Supporting Information

1. General Information	2
2. Characterization of catalyst 4d	3
3. Table S1. Catalyst screening for the [4 + 2] annulation of	substituted
allenoate 2 and phenylidenemalononitrile 1a'	3
4. Table S2. Investigation on temperature and solvent effect	4
5. NMR spectra for catalyst 4d	5
6. NMR spectra and HPLC spectra for compounds 3 and 6	6
7. Determination of Configurations for compounds 3 and 6	41

1. General Information

The ¹H NMR spectra were recorded on a DPX-300 or Varian EM-360 (300 MHz). All chemical shifts (δ) were given in ppm. Data were reported as follows: chemical shift, integration, multiplicity (s = single, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet) and coupling constants (Hz). ¹³C NMR spectra were recorded on a DPX-300 (300 MHz) or DPX-400 (400 MHz). Flash column chromatography was performed using H silica gel. For thin-layer chromatography (TLC), silica gel plates (HSGF 254) were used and compounds were visualized by irradiation with UV light. Analytical high performance liquid chromatography (HPLC) was carried out on WATERS equipment using chiral columns. Melting points were determined on a SGW X-4 melting point and were uncorrected. Optical rotations were measured on a JASCO P-1010 Polarimeter at λ = 589 nm. IR spectra were recorded on a Perkin-Elmer 983G instrument. Mass spectra analysis was performed on API 200 LC/MS system (Applied Biosystems Co. Ltd.). The enantiomeric excesses of products were determined by chiral-phase HPLC analysis, using a Daicel Chiralcel OD, AD-H and AS-H column.

All ethyl 2-substitutedmethylallenoates were synthesized by reported methods and stored at 4 °C prior to use.^{1,2} All α -cyanoacrylates were prepared using the standard knoevenagel condensation conditions from corresponding aldehydes. All acyl protected aminophosphines 4 were synthesized according to procedures reported previously.^{3,4} All reactions were carried out employing oven-dried glassware. Unless otherwise indicated, all compounds and reagents were purchased from commercial suppliers and purified by standard techniques.

¹ X.-F. Zhu, J. Lan and O. Kwon, J. Am. Chem. Soc. 2003, **125**, 4716.

² R. P. Wurz and G. C. Fu, J. Am. Chem. Soc. 2005, **127**, 12234.

³ H. Xiao, Z. Chai, C.-W. Zheng, Y.-Q. Yang, W. Liu, J.-K. Zhang and G. Zhao, *Angew. Chem, Int. Ed.* 2010, **49**, 4467. ⁴ H. Xiao, Z. Chai, H.-F. Wang, D. Cao, W. Liu, X.-W. Wang, Y. Lu, Y.-Q. Yang and G. Zhao, *Chem. Eur. J.* 2011, **17**,

^{10562.}

2. Characterization of catalysts 4d

(S)-3,5-dichloro-N-(1-(diphenylphosphino)-3,3-dimethylbutan-2-yl)benzamide (4d)

PPh₂Cl HN \downarrow Yield: 72%; White solid. m.p. = 164-166°C; [α]_D²⁶ 35.7 (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.42 (m, 5H), 7.36-7.30 (m, 8H), 5.73 (d, *J* = 10.1 Hz, 1H), 4.30 (m, 1H), 2.51 (dt, *J* = 13.8, 2.3 Hz, 1H), 2.30 (dd, *J* = 13.8, 12.5 Hz, 1H), 1.00 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz) δ 164.4, 138.7 (d, *J*_{C-P} = 13.9 Hz), 138.4 (d, *J*_{C-P} = 13.9 Hz), 137.8, 135.2, 132.9, 132.7, 131.0, 129.0 (d, *J*_{C-P} = 16.5 Hz), 128.7 (q, *J*_{C-P} = 6.9 Hz), 128.6 (d, *J*_{C-P} = 6.9 Hz), 125.4, 56.2 (d, *J*_{C-P} = 14.7 Hz), 36.0 (d, *J*_{C-P} = 7.0 Hz), 30.4 (d, *J*_{C-P} = 13.8 Hz), 26.3; ³¹P NMR (CDCl₃, 122 MHz) δ -20.1; IR (neat): 3246, 3071, 2962, 1637, 1565 1433, 1305, 1071, 1026, 805, 740, 695; HRMS (ESI): calcd. for M⁺(C₂₅H₂₆NOCl₂P) requires 457.1129, found 457.1127.

