
C(7)-Fe(1)-C(9)-C(23)	-160.2(6)
C(2)-Fe(1)-C(9)-C(23)	43.9(7)
C(3)-Fe(1)-C(9)-C(23)	83.9(12)
C(6)-Fe(1)-C(9)-C(23)	155.3(6)
C(4)-Fe(1)-C(9)-C(23)	-91.4(12)
C(5)-Fe(1)-C(9)-C(23)	-44.2(7)
C(8)-Fe(1)-C(9)-C(23)	-121.4(7)
C(10)-Fe(1)-C(9)-C(23)	119.6(7)

C(1)-Fe(1)-C(9)-C(23)	-0.5(6)
C(7)-C(6)-C(10)-C(9)	1.1(6)
Fe(1)-C(6)-C(10)-C(9)	59.0(4)
C(7)-C(6)-C(10)-Fe(1)	-57.9(4)
C(8)-C(9)-C(10)-C(6)	0.1(6)
C(23)-C(9)-C(10)-C(6)	169.3(5)
Fe(1)-C(9)-C(10)-C(6)	-58.5(4)
C(8)-C(9)-C(10)-Fe(1)	58.6(3)
C(23)-C(9)-C(10)-Fe(1)	-132.1(5)
C(7)-Fe(1)-C(10)-C(6)	38.4(4)
C(2)-Fe(1)-C(10)-C(6)	-114.6(5)
C(3)-Fe(1)-C(10)-C(6)	-73.5(6)
C(4)-Fe(1)-C(10)-C(6)	-33.7(9)
C(5)-Fe(1)-C(10)-C(6)	172.1(9)
C(8)-Fe(1)-C(10)-C(6)	83.5(4)
C(1)-Fe(1)-C(10)-C(6)	-155.5(5)
C(9)-Fe(1)-C(10)-C(6)	121.6(5)
C(7)-Fe(1)-C(10)-C(9)	-83.2(3)
C(2)-Fe(1)-C(10)-C(9)	123.8(5)
C(3)-Fe(1)-C(10)-C(9)	164.9(5)
C(6)-Fe(1)-C(10)-C(9)	-121.6(5)
C(4)-Fe(1)-C(10)-C(9)	-155.4(8)
C(5)-Fe(1)-C(10)-C(9)	50.5(10)
C(8)-Fe(1)-C(10)-C(9)	-38.2(3)
C(1)-Fe(1)-C(10)-C(9)	82.8(5)
C(8)-P(1)-C(11)-C(12)	-107.5(5)
C(17)-P(1)-C(11)-C(12)	144.6(5)
Cu(1)-P(1)-C(11)-C(12)	16.1(6)
C(8)-P(1)-C(11)-C(16)	66.7(6)
C(17)-P(1)-C(11)-C(16)	-41.1(6)
Cu(1)-P(1)-C(11)-C(16)	-169.7(5)
C(16)-C(11)-C(12)-C(13)	-1.4(9)
P(1)-C(11)-C(12)-C(13)	173.0(5)
C(11)-C(12)-C(13)-C(14)	1.4(11)
C(12)-C(13)-C(14)-C(15)	0.8(15)
C(13)-C(14)-C(15)-C(16)	-2.9(16)
C(12)-C(11)-C(16)-C(15)	-0.6(11)
P(1)-C(11)-C(16)-C(15)	-174.8(6)
C(14)-C(15)-C(16)-C(11)	2.8(14)
C(8)-P(1)-C(17)-C(22)	9.0(6)
C(11)-P(1)-C(17)-C(22)	117.7(5)
Cu(1)-P(1)-C(17)-C(22)	-110.7(5)
C(8)-P(1)-C(17)-C(18)	-171.3(5)

C(11)-P(1)-C(17)-C(18)	-62.6(5)
Cu(1)-P(1)-C(17)-C(18)	68.9(5)
C(22)-C(17)-C(18)-C(19)	2.2(11)
P(1)-C(17)-C(18)-C(19)	-177.5(6)
C(17)-C(18)-C(19)-C(20)	0.3(13)
C(18)-C(19)-C(20)-C(21)	-2.7(14)
C(19)-C(20)-C(21)-C(22)	2.6(14)
C(18)-C(17)-C(22)-C(21)	-2.2(10)
P(1)-C(17)-C(22)-C(21)	177.4(6)
C(20)-C(21)-C(22)-C(17)	-0.2(12)
C(24)-N(1)-C(23)-C(9)	75.0(6)
C(25)-N(1)-C(23)-C(9)	-161.6(5)
C(24)-N(1)-C(23)-C(26)	-165.4(5)
C(25)-N(1)-C(23)-C(26)	-42.1(7)
C(10)-C(9)-C(23)-N(1)	15.9(7)
C(8)-C(9)-C(23)-N(1)	-177.0(5)
Fe(1)-C(9)-C(23)-N(1)	-80.1(6)
C(10)-C(9)-C(23)-C(26)	-104.3(5)
C(8)-C(9)-C(23)-C(26)	62.9(6)
Fe(1)-C(9)-C(23)-C(26)	159.7(4)
N(1)-C(23)-C(26)-C(31)	-61.8(7)
C(9)-C(23)-C(26)-C(31)	58.6(7)
N(1)-C(23)-C(26)-C(27)	114.1(6)
C(9)-C(23)-C(26)-C(27)	-125.4(6)
C(31)-C(26)-C(27)-C(28)	2.4(9)
C(23)-C(26)-C(27)-C(28)	-173.4(6)
C(31)-C(26)-C(27)-P(2)	-175.3(5)
C(23)-C(26)-C(27)-P(2)	8.8(8)
C(38)-P(2)-C(27)-C(28)	94.3(6)
C(32)-P(2)-C(27)-C(28)	-14.7(6)
Cu(1)-P(2)-C(27)-C(28)	-135.9(5)
C(38)-P(2)-C(27)-C(26)	-88.1(5)
C(32)-P(2)-C(27)-C(26)	163.0(5)
Cu(1)-P(2)-C(27)-C(26)	41.7(5)
C(26)-C(27)-C(28)-C(29)	-1.7(10)
P(2)-C(27)-C(28)-C(29)	176.0(6)
C(27)-C(28)-C(29)-C(30)	-1.6(12)
C(28)-C(29)-C(30)-C(31)	4.1(13)
C(27)-C(26)-C(31)-C(30)	0.0(9)
C(23)-C(26)-C(31)-C(30)	176.2(6)
C(29)-C(30)-C(31)-C(26)	-3.4(12)
C(38)-P(2)-C(32)-C(37)	-166.8(6)
C(27)-P(2)-C(32)-C(37)	-58.4(7)

