A novel approach to isoindolo[2,1-*a*]indol-6-ones

Philip Duncanson, Yuen-Ki Cheong, Majid Motevalli and D. Vaughan Griffiths*

Electronic Supplementary Information

Experimental

General details

Melting points were obtained on a Buchi SMP-20 capillary melting point apparatus and are uncorrected. IR spectra were recorded either a Shimadzu FTIR-8300 or a Perkin Elmer Spectrum 65 FT-IR spectrophotometer and selected bands are reported below. Low resolution mass spectra were obtained using a Bruker Esquire LC mass spectrometer equipped with an electrospray ionisation source or an Agilent GC mass spectrometer equipped with an electron ionisation detector. High resolution mass spectrometry was carried out by the EPSRC facility at Swansea. TLC was performed with alumina backed silica gel 60 F_{254} eluting with the solvent system used for the column chromatography unless otherwise stated and the plates were visualised under UV light or developed in an iodine tank. Column chromatography used silica gel with particle size 33–50 μ m and was purchased from BDH. All other materials were purchased from Sigma-Aldrich Ltd. and used as received unless indicated otherwise.

General procedure to prepare the benzoic acid derivatives 13

A mixture of the appropriate anhydride 11 (20 mmol), 2-aminobenzoic acid 12 (20.5 mmol) and glacial acetic acid (25 cm³) was heated at 110 °C for 16 h. The solution was then cooled and the solvent evaporated to leave a solid residue, which was purified as indicated below.

2-(1,3-Dioxoisoindolin-2-yl)benzoic acid **13a**¹ was prepared from phthalic anhydride and 2-aminobenzoic acid. A pure sample of the acid **13a** (2.51 g, 47%) was isolated as a cream coloured solid, mp 221-222 °C [lit.,² 217 °C (aq EtOH)] by the slow evaporation of an ethanolic solution of the crude product, $\delta_{\rm H}(270 \text{ MHz}, d_6\text{-DMSO})^1$ 7.57 (1 H, dd, J 8 and 1, 3-H), 7.65 (1 H, td, J 8 and 1, 5-H), 7.78 (1 H, td, J 8 and 2, 4-H), 7.89-7.95 (2 H, m, 5'/6'-H), 7.96-8.03 (2 H, m, 4'/7'-H), 8.07 (1 H, dd, J 8 and 2, 6-H), 13.13(1 H, br s, CO₂H); $\delta_{\rm c}(67.9 \text{ MHz}, d_6\text{-DMSO})^1$ 123.5 (x2)(C-4'/7'), 129.3 (C-1), 129.3 (C-5), 130.7 (C-3), 131.0 (C-6), 131.5 (C-2), 131.8 (x2)(C-3a'/7a'), 133.1 (C-4), 134.9 (x2)(C-5'/6'), 166.2 (CO₂H), 167.2 (x2)(C-1'/3'); $v_{\rm max}/{\rm cm}^{-1}$ (ATM) 3170 br, 3091, 1701, 1603, 1495, 1457, 1384, 1293, 1232, 1219, 1174, 1118, 1085, 1074, 896, 882, 833, 791, 774, 755, 718, 705.

4-Chloro-2-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)benzoic acid **13b** was prepared from phthalic anhydride and 2-amino-4chlorobenzoic acid. The crude product was recrystallised from glacial acetic acid to give the pure acid **13b** (4.3 g, 71%) as a white powder, mp 280-281 °C (lit.,³ 269-270 °C (AcOH)); $\delta_{\rm H}$ (270 MHz, d₆-DMSO) 7.72 (1 H, dd, *J* 8.5 and 2, 5-H), 7.75 (1 H, d, *J* 2, 3-H), 7.91-7.96 (2 H, m, 5'/6'-H), 7.98-8.02 (2 H, m, 4'/7'-H), 8.07 (1 H, d, *J* 8, 6-H), 13.37 (1 H, br s, CO₂H); $\delta_{\rm C}$ (67.9 MHz, d₆-DMSO) 123.7 (x2)(C-4'/7'), 128.3 (C-1), 129.5 (C-5), 130.6 (C-3), 131.8 (x2)(C-3a'/7a'), 132.8 (C-6), 133.0 (C-2), 135.0 (x2)(C-5'/6'), 137.2 (C-4), 165.5 (CO₂H), 166.9 (x2)(C-1'/3'); $\nu_{\rm max}/\rm{cm}^{-1}$ (ATM) 1707, 1681, 1594, 1492, 1419, 1317, 1276, 1220, 1105, 896, 867, 841, 779, 712, 693, 680; *m/z* (ESI)⁴ 324 (M+Na⁺. C₁₅H₈ClNNaO₄ requires 324).