3. Table S1. Catalyst screening for [4 + 2] annulation of substituted

allenoate 2 and phenylidenemalononitrile 1a^{'a}

NC CN Ph +	• CO ₂ Et <u>4 (10</u> cO ₂ Et solve	mol%) nt, RT	N ,,CO₂Et ⊂CO₂Et	
1a'	2	3a'		
R ¹ NHR ²	Ph ₂ Bn Pl HN N	Ph ₂ HPh NHR ²	PPh ₂	
4a : R ¹ /R ² = Bn/Ac	S	4g : R ² =CF ₃ a	cetyl	
4b : $R^{1}/R^{2} = Bn/3$,	5-bisCF ₃ benzoyl 4e	4j : R ² =Boc		
4d : $R^{1}/R^{2} = t$ -Bu/3	3-bisClbenzoyl	41 : R ⁻ = 3,5-b 4m : R ² = 3,5-b	isCidenzoyi iisNO ₂ benzoyl	
Entry	Catalyst	$\operatorname{Yield}^{b}(\%)$	$D.r.^{c}$	ee^{d} (%)
1	4a	81	70:30	88/20
2	4b	99	73:27	95/7
3	4c	81	57:43	90/37
4	4d	54	72:28	93/19
5	4e	trace	-	-
6	4 g	89	44:56	65/39
7	4j	75	43:57	51/2
8	41	99	41:59	81/51
9	4m	99	66:34	84/24

^{*a*} All reactions were carried out with **1a'** (0.1 mmol) and α -substituted 2, 3-butadienoate **2** (0.2 mmol) in the presence of **4** (0.01 mmol) in dichloromethane (1.0 mL) at room temperature.

^b Yields of isolated products.

^{*c*} Determined by isolated yield.

^{*d*} Determined by chiral HPLC analysis.

4. Table S2. Investigation on temperature and solvent effect^{*a*}

NC CO ₂ Et	+ CO ₂ Et	4k (10 mol%) Solvent, -10 °C	EtO ₂ C CN Ph	.CO ₂ Et CO ₂ Et	
1a	2		3a		
Entry	solvent	$\operatorname{Yield}^{b}(\%)$	Time/h	D.r. ^c	ee^{d} (%)
1 ^e	CH ₂ Cl ₂	97	2	19:1	94
2	CH_2Cl_2	97	12	19:1	95
3^{f}	CH_2Cl_2	65	24	19:1	95
4	THF	84	12	14:1	90
5	CH ₃ CN	91	12	14:1	76
6	o-xylene	94	24	19:1	87
7	toluene	89	24	19:1	90
8	Et ₂ O	66	12	15:1	91
9	CH ₂ ClCH ₂ Cl	99	4	19:1	95
10 ^g	CH ₂ ClCH ₂ Cl	94	4	19:1	96

^{*a*} All reactions were carried out with **1a** (0.08 mmol) and 2-(2-ethoxy-2-oxoethyl)-2, 3-butadienoate **2** (0.16 mmol) in the presence of **4k** (0.008 mmol) in 0.8 mL of solvent at $-10 \,\text{c}$.

^b Yields of isolated products.

^c Determined by ¹H NMR.

^d Determined by chiral HPLC analysis.

^{*e*} The reaction temperature was 0 $^{\circ}$ C.

^f The reaction temperature was - 18 °c.

^g The reaction was conducted at -18 c with 12 mol% of 4k.

