Supporting information

Cascade Synthesis of bis-N-sulfonylcyclobutenes via Cu(I)/Lewis Acid-Catalyzed (3+2)/(2+2) Cycloadditions: Observation of Aggregation-Induced Emission Enhancement from Restricted C=N Photoisomerization

Kayambu Namitharan and Kasi Pitchumani*

School of Chemistry, Madurai Kamaraj University, Madurai-625021, India.

E-mail:pit12399@yahoo.com

Contents

1. Experimental procedures	S2
2. Characterization Data	S7
3. ¹ H & ¹³ C NMR spectral figures	S12
4. Data from DFT calculations and HOMO – LUMO diagrams	S 26

1. Experimental procedures *General Methods.*

All reactions were carried out under a nitrogen atmosphere, with dry, freshly distilled solvents in anhydrous conditions. All chemicals (alkynes, sulfonyl chlorides, metal salts and NH₄ Y) were used without further purification as commercially available unless otherwise noted. NMR spectra were registered on Bruker DRX spectrometer operating at 300, 400 and 500 MHz for ¹H and 75, 100 and 125 MHz for ¹³C. All ¹H NMR and ¹³C NMR spectra were measured in CDCl₃ or DMSO(d₆) or CDCl₃ DMSO(d₆) mixtures with TMS as the internal standard. Chemical shifts are expressed in ppm and J values are given in Hz (Coupling constants are calculated according to the actual values given in NMR spectrums, here the decimals are reduced). High-resolution mass spectra (HRMS) were recorded in Thermo-Scientific mass spectrometer. Purifications by column chromatography were performed on silica gel 60-120 mesh. The XRD pattern of the catalyst samples was measured with a PW3050/60 (XPERT-PRO Diffractometer system) instrument using a Cu K α radiation at room temperature. Fluorescence measurements were made on a Fluoromax-4 Spectrofluorometer. Theoretical studies were carried out in Central Leather Institute (CLRI) Chennai. Sulfonyl azides¹ were prepared according to the published method.

The ground state geometry optimization was performed utilizing density functional theory (DFT) employing B3LYP² functional, a 6-31G* basis set, which is a reliable method that has been widely used for calculating the structural and optical properties of many systems³⁻⁵. UV-Vis spectra were simulated utilizing the first 20 excited states and the time-dependent density functional theory (TDDFT) routine with the aforementioned functional and basis set. In addition to that, HOMO and LUMO were produced form the output. All the calculations were performed with Gaussian 03 software package.⁶

Preparation and characterization of Cu(I)Y zeolite

Cu(I)Y zeolite was prepared according to the procedure reported by Li *et al.*² A mixture of CuCl and HY (obtained from deammonification of NH₄Y at 450°C for 6h) was ground by pestle and mortar, it was heated in flowing nitrogen atmosphere at a heating rate of 10°C/min. The ion-exchange of Cu(I) in solid CuCl with H⁺ in HY zeolite occurred at over 300°C and the maximum ion-exchange rate was reached at 340°C with the consequent release of HCl gas. Cu(I)Y was prepared at two different temperatures *via* heating the mixture of CuCl/HY at 350°C for 15 h under nitrogen atmosphere. After the preparation was

over, the Cu(I)Y was kept under high vacuum. The prepared Cu(I)Y zeolite was characterized by powder XRD, XPS, and EDX which was found to be in good agreement with the literature.²

Fig. a. Powder XRD pattern of Cu(I)-Y zeolite

Fig. b. X-Ray photoelectron spectra (XPS) of Cu(I)-Y zeolite

The oxidation states of Cu in the prepared Cu(I)-Y zeolite were examined by X-ray photoelectron spectroscopy (Fig. b). In the Cu 2p core level XPS spectra, the peaks corresponding to the Cu 2p3/2 and 2p1/2 are observed at around 932.7 eV and 953.2 eV, which is match well with the literature values for Cu(I) zeolite (Cu 2p3/2 933.5 and Cu 2p1/2 952.3).^[4b]

Fig. c. EDX for Cu(I)-Y zeolite

The total copper content in the samples was determined by EDX analysis and it was found to be 7.26 wt% (Figure c).