Cu(1)-P(2)-C(32)-C(37)	61.0(7)
C(38)-P(2)-C(32)-C(33)	22.4(7)
C(27)-P(2)-C(32)-C(33)	130.8(7)
Cu(1)-P(2)-C(32)-C(33)	-109.8(7)
C(37)-C(32)-C(33)-C(34)	0.8(14)
P(2)-C(32)-C(33)-C(34)	171.5(8)
C(32)-C(33)-C(34)-C(35)	0.4(16)
C(33)-C(34)-C(35)-C(36)	-1.1(19)
C(34)-C(35)-C(36)-C(37)	0.5(18)
C(33)-C(32)-C(37)-C(36)	-1.4(13)
P(2)-C(32)-C(37)-C(36)	-172.4(7)
C(35)-C(36)-C(37)-C(32)	0.7(16)
C(27)-P(2)-C(38)-C(43)	-46.7(7)
C(32)-P(2)-C(38)-C(43)	63.4(7)
Cu(1)-P(2)-C(38)-C(43)	-169.4(5)
C(27)-P(2)-C(38)-C(39)	130.9(6)
C(32)-P(2)-C(38)-C(39)	-118.9(6)
Cu(1)-P(2)-C(38)-C(39)	8.2(7)
C(43)-C(38)-C(39)-C(40)	1.5(12)
P(2)-C(38)-C(39)-C(40)	-176.1(6)
C(38)-C(39)-C(40)-C(41)	-0.7(14)
C(39)-C(40)-C(41)-C(42)	-2.6(17)
C(40)-C(41)-C(42)-C(43)	5.1(18)
C(39)-C(38)-C(43)-C(42)	1.0(12)
P(2)-C(38)-C(43)-C(42)	178.6(7)
C(41)-C(42)-C(43)-C(38)	-4.2(15)

X-ray data for 4i

Comment

The compound, 4a-hydroxy-9a-methyl-9-oxo-2,3,4,4a,9,9a-hexahydro-1H-fluorene-4-carbothioic acid *S*-benzyl ester, crystallizes in a chiral primitive triclinic space group, P1 (#1). The compound is chiral. There are 2 asymmetric units in the unit cell.

The cyclo-hexyl ring is in the chair form, and the five-membered ring in the envelop form. The atoms C8, C13, C30 and C35 are of the same configuration, all *R*, while C12 and C34 are *S*-configurations. All the bonding parameters were within the normal ranges.

Intra-molecular, O3—H3O···O1 and O6—H6O···O4; and inter-molecular, O3—H3O···O4, H-bond inter-actions are present in the crystal lattice that connects the molecules into dimer. Weak C—H··· inter-actions (Table 2) are also observed.

The Flack parameter of 0.10(14) indicated that the current configuration is correct. (Inverting the structure resulted in a Flack parameter of close to one.)

Experimental

A colourless block crystal of $C_{22}H_{22}O_3S$, having approximate dimensions of 0.16 x 0.34 x 0.76 mm was mounted in glass capillary. All measurements were made on a Bruker *Apex II* CCD detector with graphite monochromated Mo—K radiation. The crystal-to-detector distance was 55.00 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

 $a = 8.6495(6)\text{\AA} \qquad b = 8.6869(6)\text{\AA} \qquad c = 13.4401(9)\text{\AA} \qquad V = 958.09(11)\text{\AA}^{3}$ $= 72.062 \text{ (4)}^{\circ} \qquad = 89.472(4)^{\circ} \qquad = 85.803(5)^{\circ}$

For Z = 2 and F.W. = 366.46, the calculated density is 1.270 g/cm³. Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be: *P*1 (#1)

The data were collected at a temperature of 23 (1)°C to a maximum 2 value of 50.05°. The exposure rate was 20.0 [sec./°]. The crystal-to-detector distance was 55.00 mm.

Of the 13175 reflections that were collected, 5970 reflections were unique. ($R_{int} = 0.0479$); equivalent reflections were merged.

Refinement

The structure was solved by direct methods (*SHELXS-97*) and expanded using Fourier techniques. All non-H atoms were refined anisotropically.

All of the C-bound H atoms were observable from difference Fourier map but were all placed at geometrical positions with C—H = 0.93, 0.96, 0.97 and 0.98Å for phenyl, methyl, methyl-ene and methine H-atoms respectively. All C-bound H-atoms were refined using riding model with $U_{iso}(H) = 1.2U_{eq}(Carrier)$. The O-bound hydrogen atoms were located from difference Fourier map and also refined using riding model of $U_{iso}(H) = 1.2U_{eq}(Carrier)$.

Floating origin restraints (three) were used.

Highest peak is 0.42 at (0.0238, 0.5878, 0.5136) [1.00Å from C32] Deepest hole is -0.32 at (0.0916, 0.1768, 0.7216) [0.52Å from H22A]

(PC-O2-145-C-shelxl)

Crystal data

$C_{22}H_{22}O_{3}S$	Z = 2
$M_r = 366.46$	F(000) = 388
Triclinic, P1	$D_{\rm x} = 1.270 {\rm ~Mg~m^{-3}}$
Hall symbol: P 1	Mo <i>K</i> radiation, $= 0.71073$ Å
<i>a</i> = 8.6495 (6) Å	Cell parameters from 13175 reflections
b = 8.6869 (6) Å	= 2.8–25.0°
c = 13.4401 (9) Å	$= 0.19 \text{ mm}^{-1}$
$= 72.062 (4)^{\circ}$	T = 296 K
= 89.472 (4)°	Block, colourless
$= 85.803 (5)^{\circ}$	$0.76 \times 0.34 \times 0.16 \text{ mm}$
$V = 958.09 (11) \text{ Å}^3$	

Data collection

	-		
Bruker APEX CCD diffractometer	5970 independent reflections		
Radiation source: fine-focus sealed tube	4860 reflections with $I >$		
	2 (1)		
graphite	$R_{\rm int} = 0.048$		
& scans	$_{\rm max} = 25.0^{\circ}, _{\rm min} = 2.8^{\circ}$		
Absorption correction: multi-scan SADABS (Sheldrick, 2008)	h = -10 10		
$T_{\min} = 0.871, T_{\max} = 0.971$	k = -10 10		
13175 measured reflections	l = -15 15		

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods		
Least-squares matrix: full	Secondary atom site location: difference Fourier map		
$R[F^2 > 2 (F^2)] = 0.071$	Hydrogen site location: inferred from neighbouring sites		
$wR(F^2) = 0.236$	H-atom parameters constrained		
<i>S</i> = 1.11	$w = 1/[({}^{2}(F_{o}^{2}) + (0.1452P)^{2} + 0.2104P])$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$		
5970 reflections	$(/)_{max} = 0.005$		
472 parameters	$_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$		
3 restraints	$_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$		
Flack parameter: 0.10 (14)	Absolute structure: Flack (1983), 2596 Friedel pairs		

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

The structure was solved by direct methods (*SHELXS-97*) and expanded using Fourier techniques. All non-H atoms were refined anisotropically.

All of the C-bound H atoms were observable from difference Fourier map but were all placed at geometrical positions with C—H = 0.93, 0.96, 0.97 and 0.98Å for phenyl, methyl, methyl-ene and methine H-atoms respectively. All C-bound H-atoms were refined using riding model with $U_{iso}(H) = 1.2U_{eq}(Carrier)$. The O-bound hydrogen atoms were located from difference Fourier map and also refined using riding model of $U_{iso}(H) = 1.2U_{eq}(Carrier)$.

Floating origin restraints (three) were used.