5. NMR spectra for catalyst 4d

(S)-3,5-dichloro-N-(1-(diphenylphosphino)-3,3-dimethylbutan-2-yl)benzamide (4d)

6. NMR spectra and HPLC spectra for compounds 3 and 6

(1*R*,3*S*)-diethyl 2,2-dicyano-1,2,3,6-tetrahydro-[1,1'-biphenyl]-3,4-dicarboxylate (3a')

Peak Results

		Name	RT	Area	Height	% Height	% Area
	1		18.685	361015	14390	59.80	50.05
[2		27.844	360289	9672	40.20	49.95

Peak Results

	Name	RT	Area	Height	% Height	% Area
1		18.371	3132376	122125	97.90	97.33
2		27.467	86014	2619	2.10	2.67

(1R,3R)-diethyl 2,2-dicyano-1,2,3,6-tetrahydro-[1,1'-biphenyl]-3,4-dicarboxylate (S3a')

Peak Results

	Name	RT	Area	Height	% Height	% Area
1		9.057	391481	19335	60.68	49.76
2		13.177	395188	12526	39.32	50.24

色谱峰结果

	名字	保留时间 (分钟)	面积 (微伏*秒)	高度 (微伏)	% 面积
1		8.916	212822	10419	46.50
2		12.749	244881	8017	53.50

(1R,2R,3R)-triethyl 2-cyano-1,2,3,6-tetrahydro-[1,1'-biphenyl]-2,3,4-tricarboxylate (3a)

1)

1.313 1.296 1.286 1.278 1.256 1.256 1.256 0.932 0.932 0.936 0.936

 $\mathcal{V}\mathcal{W}$

Peak Results

	Name	RT	Area	Height	% Height	% Area
1		10.399	13602097	520362	60.11	49.91
2		15.015	13649203	345274	39.89	50.09

Peak Results

	Name	RT	Area	Height	% Height	% Area
1		10.051	689564	28782	3.25	2.06
2		14.331	32859855	856482	96.75	97.94

(1R,2R,6R)-triethyl 1-cyano-6-isopropylcyclohex-3-ene-1,2,3-tricarboxylate (3b)

色谱峰结果

	名字	保留时间 (分钟)	面积 (微伏*秒)	高度 (微伏)	% 面积
1		9.191	21676381	949686	50.68
2		10.545	21092376	779402	49.32

色谱峰结果

	名字	保留时间 (分钟)	面积 (微伏*秒)	高度 (微伏)	% 面积
1		9.229	747530	35658	1.35
2		10.459	54583924	1772413	98.65

(1*R*,2*R*,6*R*)-triethyl 1-cyano-6-(naphthalen-2-yl)cyclohex-3-ene-1,2,3-tricarboxylate (3c)

	口相呼和不										
	名字	保留时间 (分钟)	面积 (微伏*秒)	高度 (微伏)	% 面积						
1		19.792	53767881	937386	49.60						
2		41.966	54645810	441481	50.40						

色谱峰结果

	名字	保留时间 (分钟)	面积 (微伏*秒)	高度 (微伏)	% 面积
1		20.608	5943755	100432	2.47
2		43.579	234701653	1658442	97.53

(1R,2R,3R)-triethyl 4'-bromo-2-cyano-1,2,3,6-tetrahydro-[1,1'-biphenyl]-2,3,4-tricarboxylate (3d)

(1R,2R,3R)-triethyl 2-cyano-4'-fluoro-1,2,3,6-tetrahydro-[1,1'-biphenyl]-2,3,4-tricarboxylate (3f)

 2
 28.435
 304714.406
 25402404.000
 97.4676

 总计
 317544.943
 26062401.938
 100.0000

(1R,2R,3R)-triethyl 3'-chloro-2-cyano-1,2,3,6-tetrahydro-[1,1'-biphenyl]-2,3,4-tricarboxylate (3h)

(1*S*,2*R*,3*R*)-triethyl 2'-bromo-2-cyano-1,2,3,6-tetrahydro-[1,1'-biphenyl]-2,3,4-tricarboxylate (3i)

(1S,2R,3R)-triethyl 2-cyano-2'-fluoro-1,2,3,6-tetrahydro-[1,1'-biphenyl]-2,3,4-tricarboxylate (3j)

色谱峰结果					
	名字	保留时间 (分钟)	面积 (微伏*秒)	高度 (微伏)	% 面积
1		14.801	29029711	715967	50.93
2		20.122	27973465	487886	49.07

(1R,2R,3R)-triethyl 2-cyano-3'-methoxy-1,2,3,6-tetrahydro-[1,1'-biphenyl]-2,3,4-tricarboxylate (3l)