General procedure for the Cu(I)-zeolite/PhCOCl catalyzed cascade synthesis of bis-*N*-sulfonylcyclobutenes

A solution of alkyne (1 mmol) in one mL of DCM was added slowly to a mixture of Cu(I)-zeolite (20 mg), sulfonyl azide (1 mmol), benzoyl chloride (0.2 mmol) and Et₃N (2 mmol) taken in 2 mL of DCM under N₂ atmosphere. After stirring at room temperature for the 30 minutes, the mixture was diluted with ethyl acetate(5 mL). After removing the catalyst by filtration, followed by solvent evaporation under reduced pressure, the resulting crude product was finally purified by recrystalization and column chromatography on silica gel (60-120 mesh) with ethyl acetate and ethanol as eluting solvent to give the desired product. The recovered catalyst was thoroughly washed with ethyl acetate and used it for next run

All the synthesized compounds are unknown and the crystal structure of compound 3a has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number **CCDC 822410**

Fig. d. (a) PL spectra of **3e** ($\lambda_{ext.} = 350 \text{ nm}$) in different ratios of *n*-hexane/CHCl₃ at a concentration of 7 x 10⁻⁶ m

Fig. e. Emission image of **3a** in pure CHCl₃(*solution*) and 99:1 (v/v) *n*-hexane/CHCl₃ mixture (*aggregate*) under UV light ($\lambda_{ext.} = 350$ nm)

Fig. f. Crystal packing diagram of 3a

References

- a) Abramovitch, R. A.; Chellathurai, T.; Holcomb D. W.; McMaster, T. I; Vanderpool, D. P. J. Org. Chem. 1977, 42, 2920; b) Danheiser, R. L.; Miller, R. F.; Brisbois, R. G.; Park, S. Z. J. Org. Chem. 1990, 55, 1959.
- 2. Li, Z.; Xie, K.; Slade, R. C. T. Appl. Catal. A: Gen. 2001, 209, 107-115.
- 3. A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
- Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.;Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M. J.Am. Chem. Soc. 2008, 130, 732-742.
- 5. Belletête, M.; Blouin, N.; Boudreault, P.-L. T.; Leclerc, M.;Durocher, G. J. Phys. Chem. A 2006, 110, 13696-13704.
- 6. Zade, S. S.; Bendikov, M. Org. Lett. 2006, 8, 5243-5246.
- 7. Gaussian 03 (Revision E. 01); Gaussian, Inc.: Wallingford, CT, **2004**.

Characterization Data

Triethylammonium (*E*)-*N*-2,4-diphenyl-3(tosylimino)cyclobut-1-enyl-4methylbenzenesulfonimidate (table 2, entry 1)

Compound **3a** was prepared according the general procedure and purified by recrystalization in ethanol as a white solid: mp 195-196 °C; ¹H NMR (300 MHz, CDCl₃, 25°C, TMS): δ 1.19-1.24 (t, 9H, 7.2 Hz), 2.25 (s, 6H), 2.98-3.00 (d, 6H, 7.2Hz), 5.44 (s, 1 H), 6.87-7.25 (m, 17H), 8.02-8.04 (d, 2H, 7.5 Hz) ppm; ¹³C NMR (75 MHz, CDCl₃, 25°C, TMS) δ = 8.8, 21.2, 46.8, 63.2, 125, 126.0, 126.3, 126.5, 127.6, 127.8, 128.6, 129.5, 132.1, 138.8, 140.0, 141.2, 171.5 ppm. HRMS (ESI): m/z calcd for C₃₆H₄₁N₃O₄S₂ (M+H)⁺: 644.2616; found, 644.2526.

(*E*)-*N*,*N*'-(2,4-Diphenylcyclobut-1-ene-1-yl-3-ylidene) dibenzenesulfonamide (table 2, entry 2)

Compound **4a** was prepared according the general procedure and purified by column chromatography on silica gel (60-120 mesh) with ethyl acetate and ethanol as a white solid: mp 168-169 °C; ¹H NMR (300 MHz, CDCl₃-DMSO (d₆), 25 °C, TMS): δ 5.36 (s, 1H), 6.84-7.15 (m, 16H) 7.92-7.94 (d, 2H, 7.2 Hz) ppm; ¹³C NMR (75 MHz, CDCl₃-DMSO (d₆), 25 °C, TMS) δ = 62.7, 118.6, 120.0, 121.9, 125.7, 126.2, 127.0, 127.2, 127.5, 128.4, 130.3, 131.4, 133.4, 139.8, 170.7. HRMS (ESI): m/z calcd for C₂₈H₂₂N₂O₄S₂ (M-H)⁻: 513.0953; found, 513.1045.