Highest peak is 0.42 at (0.0238, 0.5878, 0.5136) [1.00Å from C32] Deepest hole is -0.32 at (0.0916, 0.1768, 0.7216) [0.52Å from H22A]

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.76747 (18)	0.30429 (18)	0.82338 (15)	0.0742 (5)
S2	0.62126 (18)	0.4288 (2)	0.30329 (16)	0.0792 (6)
01	0.5731 (5)	0.4779 (5)	0.6769 (3)	0.0744 (13)
02	0.2139 (6)	-0.1345 (5)	0.8744 (4)	0.0795 (13)
03	0.3258 (5)	0.3521 (5)	0.6150 (3)	0.0621 (10)
НЗО	0.4192	0.3978	0.6155	0.075*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$)

O4	0.5166 (6)	0.5569 (6)	0.4457 (3)	0.0725 (12)
05	1.0393 (5)	0.9972 (6)	0.2396 (4)	0.0726 (12)
O6	0.6741 (5)	0.7816 (5)	0.5005 (3)	0.0594 (10)
H6O	0.5932	0.7358	0.4948	0.071*
C1	0.2343 (6)	0.0091 (6)	0.8296 (4)	0.0496 (11)
C2	0.2228 (5)	0.1413 (6)	0.8751 (4)	0.0449 (10)
C3	0.1576 (7)	0.1484 (8)	0.9705 (4)	0.0634 (15)
Н3	0.1176	0.0575	1.0168	0.076*
C4	0.1545 (8)	0.2892 (10)	0.9930 (5)	0.0728 (17)
H4	0.1124	0.2944	1.0560	0.087*
C5	0.2115 (8)	0.4248 (9)	0.9258 (6)	0.0713 (17)
Н5	0.2085	0.5198	0.9441	0.086*
C6	0.2743 (6)	0.4230 (6)	0.8300 (5)	0.0542 (12)
H6	0.3108	0.5162	0.7837	0.065*
C7	0.2809 (5)	0.2779 (6)	0.8056 (4)	0.0426 (10)
C8	0.5284 (5)	0.1938 (6)	0.7390 (4)	0.0444 (10)
H8	0.5388	0.1208	0.8109	0.053*
С9	0.6054 (7)	0.1036 (8)	0.6667 (5)	0.0654 (15)
H9A	0.5902	0.1688	0.5941	0.078*
H9B	0.7160	0.0840	0.6813	0.078*
C10	0.5321 (9)	-0.0563 (9)	0.6862 (6)	0.0786 (19)
H10A	0.5814	-0.1155	0.6425	0.094*
H10B	0.5500	-0.1212	0.7586	0.094*
C11	0.3625 (8)	-0.0327 (8)	0.6637 (5)	0.0681 (16)
H11A	0.3200	-0.1380	0.6872	0.082*
H11B	0.3472	0.0092	0.5885	0.082*
C12	0.3552 (6)	0.2333 (6)	0.7139 (3)	0.0433 (10)
C13	0.2696 (7)	0.0804 (6)	0.7130 (4)	0.0526 (12)
C14	0.6094 (6)	0.3446 (7)	0.7338 (4)	0.0519 (12)
C15	0.8297 (8)	0.5075 (9)	0.7943 (6)	0.0742 (18)
H15A	0.9421	0.5006	0.7937	0.089*
H15B	0.7938	0.5688	0.7241	0.089*
C16	0.7778 (7)	0.6005 (7)	0.8655 (5)	0.0579 (13)
C17	0.6382 (9)	0.5736 (9)	0.9214 (6)	0.0767 (18)
H17	0.5803	0.4896	0.9174	0.092*
C18	0.5865 (12)	0.6666 (12)	0.9807 (6)	0.097 (2)
H18	0.4955	0.6453	1.0183	0.116*
C19	0.6719 (16)	0.7956 (13)	0.9849 (9)	0.112 (3)
H19	0.6352	0.8630	1.0233	0.134*
C20	0.8093 (14)	0.8232 (9)	0.9326 (8)	0.101 (3)

H20	0.8671	0.9066	0.9378	0.122*
C21	0.8615 (9)	0.7287 (8)	0.8731 (6)	0.0778 (19)
H21	0.9538	0.7496	0.8371	0.093*
C22	0.1108 (8)	0.1289 (9)	0.6594 (6)	0.0716 (16)
H22A	0.0525	0.1998	0.6907	0.086*
H22B	0.0564	0.0334	0.6674	0.086*
H22C	0.1238	0.1839	0.5863	0.086*
C23	0.9196 (6)	0.9631 (6)	0.2844 (4)	0.0488 (11)
C24	0.7631 (6)	0.9985 (6)	0.2383 (4)	0.0482 (11)
C25	0.7091 (9)	1.1059 (7)	0.1434 (5)	0.0671 (16)
H25	0.7776	1.1655	0.0957	0.080*
C26	0.5507 (9)	1.1232 (8)	0.1208 (6)	0.0739 (18)
H26	0.5145	1.1941	0.0569	0.089*
C27	0.4459 (8)	1.0375 (8)	0.1908 (6)	0.0675 (15)
H27	0.3404	1.0510	0.1747	0.081*
C28	0.5018 (6)	0.9298 (6)	0.2867 (5)	0.0555 (13)
H28	0.4329	0.8717	0.3349	0.067*
C29	0.6567 (5)	0.9097 (5)	0.3097 (4)	0.0425 (10)
C30	0.7774 (5)	0.6278 (5)	0.3859 (4)	0.0427 (10)
H30	0.8179	0.6487	0.3150	0.051*
C31	0.8994 (8)	0.5168 (7)	0.4602 (5)	0.0662 (15)
H31A	0.9105	0.4121	0.4481	0.079*
H31B	0.8687	0.5002	0.5321	0.079*
C32	1.0538 (8)	0.5975 (8)	0.4401 (7)	0.0781 (18)
H32A	1.1332	0.5283	0.4867	0.094*
H32B	1.0854	0.6100	0.3688	0.094*
C33	1.0391 (8)	0.7629 (9)	0.4576 (6)	0.0744 (17)
H33A	1.0294	0.7468	0.5320	0.089*
H33B	1.1339	0.8158	0.4351	0.089*
C34	0.7457 (5)	0.7943 (5)	0.4042 (3)	0.0392 (9)
C35	0.9028 (6)	0.8754 (6)	0.4009 (4)	0.0509 (12)
C36	0.6280 (6)	0.5450 (6)	0.3889 (4)	0.0484 (11)
C37	0.4401 (7)	0.3365 (7)	0.3413 (6)	0.0668 (15)
H37A	0.4537	0.2241	0.3427	0.080*
H37B	0.4172	0.3371	0.4120	0.080*
C38	0.3028 (7)	0.4161 (6)	0.2724 (5)	0.0544 (12)
C39	0.2907 (10)	0.5753 (8)	0.2063 (6)	0.0778 (19)
H39	0.3742	0.6396	0.1985	0.093*
C40	0.1494 (13)	0.6384 (10)	0.1508 (6)	0.102 (3)
H40	0.1404	0.7444	0.1060	0.123*
C41	0.0274 (9)	0.5447 (11)	0.1629 (6)	0.083 (2)
------	------------	-------------	------------	-------------
H41	-0.0645	0.5863	0.1257	0.099*
C42	0.0389 (7)	0.3918 (9)	0.2283 (6)	0.0694 (16)
H42	-0.0463	0.3296	0.2379	0.083*
C43	0.1717 (8)	0.3283 (8)	0.2799 (5)	0.0635 (14)
H43	0.1771	0.2209	0.3226	0.076*
C44	0.8804 (9)	1.0139 (8)	0.4511 (5)	0.0730 (18)
H44A	0.7926	1.0855	0.4191	0.088*
H44B	0.9716	1.0733	0.4407	0.088*
H44C	0.8631	0.9685	0.5247	0.088*