			Results		
Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		16.273	214201.203	10110994.000	54.5046
2		31.307	95763.148	8439740.000	45.4954
Total			309964.352	18550734.000	100.0000

(1*S*,2*R*,6*S*)-triethyl 1-cyano-6-(thiophen-2-yl)cyclohex-3-ene-1,2,3-tricarboxylate (3m)

色谱峰结果

	名字	保留时间 (分钟)	面积 (微伏*秒)	高度 (微伏)	% 面积
1		15.101	966420	25762	3.57
2		17.649	26131458	557055	96.43

(1R,2R,3S)-diethyl 2-benzoyl-2-cyano-1,2,3,6-tetrahydro-[1,1'-biphenyl]-3,4-dicarboxylate (6)

色谱峰结果

	名字	保留时间 (分钟)	面积 (微伏*秒)	高度 (微伏)	% 面积
1		16.365	2751200	70596	50.69
2		24.440	2676810	46442	49.31

色谱峰结果

	名字	保留时间 (分钟)	面积 (微伏*秒)	高度 (微伏)	% 面积
1		16.628	925592	24354	0.74
2		24.664	124373113	1839996	99.26

(1R,2R,3R)-diethyl 2-benzoyl-2-cyano-1,2,3,6-tetrahydro-[1,1'-biphenyl]-3,4-dicarboxylate (S6)

名字 保留时间 (分钟) 面积 (微伏*秒) 高度 (微伏) % 面和 1 16.266 1997/453 57720 40.0						
1 16 266 1897453 57720 40 (名字	保留时间 (分钟)	面积 (微伏*秒)	高度 (微伏)	% 面积
1 10.200 1007455 57729 49.3	1		16.266	1887453	57729	49.92
2 21.451 1893377 38294 50.0	2		21.451	1893377	38294	50.08

M.	1.00	2.00	144	
11	1955	100	<u>er</u> .	
	HE I		28	270

	名字	保留时间 (分钟)	面积 (微伏*秒)	高度 (微伏)	% 面积
1		18.224	1465277	33808	5.23
2		23.727	26540097	456670	94.77

7. Determination of Configurations for Compounds 3 and 6

The absolute configuration of the product **3i** was assigned by X-ray crystallographic analysis to be (1S,2R,3R) (Figure S1). The configurations of other products derived from α -cyanoacrylates were assigned by analogy. The configuration of the product **6** derived from oxo-diene **5** was determined by NOESY spectrum. The configuration of the known compound **3a'** derived from arylidenemalononitriles were assigned by comparison with literature NMR data.⁵

CCDC 860051 (**3i**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www. ccdc.cam.ac.uk/data_request/cif.

Figure S1. X-ray structure of 3i

Identification code	cd201394
Empirical formula	C22 H24 Br N O6
Formula weight	478.33
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P2(1)
Unit cell dimensions	$a = 8.1070(11) \text{ Å} \qquad \alpha = 90 \text{ deg.}$
	$b = 12.1050(16) \text{ Å}$ $\beta = 101.055(2) \text{ deg.}$
	$c = 11.6138(16) \text{ Å} \qquad \gamma = 90 \text{ deg.}$
Volume	1118.6(3) Å ³
Z, Calculated density	2, 1.420 Mg/m ³
Absorption coefficient	1.874 mm ⁻¹
F(000)	492
Crystal size	0.357 x 0.128 x 0.124 mm ³
Theta range for data collection	1.79 to 26.00 deg.
Limiting indices	-9<=h<=9, -14<=k<=14, -14<=l<=11
Reflections collected / unique	6158 / 4065 [R(int) = 0.0667]
Completeness to theta $= 26.00$	99.6 %
Absorption correction	Empirical

Max. and min. transmission Refinement method Data /restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole 1.0000 and 0.0946 Full-matrix least-squares on F^2 4065 / 29 / 285 0.920 R1 = 0.0553, wR2 = 0.1301 R1 = 0.0745, wR2 = 0.1386 0.017(13) 0.014(3) 0.529 and -0.313 e.A⁻³

NOSEY Spectra of 6