Triethylammonium (*E*)-4-nitro-*N*-(3-(4-nitrophenyl sulfonylimino)-2,4-diphenylcyclobut-1-enyl) benzenesulfonimidate (table 2, entry 3)

Compound **3b** was prepared according the general procedure and purified by recrystalization in ethanol as a yellow solid: mp 214-215 °C; ¹H NMR (300 MHz, CDCl₃, 25°C, TMS): δ 1.36-1.32 (t, 9H, 7.2 Hz), 3.16-1.08 (q, 6H, 7.2 Hz), 5.48 (s, 1H), 6.99-7.01 (m, 2H), 7.09-7.18 (m, 3H), 7.24-7.34 (m, 9H), 7.86-7.89 (m, 4H), 8.01-8.03 (d, 2H, 7.2 Hz) ppm; ¹³C NMR (75 MHz, CDCl3, 25°C, TMS) δ = 8.9, 47.2, 62.8, 123.2, 126.4, 126.6, 127.2, 128.0, 129.7, 148.3, 148.9, 172.6 ppm. HRMS (ESI): m/z calcd for C₃₄H₃₅N₅O₈S₂ (M+H)⁺: 706.2005; found, 706.1961.

Triethylammonium (*E*)-2-nitro-*N*-(3-(2-nitrophenyl sulfonylimino)-2,4-diphenylcyclobut-1-enyl) benzenesulfonimidate (table 2, entry 4)

Compound **3c** was prepared according the general procedure and purified by recrystalization in ethanol as a yellow solid: mp 203-204 °C; ¹H NMR (500 MHz, DMSO-d₆, 25°C): δ 1.12-1.15 (t, 9H, 7 Hz), 3.00-3.04 (q, 6H, 7 Hz), 5.08 (s, 1H), 6.89-6.95 (m, 4H), 7.00-7.02 (m, 3H), 7.16-7.18 (m, 1H), 7.28-7.33 (m, 4H), 7.51-7.59 (m, 4H), 7.89-7.90 (d, 2H, 7.5 Hz); ¹³C NMR (125 MHz, DMSO-d₆, 25°C) δ = 8.9, 46.4, 63.3, 119.8, 123.8, 126.1, 126.5, 127.3, 128.0, 128.3, 128.7, 131.7, 131.9, 133.1, 135.1, 137.6, 147.5, 172.8. HRMS (ESI): m/z calcd for C₃₄H₃₅N₅O₈S₂ (M+H)⁺: 706.2005; found, 706.1908.

Triethylammonium(E)-4-chloro-N-(3-(4-chlorophenylsulfonylimino)-2,4-diphenylcyclobut-1-envl)benzenesulfonimidate (table 2, entry 5)

Compound **3d** was prepared according the general procedure and purified by recrystalization in ethanol as a white solid: mp 206-207 °C; ¹H NMR (300 MHz, CDCl₃, 25°C, TMS): δ 1.08-1.12 (m, 9H), 2.91-2.95 (m, 6H), 5.38 (sm, 1H), 6.79-6.82 (m, 4H), 6.98 (m, 4H), 7.12-7.26 (m, 8H), 7.53-7.55 (m, 2H); ¹³C NMR (75 MHz, DMSO (d₆), 25°C, TMS) δ = 7.9, 45.5, 61.9, 123.7, 124.1, 125.2, 125.3, 126.5, 126.6, 126.7, 128.5, 129.8, 141.7, 170.6. HRMS (ESI): m/z calcd for C₃₄H₃₅Cl₂N₃O₄S₂ (M+H)⁺: 684.1524; found, 684.1428.

(E)-N,N'-(2,4-Diphenylcyclobut-1-ene-1-yl-3-

ylidene)bis(4-bromobenzenesulfonamide) (table 2, entry 6)

Compound **4b** was prepared according the general procedure and purified by column chromatography on silica gel (60-120 mesh) with ethyl acetate and ethanol as a white solid: mp 172-173 °C; ¹H NMR (500 MHz, DMSO (d₆), 25°C, TMS): δ 5.14 (s, 1 H), 6.87-6.97 (m, 5H), 7.06-7.24 (m, 3H), 7.34-7.37 (m, 2H), 7.44-7.52 (m, 2H), 7.77 (m, 2 H), 7.87-7.96 (m, 2H), 8.02-8.00 (d, 2H, 7.5Hz) ppm; ¹³C NMR (125 MHz, DMSO (d₆), 25°C, TMS) δ = 63.0, 120.1, 126.2, 127.5, 127.9, 128.5, 128.6, 129.0, 129.7, 130.2, 132.0, 132.7, 134.9, 137.4, 141.4, 172.9 ppm. HRMS (ESI): m/z calcd for C₂₈H₂₀Br₂N₂O₄S₂ (M-H)⁻: 668.9153; found, 668.9244.