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0628 (9)	0.0665 (9)	0.0968 (12)	0.0042 (7)	-0.0300 (8)	-0.0313 (8)
S2	0.0564 (9)	0.0939 (12)	0.1169 (15)	-0.0133 (8)	0.0062 (9)	-0.0742 (11)
01	0.072 (3)	0.067 (3)	0.066 (2)	-0.025 (2)	-0.018 (2)	0.011 (2)
02	0.102 (4)	0.049 (2)	0.082 (3)	-0.026 (2)	0.011 (3)	-0.008 (2)
03	0.061 (2)	0.071 (2)	0.0399 (19)	-0.0170 (18)	-0.0089 (16)	0.0069 (17)
04	0.086 (3)	0.083 (3)	0.060 (2)	-0.043 (2)	0.036 (2)	-0.031 (2)
05	0.060 (3)	0.082 (3)	0.079 (3)	-0.032 (2)	0.025 (2)	-0.024 (2)
O6	0.071 (2)	0.072 (2)	0.0465 (19)	-0.0283 (19)	0.0220 (17)	-0.0303 (18)
C1	0.048 (3)	0.045 (2)	0.051 (3)	-0.017 (2)	0.002 (2)	-0.004 (2)
C2	0.036 (2)	0.053 (3)	0.042 (2)	-0.0072 (19)	0.0047 (18)	-0.009 (2)
C3	0.057 (3)	0.079 (4)	0.047 (3)	-0.005 (3)	0.007 (2)	-0.009 (3)
C4	0.066 (4)	0.099 (5)	0.056 (3)	0.009 (3)	0.001 (3)	-0.032 (3)
C5	0.066 (4)	0.079 (4)	0.083 (4)	0.011 (3)	-0.009 (3)	-0.049 (4)
C6	0.044 (3)	0.046 (3)	0.073 (4)	0.003 (2)	0.002 (2)	-0.021 (2)
C7	0.033 (2)	0.047 (2)	0.046 (2)	-0.0034 (18)	0.0003 (18)	-0.012 (2)
C8	0.042 (2)	0.054 (3)	0.036 (2)	-0.0045 (19)	0.0037 (18)	-0.011 (2)
С9	0.058 (3)	0.085 (4)	0.060 (3)	0.000 (3)	0.004 (3)	-0.033 (3)
C10	0.086 (5)	0.080 (4)	0.085 (5)	0.007 (3)	0.009 (4)	-0.051 (4)
C11	0.083 (4)	0.070 (4)	0.063 (3)	-0.013 (3)	-0.003 (3)	-0.037 (3)
C12	0.049 (3)	0.042 (2)	0.036 (2)	-0.0037 (19)	0.0003 (19)	-0.0069 (19)
C13	0.062 (3)	0.053 (3)	0.049 (3)	-0.020 (2)	0.005 (2)	-0.021 (2)
C14	0.054 (3)	0.060 (3)	0.039 (2)	-0.013 (2)	0.007 (2)	-0.011 (2)
C15	0.058 (4)	0.092 (5)	0.083 (4)	-0.026 (3)	0.005 (3)	-0.037 (4)
C16	0.053 (3)	0.058 (3)	0.060 (3)	-0.010 (2)	-0.010 (2)	-0.012 (3)
C17	0.082 (5)	0.080 (4)	0.072 (4)	-0.020 (3)	0.011 (3)	-0.026 (4)
C18	0.104 (6)	0.112 (7)	0.074 (5)	0.013 (5)	0.004 (4)	-0.033 (5)

C19	0.142 (10)	0.097 (6)	0.105 (7)	0.022 (6)	-0.032 (7)	-0.050 (5)
C20	0.131 (8)	0.059 (4)	0.117 (7)	-0.003 (4)	-0.049 (6)	-0.032 (4)
C21	0.074 (4)	0.066 (4)	0.087 (5)	-0.013 (3)	-0.026 (4)	-0.013 (3)
C22	0.061 (4)	0.091 (4)	0.069 (4)	-0.022 (3)	-0.004 (3)	-0.030 (3)
C23	0.053 (3)	0.043 (2)	0.054 (3)	-0.017 (2)	0.011 (2)	-0.017 (2)
C24	0.054 (3)	0.040 (2)	0.051 (3)	-0.008 (2)	0.008 (2)	-0.015 (2)
C25	0.090 (4)	0.052 (3)	0.057 (3)	-0.015 (3)	0.012 (3)	-0.013 (3)
C26	0.081 (4)	0.065 (4)	0.068 (4)	0.002 (3)	-0.022 (3)	-0.010 (3)
C27	0.061 (3)	0.064 (3)	0.079 (4)	0.007 (3)	-0.012 (3)	-0.027 (3)
C28	0.047 (3)	0.048 (3)	0.074 (4)	0.003 (2)	-0.004 (2)	-0.023 (3)
C29	0.048 (3)	0.036 (2)	0.045 (2)	-0.0080 (18)	0.0048 (19)	-0.0142 (19)
C30	0.048 (3)	0.043 (2)	0.037 (2)	-0.0081 (19)	0.0037 (19)	-0.0109 (19)
C31	0.082 (4)	0.045 (3)	0.066 (4)	0.007 (3)	-0.007 (3)	-0.012 (3)
C32	0.065 (4)	0.071 (4)	0.095 (5)	0.015 (3)	-0.018 (3)	-0.025 (4)
C33	0.054 (4)	0.091 (5)	0.078 (4)	-0.013 (3)	-0.005 (3)	-0.024 (4)
C34	0.042 (2)	0.042 (2)	0.035 (2)	-0.0068 (18)	0.0051 (17)	-0.0138 (18)
C35	0.052 (3)	0.055 (3)	0.051 (3)	-0.021 (2)	-0.004 (2)	-0.019 (2)
C36	0.055 (3)	0.039 (2)	0.047 (3)	-0.006 (2)	0.002 (2)	-0.008 (2)
C37	0.065 (4)	0.045 (3)	0.094 (4)	-0.010 (2)	-0.006 (3)	-0.026 (3)
C38	0.059 (3)	0.049 (3)	0.061 (3)	-0.009 (2)	0.004 (2)	-0.024 (2)
C39	0.092 (5)	0.051 (3)	0.076 (4)	-0.007 (3)	0.015 (4)	0.001 (3)
C40	0.150 (9)	0.070 (4)	0.065 (4)	0.027 (5)	0.023 (5)	0.004 (4)
C41	0.071 (4)	0.109 (6)	0.069 (4)	0.007 (4)	-0.002 (3)	-0.030 (4)
C42	0.054 (3)	0.084 (4)	0.081 (4)	-0.006 (3)	0.004 (3)	-0.042 (4)
C43	0.065 (4)	0.059 (3)	0.071 (4)	-0.005 (3)	0.002 (3)	-0.026 (3)
C44	0.100 (5)	0.071 (4)	0.062 (3)	-0.037 (3)	0.010 (3)	-0.035 (3)
			1			

Geometric parameters (Å, °)

S1—C14	1.773 (6)	C20—C21	1.364 (14)
S1—C15	1.808 (7)	С20—Н20	0.9300
S2—C36	1.753 (6)	С21—Н21	0.9300
S2—C37	1.810 (6)	С22—Н22А	0.9600
O1—C14	1.196 (7)	С22—Н22В	0.9600
O2—C1	1.232 (6)	С22—Н22С	0.9600
O3—C12	1.421 (6)	C23—C24	1.466 (8)
O3—H3O	0.9272	C23—C35	1.527 (7)
O4—C36	1.242 (7)	C24—C25	1.388 (9)
O5—C23	1.202 (6)	C24—C29	1.412 (7)
O6—C34	1.407 (6)	C25—C26	1.394 (10)

