Electronic Supplementary Information for

Coumarin-Based Chiral Fluorescence Sensor Incorporating Thiourea unit for

Highly Enantioselective Recognition of N-Boc-protected Proline

Zhitao Xing,^a Yong Fu,^a Jiecong Zhou,^a Chengjian Zhu^{*a,b} and Yixiang Cheng^{*a}

^a State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 China E-mail: cjzhu@nju.edu.cn

^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

> Fax: (+86)-25-8331-7761; Tel: (+86)-25-8359-4886; E-mail: cjzhu@nju.edu.cn;

Contents:

SI 1. ¹H NMR, and ¹³C NMR Spectra

Page S2-S5

SI 2. Spectra Data

Page S6-S10

SI 1.¹H NMR, and ¹³C NMR Spectra

¹H-NMR Spectra of **3a** (300MHz, DMSO-d₆)

¹³C-NMR Spectra of **3b** (75MHz, DMSO-d₆)

¹H-NMR Spectra of **1a** (300MHz, DMSO-d₆) -14.69 -8.88 -3.36 -2.50 N H N H , Ю ų 0. ò 1a (*=*R*) 1.00-1.03-1.01-040 00 90 15 13 12 10 9 8 5 3 2 14 11 7 6 4 1 0 ppm

¹³C-NMR Spectra of 1a (75MHz, DMSO-d₆)

S4

¹*H*-*NMR Spectra of* **1***b* (300*MHz*, *DMSO-d*₆)

¹³C-NMR Spectra of **1b** (75MHz, DMSO-d₆)

SI 2. Spectra Data

Figure S1. Concentration effect on the UV-Vis spectra of 1a in toluene

Figure S2. Kinetic study of sensor **1a** $(1.0 \times 10^{-5} \text{ mol dm}^{-3})$ with Boc-*D*-Pro $(1.0 \times 10^{-5} \text{ mol dm}^{-3})$ 10^{-3} mol dm⁻³) in toluene $\lambda ex = 430$ nm, $\lambda em = 502$ nm.

Figure S3. a) Fluorescence spectra of **1b** $(1.0 \times 10^{-5} \text{ mol dm}^{-3} \text{ in toluene})$ with Boc-(*D* or *L*)-Pro $(1.0 \times 10^{-3} \text{ mol dm}^{-3})$ and **b**) the plots of (I/I_0) versus the concentration of acids during the titration of **1b** with Boc-(*D* or *L*)-Pro ($\lambda ex = 430 \text{ nm}$, $\lambda em = 502 \text{ nm}$).

Figure S4. Fluorescence spectra of **1b** $(1.0 \times 10^{-5} \text{ mol dm}^{-3} \text{ in toluene solution})$ with **a**) Boc-*L*-Pro and **b**) Boc-*D*-Pro; Concentrations of Boc-(*L* or *D*)-Pro are from 5.0×10^{-5} mol dm⁻³ to 1.0×10^{-3} mol dm⁻³ ($\lambda_{ex} = 430$ nm).

Figure S5. a) Fluorescence spectra of **1a** $(1.0 \times 10^{-5} \text{ mol dm}^{-3} \text{ in toluene})$ with Boc-(*D* or *L*)-Ala $(1.0 \times 10^{-3} \text{ mol dm}^{-3})$ and b) the plots of (I/I_0) versus the concentration of acids during the titration of **1a** with Boc-(*D* or *L*)-Ala ($\lambda ex = 430 \text{ nm}$, $\lambda em = 502 \text{ nm}$).

Figure S6. a) Fluorescence spectra of **1b** $(1.0 \times 10^{-5} \text{ mol dm}^{-3} \text{ in toluene})$ with Boc-(*D* or *L*)-Ala $(1.0 \times 10^{-3} \text{ mol dm}^{-3})$ and **b**) the plots of (I/I_0) versus the concentration of acids during the titration of **1b** with Boc-(*D* or *L*)-Ala ($\lambda ex = 430 \text{ nm}$, $\lambda em = 502 \text{ nm}$).

Figure S7. a) Fluorescence spectra of **1a** $(1.0 \times 10^{-5} \text{ mol dm}^{-3} \text{ in toluene})$ with Boc-(*D* or *L*)-Phg $(1.0 \times 10^{-3} \text{ mol dm}^{-3})$ and **b**) the plots of (I/I_0) versus the concentration of acids during the titration of **1a** with Boc-(*D* or *L*)-Phg ($\lambda ex = 430 \text{ nm}$, $\lambda em = 502 \text{ nm}$).

Figure S8. a) Fluorescence spectra of **1b** $(1.0 \times 10^{-5} \text{ mol dm}^{-3} \text{ in toluene})$ with Boc-(*D* or *L*)-Phg $(1.0 \times 10^{-3} \text{ mol dm}^{-3})$ and **b**) the plots of (I/I_0) versus the concentration of acids during the titration of **1b** with Boc-(*D* or *L*)-Phg (λ ex = 430 nm, λ em = 502 nm).

Figure S9. a) Fluorescence spectra of **1a** $(1.0 \times 10^{-5} \text{ mol dm}^{-3} \text{ in toluene})$ with Boc-(*D* or *L*)-Val $(1.0 \times 10^{-3} \text{ mol dm}^{-3})$ and **b**) the plots of (I/I_0) versus the concentration of acids during the titration of **1a** with Boc-(*D* or *L*)-Val ($\lambda ex = 430 \text{ nm}, \lambda em = 502 \text{ nm}$).

Figure S10. a) Fluorescence spectra of **1b** $(1.0 \times 10^{-5} \text{ mol dm}^{-3} \text{ in toluene})$ with Boc-(*D* or *L*)-Val $(1.0 \times 10^{-3} \text{ mol dm}^{-3})$ and **b**) the plots of (I/I_0) versus the concentration of acids during the titration of **1b** with Boc-(*D* or *L*)-Val ($\lambda ex = 430 \text{ nm}$, $\lambda em = 502 \text{ nm}$).