(*E*)-*N*,*N*'-(2,4-Diphenylcyclobut-1-ene-1-yl-3ylidene)bis(3-(trifluoromethyl)benzenesulfonamide) (table 2, entry 7)

Compound **4c** was prepared according the general procedure and purified by column chromatography on silica gel (60-120 mesh) with ethyl acetate and ethanol as a white solid: mp 148-149 °C; ¹H NMR (300 MHz, CDCl₃-DMSO (d₆), 25°C, TMS): 5.41 (s, 1 H), 6.88-6.91 (m, 2H), 7.01-7.04 (m, 3H), 7.11-7.15 (m, 6H), 7.27-7.32 (m, 3H), 7.44 (m, 4H), 8.04-8.06 (d, 2H, 7.5Hz) ppm; ¹³C NMR (75 MHz, CDCl₃-DMSO (d₆), 25°C, TMS) $\delta = 62.4$, 121.3, 122.6, 124.9, 125.9, 136.4, 127.3, 128.1, 128.8, 129.0, 129.2, 130.0, 131.4, 137.0, 143.3, 172.3 ppm. HRMS (ESI): m/z calcd for C₃₀H₂₀F₆N₂O₄S₂ (M-H)⁻: 649.0691; found, 649.0711.

Triethylammonium (*E*)-*N*-3-(naphthalen-2-ylsulfonyl imino)-2,4-diphenylcyclobut-1-enylnaphthalene-2sulfonimidate (table 2, entry 8)

Compound **3e** was prepared according the general procedure and purified by recrystalization in ethanol as a white solid: mp 246-247 °C; ¹H NMR (300 MHz, CDCl₃, 25°C, TMS): δ 1.25-1.29 (t, 9H, 7.2 Hz), 3.02-3.09 (q, 6H, 7.2 Hz), 5.56 (s, 1H), 6.86-6.92 (m, 3H), 7.10-7.12 (m, 1H), 7.19-7.30 (m, 5H), 7.37-7.48 (m, 8H), 7.56-7.60 (m, 4H), 7.69-7.71 (m, 2H), 8.05-8.08 (d, 2H, 7.2 Hz); ¹³C NMR (75 MHz, CDCl₃, 25°C, TMS) δ = 8.8, 46.9, 63.3, 120.9, 122.6, 125.5, 126.3, 126.6, 126.9, 127.47, 127.6, 127.8, 128.0, 129.2, 129.5, 131.9, 134.0, 138.6, 139.7, 171.7. HRMS (ESI): m/z calcd for C₄₂H₄₁N₃O₄S₂ (M+H)⁺: 716.2616; found, 716.2596.

(*E*)-*N*,*N*'-(2,4-Bis(4-(n-pentyl)phenylcyclobut-1-ene-1yl-3-ylidene)bis(4-(methyl)benzenesulfonamide (table 2, entry 10)

Compound **4d** was prepared according the general procedure and purified by column chromatography on silica gel (60-120 mesh) with ethyl acetate and ethanol as a white solid: mp 146-147 $^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃, 25°C, TMS): 0.84-0.94 (m, 6H), 1.26-1.50 (m, 12 H), 2.14 (s, 6H), 2.37-2.46(m, 4H), 2.77-3.02 (m, 8H), 5.39 (s, 1H), 6.60-6.66 (m, 6H), 6.86-7.02(m, 8H), 7.81-7.83 (d, 2H, 6.6Hz); ¹³C NMR (75 MHz, CDCl₃, 25°C,

TMS) $\delta = 13.9, 21.1, 22.4, 22.6, 31.1, 31.4, 31.8, 35.6, 212.2, 125.9, 126.3, 127.5, 128.0, 128.4, 128.9, 129.2, 134.8, 138.9, 140.3, 141.0, 171.5. HRMS (ESI): m/z calcd for C₄₀H₄₆N₂O₄S₂ (M-H)⁻: 681.2821; found, 681.2855.$

(E)-N,N'-(2,4-Bis(4-(n-pentyl)phenylcyclobut-1-ene-1**yl-3-ylidene)dibenzenesulfonamide** (table 2, entry 11) Compound 4e was prepared according the general procedure and purified by column chromatography on silica gel (60-120 mesh) with ethyl acetate and ethanol as a white solid: mp 127-128 °C; ¹H NMR (300 MHz, CDCl₃, 25°C, TMS): 8 0.84-0.95 (m, 6H), 1.28-1.51 (m, 12 H), 2.24 (m, 2H), 2.5 (m, 6H), 5.36 (s, 1H), 6.44 (m, 2H), 6.76-6.78 (m, 5H), 6.91-7.04 (m, 8H), 7.78-7.81 (d, 2H, 7.2 Hz);¹³C NMR (75 MHz, CDCl₃-DMSO (d₆), 25° C, TMS) $\delta = 21.6, 55.3, 55.4, 64.7, 65.0, 77.6, 113.4,$ 113.9, 114.0, 115.2, 118.9, 119.8, 126.5, 126.7, 128.1, 128.2, 128.6, 128.6, 128.7, 129.0, 129.1, 129.3, 129.8, 130.2, 130.8, 134.8, 134.9, 135.8, 141.0, 144.9, 145.0, 160.3, 167.0, 167.7. HRMS (ESI): m/z calcd for C₃₈H₄₂N₂O₄S₂ (M-H)⁻: 653.2508; found, 653.2538.