O6—H6O	0.8453	C25—H25	0.9300	
C1—C2	1.455 (8)	C26—C27	1.383 (10)	
C1—C13	1.535 (7)	С26—Н26	0.9300	
C2—C7	1.389 (7)	C27—C28	1.405 (9)	
C2—C3	1.412 (8)	С27—Н27	0.9300	
C3—C4	1.346 (10)	C28—C29	1.364 (7)	
С3—Н3	0.9300	С28—Н28	0.9300	
C4—C5	1.367 (11)	C29—C34	1.527 (7)	
С4—Н4	0.9300	C30—C36	1.518 (7)	
C5—C6	1.397 (9)	C30—C31	1.522 (8)	
С5—Н5	0.9300	C30—C34	1.545 (6)	
С6—С7	1.394 (7)	С30—Н30	0.9800	
С6—Н6	0.9300	C31—C32	1.537 (10)	
C7—C12	1.525 (7)	C31—H31A	0.9700	
C8—C14	1.513 (7)	C31—H31B	0.9700	
C8—C12	1.529 (7)	C32—C33	1.522 (11)	
С8—С9	1.543 (8)	С32—Н32А	0.9700	
С8—Н8	0.9800	С32—Н32В	0.9700	
C9—C10	1.517 (10)	C33—C35	1.521 (9)	
С9—Н9А	0.9700	С33—Н33А	0.9700	
С9—Н9В	0.9700	С33—Н33В	0.9700	
C10—C11	1.487 (10)	C34—C35	1.571 (6)	
С10—Н10А	0.9700	C35—C44	1.550 (8)	
C10—H10B	0.9700	C37—C38	1.501 (9)	
C11—C13	1.524 (9)	С37—Н37А	0.9700	
C11—H11A	0.9700	С37—Н37В	0.9700	
C11—H11B	0.9700	C38—C39	1.392 (8)	
C12—C13	1.570 (7)	C38—C43	1.398 (9)	
C13—C22	1.526 (9)	C39—C40	1.421 (14)	
C15—C16	1.478 (10)	С39—Н39	0.9300	
C15—H15A	0.9700	C40—C41	1.358 (13)	
C15—H15B	0.9700	C40—H40	0.9300	
C16—C21	1.401 (9)	C41—C42	1.346 (11)	
C16—C17	1.413 (9)	C41—H41	0.9300	
C17—C18	1.351 (11)	C42—C43	1.339 (10)	
С17—Н17	0.9300	C42—H42	0.9300	
C18—C19	1.401 (15)	С43—Н43	0.9300	
С18—Н18	0.9300	C44—H44A	0.9600	
C19—C20	1.374 (16)	C44—H44B	0.9600	
С19—Н19	0.9300	C44—H44C	0.9600	

	-		
C14—S1—C15	99.1 (3)	H22A—C22—H22C	109.5
C36—S2—C37	100.4 (3)	H22B—C22—H22C	109.5
С12—О3—НЗО	93.4	O5—C23—C24	126.8 (5)
С34—О6—Н6О	101.5	O5—C23—C35	126.0 (5)
O2—C1—C2	126.9 (5)	C24—C23—C35	107.2 (4)
O2—C1—C13	125.0 (5)	C25—C24—C29	119.5 (5)
C2—C1—C13	108.0 (4)	C25—C24—C23	130.7 (5)
С7—С2—С3	120.4 (5)	C29—C24—C23	109.8 (4)
C7—C2—C1	109.4 (4)	C24—C25—C26	119.1 (6)
C3—C2—C1	130.1 (5)	С24—С25—Н25	120.5
C4—C3—C2	118.8 (6)	С26—С25—Н25	120.5
С4—С3—Н3	120.6	C27—C26—C25	121.7 (6)
С2—С3—Н3	120.6	С27—С26—Н26	119.2
C3—C4—C5	121.7 (6)	С25—С26—Н26	119.2
С3—С4—Н4	119.2	C26—C27—C28	118.7 (6)
С5—С4—Н4	119.2	С26—С27—Н27	120.6
C4—C5—C6	121.1 (6)	С28—С27—Н27	120.6
С4—С5—Н5	119.4	C29—C28—C27	120.4 (6)
С6—С5—Н5	119.4	С29—С28—Н28	119.8
C7—C6—C5	118.3 (5)	С27—С28—Н28	119.8
С7—С6—Н6	120.9	C28—C29—C24	120.6 (5)
С5—С6—Н6	120.9	С28—С29—С34	130.2 (4)
С2—С7—С6	119.7 (5)	С24—С29—С34	109.1 (4)
C2—C7—C12	109.5 (4)	C36—C30—C31	111.3 (4)
C6—C7—C12	130.6 (4)	C36—C30—C34	110.9 (4)
C14—C8—C12	111.5 (4)	C31—C30—C34	113.4 (4)
С14—С8—С9	111.4 (4)	С36—С30—Н30	106.9
С12—С8—С9	111.0 (4)	С31—С30—Н30	106.9
С14—С8—Н8	107.6	С34—С30—Н30	106.9
С12—С8—Н8	107.6	C30—C31—C32	108.2 (5)
С9—С8—Н8	107.6	C30—C31—H31A	110.1
С10—С9—С8	108.4 (5)	C32—C31—H31A	110.1
С10—С9—Н9А	110.0	С30—С31—Н31В	110.1
С8—С9—Н9А	110.0	С32—С31—Н31В	110.1
С10—С9—Н9В	110.0	H31A—C31—H31B	108.4
С8—С9—Н9В	110.0	C33—C32—C31	111.1 (6)
Н9А—С9—Н9В	108.4	С33—С32—Н32А	109.4
C11—C10—C9	112.1 (6)	С31—С32—Н32А	109.4
С11—С10—Н10А	109.2	С33—С32—Н32В	109.4
1		1	

С9—С10—Н10А	109.2	С31—С32—Н32В	109.4
C11-C10-H10B	109.2	H32A—C32—H32B	108.0
С9—С10—Н10В	109.2	C35—C33—C32	114.9 (5)
H10A-C10-H10B	107.9	С35—С33—Н33А	108.5
C10-C11-C13	116.4 (5)	С32—С33—Н33А	108.5
C10-C11-H11A	108.2	С35—С33—Н33В	108.5
C13—C11—H11A	108.2	С32—С33—Н33В	108.5
C10-C11-H11B	108.2	H33A—C33—H33B	107.5
C13—C11—H11B	108.2	O6—C34—C29	114.1 (4)
H11A—C11—H11B	107.4	O6—C34—C30	112.4 (4)
O3—C12—C7	114.3 (4)	C29—C34—C30	108.8 (4)
O3—C12—C8	112.6 (4)	O6—C34—C35	109.0 (4)
C7—C12—C8	107.3 (4)	C29—C34—C35	102.7 (4)
O3—C12—C13	106.9 (4)	C30—C34—C35	109.3 (4)
C7—C12—C13	102.7 (4)	C33—C35—C23	117.6 (5)
C8—C12—C13	112.6 (4)	C33—C35—C44	107.0 (5)
C11—C13—C22	109.6 (5)	C23—C35—C44	104.3 (4)
C11—C13—C1	116.0 (5)	C33—C35—C34	115.5 (4)
C22—C13—C1	104.7 (4)	C23—C35—C34	102.4 (4)
C11—C13—C12	114.0 (5)	C44—C35—C34	109.3 (5)
C22—C13—C12	111.4 (5)	O4—C36—C30	124.4 (5)
C1—C13—C12	100.6 (4)	O4—C36—S2	120.9 (4)
O1—C14—C8	125.1 (5)	C30—C36—S2	114.6 (4)
O1-C14-S1	122.3 (4)	C38—C37—S2	115.5 (5)
C8—C14—S1	112.6 (4)	С38—С37—Н37А	108.4
C16—C15—S1	117.0 (5)	S2—C37—H37A	108.4
C16—C15—H15A	108.0	С38—С37—Н37В	108.4
S1—C15—H15A	108.0	S2—C37—H37B	108.4
C16—C15—H15B	108.0	H37A—C37—H37B	107.5
S1—C15—H15B	108.0	C39—C38—C43	116.7 (6)
H15A—C15—H15B	107.3	C39—C38—C37	125.2 (6)
C21—C16—C17	117.5 (7)	C43—C38—C37	117.9 (5)
C21—C16—C15	120.1 (6)	C38—C39—C40	119.1 (7)
C17—C16—C15	122.2 (5)	С38—С39—Н39	120.4
C18—C17—C16	121.8 (7)	С40—С39—Н39	120.4
С18—С17—Н17	119.1	C41—C40—C39	120.3 (7)
С16—С17—Н17	119.1	С41—С40—Н40	119.8
C17—C18—C19	119.1 (10)	С39—С40—Н40	119.8
С17—С18—Н18	120.5	C42—C41—C40	120.2 (7)
С19—С18—Н18	120.5	C42—C41—H41	119.9
· · · · · · · · · · · · · · · · · · ·			

C20—C19—C18	120.4 (9)	C40—C41—H41	119.9
С20—С19—Н19	119.8	C43—C42—C41	120.7 (7)
С18—С19—Н19	119.8	С43—С42—Н42	119.7
C21—C20—C19	120.3 (8)	C41—C42—H42	119.7
С21—С20—Н20	119.8	C42—C43—C38	122.9 (6)
С19—С20—Н20	119.8	С42—С43—Н43	118.6
C20—C21—C16	120.9 (8)	С38—С43—Н43	118.6
C20—C21—H21	119.6	С35—С44—Н44А	109.5
C16—C21—H21	119.6	С35—С44—Н44В	109.5
C13—C22—H22A	109.5	H44A—C44—H44B	109.5
С13—С22—Н22В	109.5	С35—С44—Н44С	109.5
H22A—C22—H22B	109.5	H44A—C44—H44C	109.5
С13—С22—Н22С	109.5	H44B—C44—H44C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D···A	<i>D</i> —Н··· <i>A</i>
О3—H3 <i>O</i> …O1	0.93	1.86	2.720 (5)	153.9
О3—H3 <i>O</i> …O4	0.93	2.45	2.989 (5)	116.8
О6—Н6 <i>О</i> …О4	0.85	2.02	2.739 (6)	142.5

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Figures

Fig. 1. The compound was shown at 50% probability thermal ellipsoids with the atom numbering scheme.

Fig. 2. The unit cell packing diagram of the compound projected along the *a*-axis and showing the H-bonding interactions (cyan

lines).

X-ray data for 8d

Comment

The compound, $3(3a-hydroxy-7a-methyl-1-oxo-octa-hydro-inden-4-yl)-thio-acrlic acid S-ethyl ester, crystallizes in a chiral primitive monoclinic space group, <math>P2_1$ (#4). The compound is chiral. There are 2 asymmetric units in the unit cell.

The cyclo-hexyl ring is in the chair form, and the five-membered ring in the envelop form. The atoms C8 and C9 are *R*-configuration, while atom C4 is *S*-configurations. All the bonding parameters were within the normal ranges.

Inter-molecular, O3—H3O····O1 H-bond inter-action is present in the crystal lattice that connects the molecules into 1-D chain along *a*-axis.

The Flack parameter of the current configuration was found to be 0.1(2), and for the inverted configuration was 0.9(2) which indicated that the current configuration is the correct one.

Experimental

A colourless block crystal of $C_{22}H_{22}O_3S$, having approximate dimensions of 0.16mm x 0.34mm x 0.76mm was mounted in glass capillary. All measurements were made on a Bruker *Apex II* CCD detector with graphite monochromated Mo—K radiation. The crystal-to-detector distance was 55.00 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

a = 6.8058(3)Å b = 8.7130(4)Å c = 13.1696(5)Å V = 780.58 (6) Å³ = 91.746 (3)°.

For Z = 2 and F.W. = 282.40, the calculated density is 1.201 g/cm³. Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be: $P2_1$ (#4)

The data were collected at a temperature of 23(1)°C to a maximum 2 value of 50.05°. The exposure rate was 20.0 [sec./°]. The crystal-to-detector distance was 55.00 mm.

Of the 7329 reflections that were collected, 2515 reflections were unique. ($R_{int} = 0.0291$); equivalent reflections were merged.

Refinement

The structure was solved by direct methods (SHELXS-97) and expanded using Fourier techniques. All

non-H atoms were refined anisotropically.

All of the C-bound H atoms were observable from difference Fourier map but were all placed at geometrical positions with C—H = 0.93, 0.96, 0.97 and 0.98Å for vinyl, methyl, methylene and methine H-atoms respectively. All C-bound H-atoms were refined using riding model with $U_{iso}(H) = 1.2U_{eq}(Carrier)$. The O-bound hydrogen atoms were located from difference Fourier map and also refined using riding model of $U_{iso}(H) = 1.2U_{eq}(Carrier)$.

The thio-ethyl group was refined as two disordered groups and their occupancies were found to be 0.728(9) and 0.272(9) respectively.

Seventeen restraints have been used during the refinement. Twelve restraints used in the anisotropic refinement of atoms C14 and C14' using isotropic restraints of standard deviation of 0.01 (six restraints for each atom). One restraint used to fix the C13—C14 distance to be 1.53(1)Å. The bond distances of the disordered group, thio-ethyl, were refined with same distance restrants which accounted for three restraints. The final restraint was used for the floating origin restraint.