(E)-N,N'-(2,4-Bis(4-(n-pentyl)phenylcyclobut-1-ene-1vl-3-vlidene)dinaphthalenesulfonamide (table 2, entry 12) Compound 4f was prepared according the general procedure and purified by column chromatography on silica gel (60-120 mesh) with ethyl acetate and ethanol as a white solid: mp 161-162 °C; ¹H NMR (300 MHz, CDCl₃-DMSO (d₆), 25°C, TMS): 0.84-0.94 (m, 6H), 1.29-1.38 (m, 12 H), 1.54-1.56 (m, 2H), 2.32 (m, 2H), 5.43 (s, 1H), 6.68-6.71 (m, 2H), 6.99-7.08 (m, 4), 7.23-7.6 (m, 2H), 7.46-7.52 (m, 4H), 7.61-7.65 (m, 3H), 7.76-7.78 (m, 2H), 7.86-7.89 (d, 2H, 7.8 Hz); ¹³C NMR (75 MHz, CDCl₃-DMSO (d₆), 25°C, TMS) δ = 19.0, 19.1, 27.2, 27.3, 35.3, 35.9, 36.0, 36.6, 40.0. 40.4, 67.3, 124.0, 127.6, 130.8, 131.1, 131.5, 132.0, 132.4, 132.6, 132.8, 133.9, 134.0, 136.6, 135.5, 144.5, 145.5, 145.7, 175.9. HRMS (ESI): m/z calcd for $C_{46}H_{46}N_2O_4S_2$ (M-H)⁻: 753.2821; found, 753.2841.

(*E*)-*N*,*N*'-(2,4-Bis(4-(trifluoromethyl)phenyl)cyclobut-1ene-1-yl-3-ylidene)dibenzenesulfonamide (table 2, entry 13) Compound 4g was prepared according the general procedure and purified by column chromatography on silica gel (60-120 mesh) with ethyl acetate and ethanol as a white solid: mp 135-136 °C; ¹H NMR (300 MHz, CDCl₃-DMSO (d₆), 25°C, TMS): δ 5.49 (s, 1H), 6.81-6.83 (m, 2H), 7.11-7.19 (m, 10H), 6.73-6.79 (m, 1.05H), 6.98-7.17 (m, 5.41H), 7.25-7.27 (m, 4H), 8.12-8.15 (d, 2H, 8.4 Hz); ¹³C NMR (75 MHz, CDCl₃-DMSO (d₆), 25°C, TMS) δ = 62.6, 119.1, 119.8, 125.2, 127.1, 127.2, 130.1, 142.6, 172.6. HRMS (ESI): m/z calcd for C₃₀H₂₀F₆N₂O₄S₂ (M-H)⁻: 649.0691; found, 649.0723.

Triethylammonium(E)-4-chloro-N-(3-(4-chlorophenylsulfonylimino)-2,4-bis(4-(trifluoromethyl)phenyl)cyclobut-1-enyl)benzenesulfonimidate(table 2,entry 14)

Compound **3f** was prepared according the general procedure and purified by recrystalization in ethanol as a white solid: mp 191-192 °C; ¹H NMR (300 MHz, CDCl₃, 25°C, TMS): δ 1.18-1.21 (m, 9H), 3.02-3.14 (m, 6H), 5.31 (s, 1H), 6.87-6.89 (m, 4H), 6.96-7.01 (m, 4H), 7.11-7.19 (m, 7H), 7.94-7.95 (m, 2H), 7.26-7.52 (m, 9.16H); ¹³C NMR (75 MHz, CDCl₃, 25°C, TMS) δ = 8.9, 46.9, 64.1, 122.6, 126.3, 126.6, 127.0, 127.4, 127.6, 127.9, 128.1, 129.3, 129.6, 131.9, 134.1, 139.7, 171.7. HRMS (ESI): m/z calcd for C₃₆H₃₃Cl₂F₆N₃O₄S₂ (M+H)⁺: 819.1272; found, 819.1136.

Triethylammonium(E)-N-3-(naphthalen-2-ylsulfonylimino)-2,4-bis(4-(trifluoromethyl)phenyl)cyclobut-1-

enylnaphthalene-2-sulfonimidate (table 2, entry 15) Compound **3g** was prepared according the general procedure and purified by recrystalization in ethanol as a white solid: 185-186 mp °C; ¹H NMR (300 MHz, CDCl₃-DMSO (d₆), 25°C, TMS): δ 1.25-1.30 (t, 9H, 7.2 Hz), 3.05-3.12 (q, 6H, 7.2 Hz), 5.59 (s, 1H), 6.70-6.73 (m, 2H), 7.09-7.12 (m, 2H), 7.21-7.29 (m, 5H), 7.45-7.52 (m, 6H), 7.57-7.75 (m, 10H), 8.13-8.16 (d, 2H, 8.4 Hz); 13C NMR (75 MHz, CDCl₃-DMSO (d₆), 25°C) δ = 8.5, 46.4, 63.5, 118.7, 120.0, 121.9, 125.7, 126.2, 127.1, 127.3, 127.5, 128.4, 130.3, 131.4, 133.4, 139.8, 170.7. HRMS (ESI): m/z calcd for C₄₄H₃₉F₆N₃O₄S₂ (M+H)⁺: 851.2364; found, 851.2213.

¹H & ¹³C NMR spectral figures

Fig. 1. ¹H-NMR spectrum of triethylammonium (*E*)-*N*-2,4-diphenyl-3 (tosylimino) cyclobut-1-enyl-4-methylbenzenesulfonimidate (table 2, entry 1).

Fig. 2. 13 C-NMR spectrum of triethylammonium (*E*)-*N*-2,4-diphenyl-3 (tosylimino) cyclobut-1-enyl-4-methylbenzenesulfonimidate (table 2, entry 1).

Fig. 3. ¹H-NMR spectrum of (E)-N,N'-(2,4-diphenylcyclobut-1-ene-1-yl-3-ylidene) dibenzenesulfonamide (table 2, entry 2).

Fig. 4. 13 C-NMR spectrum of (*E*)-*N*,*N*'-(2,4-diphenylcyclobut-1-ene-1-yl-3-ylidene) dibenzenesulfonamide (table 2, entry 2).

Fig. 5. ¹H-NMR spectrum of triethylammonium (*E*)-4-nitro-N-(3-(4-nitrophenyl sulfonylimino)-2,4-diphenylcyclobut-1-enyl) benzenesulfonimidate (table 2, entry 3).

Fig. 6. 13 C-NMR spectrum of (triethylammonium (*E*)-4-nitro-*N*-(3-(4-nitrophenyl sulfonylimino)-2,4-diphenylcyclobut-1-enyl) benzenesulfonimidate (table 2, entry 3).

Fig. 7. ¹H-NMR spectrum of triethylammonium (*E*)-2-nitro-N-(3-(2-nitrophenyl sulfonylimino)-2,4-diphenylcyclobut-1-enyl) benzenesulfonimidate (table 2, entry 4).

Fig. 8. ¹³C-NMR spectrum of triethylammonium (*E*)-2-nitro-*N*-(3-(2-nitrophenyl sulfonylimino)-2,4-diphenylcyclobut-1-enyl) benzenesulfonimidate (table 2, entry 4).

Fig. 9. ¹H-NMR spectrum of triethylammonium (*E*)-4-chloro-*N*-(3-(4-chlorophenyl sulfonylimino)-2,4-diphenylcyclobut-1-enyl) benzenesulfonimidate (table 2, entry 5).

Fig. 10. ¹³C-NMR spectrum of triethylammonium (*E*)-4-chloro-*N*-(3-(4-chlorophenyl sulfonylimino)-2,4-diphenylcyclobut-1-enyl) benzenesulfonimidate (table 2, entry 5).

Fig. 11. ¹H-NMR spectrum of (E)-N,N-(2,4-diphenylcyclobut-1-ene-1-yl-3-ylidene)bis(4-bromobenzenesulfonamide) (table 2, entry 6).

Fig. 12. ¹³C-NMR spectrum of (E)-N,N-(2,4-diphenylcyclobut-1-ene-1-yl-3-ylidene)bis(4-bromobenzenesulfonamide) (table 2, entry 6).

Fig. 13. ¹H-NMR spectrum of (E)-N,N-(2,4-diphenylcyclobut-1-ene-1-yl-3-ylidene)bis(4-(trifluoromethyl)benzenesulfonamide) (table 2, entry 7).

Fig. 14. ¹³C-NMR spectrum of (E)-N,N-(2,4-diphenylcyclobut-1-ene-1-yl-3-ylidene)bis(4-(trifluoromethyl)benzenesulfonamide) (table 2, entry 7).