Highest peak 0.39 at (-0.0007, 0.2208, 0.9729) [0.93 A from C12] Deepest hole -0.28 at (0.1489, 0.6169, 0.9039) [0.72 A from S1']

(PC-O2-123-1_2-shelxl)

Crystal data

C ₁₅ H ₂₂ O ₃ S	F(000) = 304
$M_r = 282.39$	$D_{\rm x} = 1.201 {\rm Mg m}^{-3}$
Monoclinic, <i>P</i> 2 ₁	Mo <i>K</i> radiation, $= 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 7329 reflections
a = 6.8058 (3) Å	$= 2.8 - 25.0^{\circ}$
b = 8.7130 (4) Å	$= 0.21 \text{ mm}^{-1}$
c = 13.1696 (5) Å	T = 296 K
= 91.746 (3)°	Plate, colourless
$V = 780.58 (6) \text{ Å}^3$	$0.44 \times 0.22 \times 0.04 \text{ mm}$
Z = 2	

Data collection

Bruker Apex CCD diffractometer	2515 independent reflections
Radiation source: fine-focus sealed tube	1908 reflections with $I > 2$ (I)
graphite	$R_{\rm int} = 0.029$
scans	$_{\rm max} = 25.0^{\circ}, _{\rm min} = 2.8^{\circ}$
Absorption correction: multi-scan SADABS (Sheldrick, 2008)	h = -8 8
$T_{\min} = 0.914, T_{\max} = 0.992$	k = -10 10
7329 measured reflections	<i>l</i> = -15 14

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2 (F^2)] = 0.062$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.185$	H-atom parameters constrained
S = 1.10	$w = 1/[({}^{2}(F_{o}^{2}) + (0.110P)^{2} + 0.0373P])$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2515 reflections	$(/)_{max} = 0.008$
198 parameters	$_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
17 restraints	$_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$
Flack parameter: 0.1(2)	Absolute structure: Flack (1983). 1908 Friedel pairs

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

F, and R-factor	s based on ALI	L data will be e	ven larger.			
Fractional aton	nic coordinates	and isotropic of	r equivalent iso	tropic displace	ment parameters	s (Å ²)
	r	v	7	II. */II	Occ (<1)	

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
S1	0.1253 (5)	0.7768 (8)	-0.0727 (2)	0.1228 (16)	0.728 (9)
C13	-0.1352 (13)	0.8031 (12)	-0.0975 (7)	0.110 (3)	0.728 (9)
H13A	-0.1960	0.8330	-0.0348	0.132*	0.728 (9)
H13B	-0.1539	0.8865	-0.1456	0.132*	0.728 (9)
C14	-0.237 (2)	0.6641 (19)	-0.1386 (16)	0.202 (8)	0.728 (9)
H14A	-0.1615	0.6201	-0.1916	0.242*	0.728 (9)
H14B	-0.3649	0.6922	-0.1655	0.242*	0.728 (9)
H14C	-0.2513	0.5903	-0.0851	0.242*	0.728 (9)
S1'	0.1301 (15)	0.6874 (19)	-0.0692 (8)	0.1228 (16)	0.272 (9)
C13'	-0.121 (3)	0.653 (3)	-0.1059 (14)	0.096 (8)	0.272 (9)
H13C	-0.1227	0.5810	-0.1623	0.115*	0.272 (9)
H13D	-0.1830	0.6019	-0.0498	0.115*	0.272 (9)
C14'	-0.243 (5)	0.785 (4)	-0.136 (4)	0.166 (14)	0.272 (9)
H14D	-0.2288	0.8641	-0.0854	0.199*	0.272 (9)
H14E	-0.3783	0.7539	-0.1416	0.199*	0.272 (9)
H14F	-0.2020	0.8235	-0.2001	0.199*	0.272 (9)

01	1.0541 (3)	0.8743 (4)	0.3625 (2)	0.0700 (8)	
O2	-0.0213 (5)	0.7338 (7)	0.1014 (3)	0.1238 (17)	
O3	0.4024 (3)	0.7104 (3)	0.42017 (19)	0.0574 (7)	
H3O	0.2848	0.7336	0.4158	0.069*	
C1	0.8752 (5)	0.8724 (5)	0.3662 (3)	0.0505 (8)	
C2	0.7459 (5)	0.9979 (5)	0.3230 (4)	0.0683 (12)	
H2A	0.7631	1.0086	0.2505	0.082*	
H2B	0.7759	1.0953	0.3558	0.082*	
C3	0.5378 (5)	0.9474 (4)	0.3448 (3)	0.0576 (10)	
НЗА	0.4486	0.9724	0.2884	0.069*	
H3B	0.4916	0.9966	0.4057	0.069*	
C4	0.5537 (5)	0.6900 (5)	0.2553 (3)	0.0512 (9)	
H4	0.6518	0.7412	0.2141	0.061*	
C5	0.6162 (6)	0.5214 (5)	0.2675 (3)	0.0631 (11)	
H5A	0.5260	0.4687	0.3113	0.076*	
H5B	0.6112	0.4711	0.2017	0.076*	
C6	0.8211 (6)	0.5122 (5)	0.3126 (3)	0.0647 (11)	
H6A	0.9117	0.5609	0.2671	0.078*	
H6B	0.8591	0.4054	0.3200	0.078*	
C7	0.8346 (6)	0.5899 (5)	0.4147 (3)	0.0582 (9)	
H7A	0.9715	0.5924	0.4374	0.070*	
H7B	0.7642	0.5281	0.4629	0.070*	
C8	0.5522 (4)	0.7722 (4)	0.3595 (2)	0.0450 (8)	
С9	0.7537 (4)	0.7528 (4)	0.4172 (2)	0.0447 (8)	
C10	0.3587 (6)	0.7042 (5)	0.2003 (3)	0.0645 (11)	
H10	0.2487	0.6888	0.2392	0.077*	
C11	0.3247 (7)	0.7351 (7)	0.1056 (3)	0.0784 (14)	
H11	0.4304	0.7536	0.0642	0.094*	
C12	0.1196 (8)	0.7423 (7)	0.0601 (4)	0.0854 (15)	
C15	0.7420 (6)	0.8069 (6)	0.5285 (3)	0.0612 (10)	
H15A	0.8679	0.7941	0.5623	0.073*	
H15B	0.6456	0.7471	0.5626	0.073*	
H15C	0.7052	0.9133	0.5299	0.073*	

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0968 (12)	0.203 (5)	0.0679 (9)	-0.031 (2)	-0.0167 (8)	0.050 (2)
C13	0.113 (7)	0.125 (8)	0.089 (6)	-0.007 (6)	-0.038 (5)	0.010 (5)
C14	0.176 (13)	0.180 (13)	0.245 (15)	-0.003 (11)	-0.058 (11)	-0.077 (12)

S1'	0.0968 (12)	0.203 (5)	0.0679 (9)	-0.031 (2)	-0.0167 (8)	0.050 (2)
C13'	0.117 (19)	0.13 (2)	0.042 (9)	-0.010 (16)	-0.009 (10)	-0.001 (10)
C14'	0.18 (2)	0.136 (19)	0.18 (2)	-0.020 (17)	-0.030 (17)	0.036 (17)
01	0.0303 (13)	0.0912 (19)	0.0885 (19)	-0.0047 (13)	0.0043 (11)	-0.0091 (16)
O2	0.0384 (17)	0.203 (5)	0.130 (3)	-0.009 (2)	-0.0089 (19)	0.021 (3)
03	0.0354 (12)	0.0716 (17)	0.0659 (16)	-0.0042 (12)	0.0146 (10)	0.0008 (12)
C1	0.0363 (18)	0.059 (2)	0.056 (2)	-0.0047 (16)	0.0040 (14)	-0.0052 (17)
C2	0.041 (2)	0.065 (3)	0.099 (3)	-0.0117 (18)	0.002 (2)	0.017 (2)
C3	0.0423 (19)	0.054 (2)	0.077 (3)	0.0084 (17)	-0.0007 (17)	0.009 (2)
C4	0.0362 (17)	0.067 (2)	0.0508 (19)	-0.0030 (16)	0.0012 (14)	0.0016 (16)
C5	0.060 (2)	0.067 (3)	0.063 (2)	0.003 (2)	0.0023 (18)	-0.0193 (19)
C6	0.056 (2)	0.062 (2)	0.076 (3)	0.018 (2)	0.0046 (19)	-0.006 (2)
C7	0.045 (2)	0.059 (2)	0.070 (2)	0.0083 (17)	-0.0030 (17)	0.0005 (19)
C8	0.0273 (15)	0.051 (2)	0.0571 (19)	0.0027 (13)	0.0065 (13)	0.0037 (16)
С9	0.0335 (16)	0.052 (2)	0.0488 (17)	0.0036 (14)	0.0019 (13)	-0.0012 (15)
C10	0.046 (2)	0.087 (3)	0.061 (2)	-0.007 (2)	-0.0057 (16)	-0.005 (2)
C11	0.060 (3)	0.116 (4)	0.059 (2)	-0.010 (3)	-0.0075 (18)	0.011 (3)
C12	0.076 (3)	0.116 (4)	0.065 (3)	-0.010 (3)	0.009 (2)	0.012 (3)
C15	0.058 (2)	0.069 (2)	0.057 (2)	-0.0035 (19)	0.0015 (16)	-0.0042 (18)