Fig. 15. ¹H-NMR spectrum of triethylammonium (*E*)-*N*-3-(naphthalen-2-ylsulfonyl imino)-2,4-diphenylcyclobut-1-enylnaphthalene-2-sulfonimidate (table 2, entry 8).

Fig. 16. ¹³C-NMR spectrum of triethylammonium (*E*)-*N*-3-(naphthalen-2-ylsulfonyl imino)-2,4-diphenylcyclobut-1-enylnaphthalene-2-sulfonimidate (table 2, entry 8).

Fig. 17. ¹H-NMR spectrum of (E)-N,N'-(2,4-bis(4-(n-pentyl)phenylcyclobut-1-ene-1-yl-3-ylidene)bis(4-(methyl)benzenesulfonamide (table 2, entry10).

Fig. 18. ¹³C-NMR spectrum of (E)-N,N-(2,4-bis(4-(n-pentyl)phenylcyclobut-1-ene-1-yl-3-ylidene)bis(4-(methyl)benzenesulfonamide (table 2, entry 10).

Fig. 19. ¹H-NMR spectrum of (E)-N,N-(2,4-bis(4-(n-pentyl)phenylcyclobut-1-ene-1-yl-3-ylidene)dibenzenesulfonamide (table 2, entry 11).

Fig. 20. ¹³C-NMR spectrum of (*E*)-*N*,*N*⁻(2,4-bis(4-(n-pentyl)phenylcyclobut-1-ene-1-yl-3-ylidene)dibenzenesulfonamide (table 2, entry 111).

Fig. 21. ¹H-NMR spectrum of (E)-N,N-(2,4-bis(4-(n-pentyl)phenylcyclobut-1-ene-1-yl-3-ylidene)dinaphthalenesulfonamide (table 2, entry 12).

Fig. 22. ¹³C-NMR spectrum of (E)-N,N-(2,4-bis(4-(n-pentyl)phenylcyclobut-1-ene-1-yl-3-ylidene)dinaphthalenesulfonamide (table 2, entry 12).

Fig. 23. ¹H-NMR spectrum of (E)-N,N'-(2,4-bis(4-(trifluoromethyl)phenyl)cyclobut-1-ene-1yl-3-ylidene)dibenzenesulfonamide (table 2, entry 13).

Fig. 24. ¹³C-NMR spectrum of (E)-N,N'-(2,4-bis(4-(trifluoromethyl)phenyl)cyclobut-1-ene-1-yl-3-ylidene)dibenzenesulfonamide (table 2, entry 13).

Fig. 25. ¹H-NMR spectrum of triethylammonium (*E*)-4-chloro-*N*-(3-(4-chlorophenylsulfonylimino)-2,4-bis(4-(trifluoromethyl)phenyl)cyclobut-1enyl)benzenesulfonimidate (table 2, entry 14).

Fig. 26. 13 C-NMR spectrum of triethylammonium (*E*)-4-chloro-*N*-(3-(4-chlorophenylsulfonylimino)-2,4-bis(4-(trifluoromethyl)phenyl)cyclobut-1enyl)benzenesulfonimidate (table 2, entry 14).

Fig. 27. ¹H-NMR spectrum of triethylammonium (*E*)-*N*-3-(naphthalen-2-ylsulfonyl imino)-2,4-bis(4-(trifluoromethyl)phenyl)cyclobut-1-enylnaphthalene-2-sulfonimidate (table 2, entry 15).

Fig. 28. ¹³C-NMR spectrum of triethylammonium (*E*)-*N*-3-(naphthalen-2-ylsulfonyl imino)-2,4-bis(4-(trifluoromethyl)phenyl)cyclobut-1-enylnaphthalene-2-sulfonimidate (table 2, entry 15).

Excitation energies and oscillator strengths:

Excited	State	1:	Singlet-A	3.6103 eV	343.42 nm	f=0.2926
171	->172		0.70214			
Excited <\$**2>=0.	State 000	2:	Singlet-A	<mark>4.0538 eV</mark>	305.85 nm	f=0.2073
171	->173		0.69941			
Excited <\$**2>=0.	State 000	3:	Singlet-A	4.1551 eV	298.39 nm	f=0.0679
171	->174		0.69750			
Excited <\$**2>=0.	State 000	4:	Singlet-A	4.3127 eV	287.49 nm	f=0.0847
170	->172		0.59827			
170 171	->173 ->175		-0.20485 -0.26335			
Excited	State	5:	Singlet-A	<mark>4.3367 eV</mark>	285.89 nm	f=0.1719
<s**2>=0.</s**2>	000 N172		0 25220			
171	->1/2 ->175		0.25229			
171	->176		0.12707			
Excited <\$**2>=0.	State 000	6:	Singlet-A	4.4784 eV	276.85 nm	f=0.0573
171	->175		-0.14501			
171	->176		0.48949			
171	->177		-0.39552			
171	->178		0.25865			
Excited <\$**2>=0.	State 000	7:	Singlet-A	4.5650 eV	271.60 nm	f=0.0346
167	->172		-0.11381			
167	->175		-0.14494			
171 171	->176		0.28703			
171 171	->178		-0 20468			
171	->179		0.53928			
Evaited	State	۰.	Cinclet N	1 5006 00	270 20 mm	£-0 0252
<s**2>=0.</s**2>	000	0•	Singlet-A	4.5000 EV	270.20 1111	1-0.0252
171	->176		0.37855			
171 171	->1//		0.45775			
171	->179		-0.32851			
Excited	State	9:	Singlet-A	4.6750 eV	265.21 nm	f=0.0155
<s**2>=0.</s**2>	000		0 21204			
171 171	->1//		0.31324 0.58760			
171	->179		0.15572			
Excited <\$**2>=0.	State 000	10:	Singlet-A	4.7221 eV	262.56 nm	f=0.0011
166	->172		0.27608			
166	->173		-0.12838			
170	->172		0.21262			

170 ->173 170 ->174 171 ->178	_	0.53727 0.14146 0.10201			
Excited State <s**2>=0.000 166 ->172 167 ->172 168 ->172 169 ->172</s**2>	11:	Singlet-A 0.24479 0.12361 0.51839 0.16952	4.9309 eV	251.44 nm	£=0.0057
170 ->173 Excited State <s**2>=0.000 166 ->172 168 ->172 171 ->180</s**2>	12:	0.21294 Singlet-A 0.19965 0.20912 0.60086	4.9663 eV	249.65 nm	f=0.0725
Excited State <s**2>=0.000 163 ->172 166 ->172 166 ->173 168 ->172 169 ->172 170 ->173 171 ->180</s**2>	13: - - -	Singlet-A 0.10134 0.38506 0.10343 0.36607 0.11794 0.22125 0.30084	4.9800 eV	248.96 nm	f=0.0290
Excited State <s**2>=0.000 166 ->172 170 ->174 170 ->175 171 ->180</s**2>	14:	Singlet-A 0.14225 0.51403 0.39914 0.10621	5.0224 eV	246.86 nm	f=0.0203
Excited State <s**2>=0.000 166 ->172 167 ->172 168 ->172 169 ->172 171 ->179</s**2>	15:	Singlet-A 0.22305 0.39944 0.11721 0.47480 0.10643	5.0904 eV	243.56 nm	f=0.0159
Excited State <s**2>=0.000 167 ->172 169 ->172 170 ->174 170 ->175</s**2>	16: _ _	Singlet-A 0.43770 0.40365 0.19945 0.24415	5.1196 eV	242.17 nm	f=0.0613
Excited State <s**2>=0.000 167 ->172 169 ->172 170 ->174 170 ->175</s**2>	17: - -	Singlet-A 0.30427 0.13463 0.36429 0.47067	5.1199 eV	242.16 nm	£=0.0083
Excited State <s**2>=0.000 165 ->172 165 ->173</s**2>	18:	Singlet-A 0.43674 0.29869	5.2295 eV	237.08 nm	f=0.0029

165 ->1	L74	-0.10977			
168 ->1	L73	-0.20143			
169 ->1	L77	0.21879			
169 ->1	L78	0.19490			
Excited Sta	ate 19:	Singlet-A	5.2396 eV	236.63 nm	f=0.0044
<s**2>=0.000</s**2>)				
163 ->1	L72	-0.11843			
165 ->1	L73	0.11976			
168 ->1	L73	-0.24618			
168 ->1	L75	0.10609			
168 ->1	L76	0.19951			
168 ->1	L77	-0.11254			
170 ->1	L74	0.11087			
170 ->1	L76	-0.20352			
170 ->1	L77	-0.29225			
170 ->1	L78	0.30875			
170 ->1	L80	0.10145			
Excited Sta	ate 20:	Singlet-A	5.2891 eV	234.42 nm	f=0.0025
<s**2>=0.000</s**2>)				
160 ->1	L74	0.12516			
161 ->1	L72	0.21081			
161 ->1	L74	0.10684			
162 ->1	L72	0.43138			
162 ->1	L73	0.12572			
164 ->1	L73	-0.10607			
164 ->1	L74	0.31209			
164 ->1	L75	-0.11367			
170 ->1	L76	0.16255			

Fig. g. HOMO

Fig.h. LUMO