Geometric parameters (Å, °)

S1—C12	1.776 (6)	C3—C8	1.542 (5)
S1—C13	1.808 (9)	С3—НЗА	0.9700
C13—C14	1.490 (9)	С3—Н3В	0.9700
С13—Н13А	0.9700	C4—C10	1.498 (5)
С13—Н13В	0.9700	C4—C5	1.536 (6)
C14—H14A	0.9600	C4—C8	1.549 (5)
C14—H14B	0.9600	С4—Н4	0.9800
C14—H14C	0.9600	С5—С6	1.502 (5)
S1'—C12	1.773 (13)	С5—Н5А	0.9700
S1'—C13'	1.787 (16)	С5—Н5В	0.9700
C13'—C14'	1.468 (19)	С6—С7	1.505 (6)
C13'—H13C	0.9700	С6—Н6А	0.9700
C13'—H13D	0.9700	С6—Н6В	0.9700
C14'—H14D	0.9600	С7—С9	1.523 (5)
C14'—H14E	0.9600	С7—Н7А	0.9700
C14'—H14F	0.9600	С7—Н7В	0.9700
01—C1	1.220 (4)	С8—С9	1.556 (4)
O2—C12	1.119 (6)	C9—C15	1.545 (5)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012	

O3—C8	1.420 (4)	C10—C11	1.289 (6)
O3—H3O	0.8259	С10—Н10	0.9300
C1—C9	1.502 (5)	C11—C12	1.504 (6)
C1—C2	1.505 (6)	С11—Н11	0.9300
C2—C3	1.519 (5)	C15—H15A	0.9600
С2—Н2А	0.9700	С15—Н15В	0.9600
С2—Н2В	0.9700	С15—Н15С	0.9600
C12—S1—C13	98.6 (4)	С6—С5—Н5В	109.7
C14—C13—S1	114.0 (9)	C4—C5—H5B	109.7
C14—C13—H13A	108.8	H5A—C5—H5B	108.2
S1—C13—H13A	108.8	C5—C6—C7	111.1 (3)
C14—C13—H13B	108.8	С5—С6—Н6А	109.4
S1—C13—H13B	108.8	С7—С6—Н6А	109.4
H13A—C13—H13B	107.7	С5—С6—Н6В	109.4
C12—S1'—C13'	103.9 (9)	С7—С6—Н6В	109.4
C14'—C13'—S1'	118 (2)	Н6А—С6—Н6В	108.0
C14'—C13'—H13C	107.8	С6—С7—С9	115.2 (3)
S1'—C13'—H13C	107.8	С6—С7—Н7А	108.5
C14'—C13'—H13D	107.8	С9—С7—Н7А	108.5
S1'—C13'—H13D	107.8	С6—С7—Н7В	108.5
H13C-C13'-H13D	107.2	С9—С7—Н7В	108.5
C13'—C14'—H14D	109.5	Н7А—С7—Н7В	107.5
C13'—C14'—H14E	109.5	O3—C8—C3	113.7 (3)
H14D—C14'—H14E	109.5	O3—C8—C4	110.3 (3)
C13'—C14'—H14F	109.5	C3—C8—C4	110.4 (3)
H14D—C14'—H14F	109.5	O3—C8—C9	108.7 (3)
H14E—C14'—H14F	109.5	С3—С8—С9	102.7 (3)
С8—О3—НЗО	125.4	C4—C8—C9	110.6 (2)
O1—C1—C9	126.3 (4)	С1—С9—С7	115.6 (3)
01—C1—C2	123.2 (4)	C1—C9—C15	104.9 (3)
C9—C1—C2	110.5 (3)	C7—C9—C15	109.5 (3)
C1—C2—C3	104.8 (3)	C1—C9—C8	101.3 (3)
С1—С2—Н2А	110.8	С7—С9—С8	113.9 (3)
С3—С2—Н2А	110.8	С15—С9—С8	111.1 (3)
С1—С2—Н2В	110.8	C11—C10—C4	128.0 (4)
С3—С2—Н2В	110.8	С11—С10—Н10	116.0
H2A—C2—H2B	108.9	С4—С10—Н10	116.0
C2—C3—C8	104.8 (3)	C10-C11-C12	122.1 (4)
С2—С3—НЗА	110.8	C10-C11-H11	119.0

С8—С3—НЗА	110.8	С12—С11—Н11	119.0
С2—С3—Н3В	110.8	O2-C12-C11	127.1 (5)
С8—С3—Н3В	110.8	O2—C12—S1'	120.6 (6)
НЗА—СЗ—НЗВ	108.9	C11—C12—S1'	107.9 (5)
C10—C4—C5	111.6 (3)	O2—C12—S1	122.3 (5)
C10—C4—C8	111.1 (3)	C11—C12—S1	110.6 (4)
C5—C4—C8	111.0 (3)	С9—С15—Н15А	109.5
С10—С4—Н4	107.6	С9—С15—Н15В	109.5
С5—С4—Н4	107.6	H15A—C15—H15B	109.5
С8—С4—Н4	107.6	С9—С15—Н15С	109.5
C6—C5—C4	110.0 (3)	H15A—C15—H15C	109.5
С6—С5—Н5А	109.7	H15B—C15—H15C	109.5
С4—С5—Н5А	109.7		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O3—H3 <i>O</i> …O1 ⁱ	0.83	2.10	2.851 (4)	151.8

Symmetry code: (i) x-1, y, z.

Figures

The unit cell packing diagram of the compound projected along the *b*-axis and showing the H-bonding interactions (cyan lines) connect the molecules into 1-D chain along *a*-axis (showing major component only).

X-ray References

- (a) Bruker AXS Inc. (2007). APEX II, Madison, Wisconsin, USA. (b) Bruker AXS Inc. (2007). SAINT, Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). *Mercury J. Appl. Cryst*, 41, 466–470.
- Rigaku/MSC and Rigaku Corporation. (2006). *CrystalStructure*. Single Crystal Structure Analysis Software. Version 3.8.1. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX, USA 77381-5209. Rigaku, 3-9-12 Akishima, Tokyo 196-8666, Japan.
- 4. Sheldrick, G. M. (2008). SADABS, Göttingen University, Göttingen, Germany.
- 5. Sheldrick, G. M. (2008). SHELX programs. SHELXL97 & SHELXS97. Acta Cryst. E68, 112-122.