2-(5,6-Dichloro-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)benzoic acid **13c** was prepared from 4,5-dichlorophthalic anhydride and 2aminobenzoic acid. The crude product was recrystallised from a chloroform/methanol (98:2) mixture to give the pure acid **13c** (4.2 g, 63 %) as a fawn coloured solid, mp 245-246 °C; $\delta_{\rm H}$ (270 MHz, d₆-DMSO) 7.54 (1 H, d, J 7.5, 3-H), 7.63 (1 H, t, J 7.5, 5-H), 7.77 (1 H, t, J 7.5, 4-H), 8.10 (1 H, d, *J* 7.5, 6-H) 8.29 (2 H, s, 4'/7'-H), 13.22 (1 H, br s, CO₂H); $\delta_{C}(67.9 \text{ MHz}, d_{6}\text{-DMSO})$ 125.8 (x2)(C-4'/7'), 129.0 (C-1), 129.7 (C-5), 130.6 (C-3), 131.2 (C-2), 131.3 (C-6), 131.6 (x2)(C-3a'/7a'), 133.2 (C-4), 138.0 (x2)(C-5'/6'), 165.4 (x2)(C-1'/3'), 166.1 (CO₂H); v_{max}/cm^{-1} (ATM) 3000-2600, 1718, 1687, 1601, 1491, 1452, 1371, 1310, 1280, 1263, 1223, 1140, 1109, 919, 871, 802, 693, 667; ; *m/z* (ESI)⁴ 333.9671 (M-H⁻. C₁₅H₆Cl₂NO₄ requires 333.9679).

4-Chloro-2-(5,6-dichloro-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)benzoic acid **13d** was prepared from 4,5-dichlorophthalic anhydride and 2-amino-4-chlorobenzoic acid. The crude product was recrystallised by the slow evaporation of a solution in a chloroform/methanol (98:2) mixture. The pure acid **13d** (4.9 g, 66%) was isolated as a white powder, mp 254-255 °C; $\delta_{\rm H}(270 \text{ MHz}, d_6\text{-DMSO})$ 7.71-7.76 (2 H, m, 3/5-H), 8.06-8.15 (1 H, m, 6-H), 8.34 (2 H, s, 4'/7'-H), 13.43 (1 H, br s, CO₂H); $\delta_{\rm C}(67.9 \text{ MHz}, d_6\text{-DMSO})$ 125.9 (x2)(C-4'/7'), 128.0 (C-1), 129.7 (C-5), 130.3 (C-3), 131.4 (x2)(C-3a'/7a'), 132.4 (C-2), 132.8 (C-6), 137.2 (C-4), 138.1 (x2)(C-5'/6'), 164.9 (x2)(C-1'/3'), 165.2 (CO₂H); $v_{\rm max}/\rm cm^{-1}$ (ATM) 3050-2650, 1720, 1696, 1595, 1434, 1402, 1364, 1311, 1278, 1221, 1141, 1115, 1096, 890, 760, 736; *m/z* (ESI)⁴ 369.9428 (M+H⁺. C₁₅H₇Cl₃NO₄ requires 369.9435).

N,N-(1,8-Naphthaloyl)-2-aminobenzoic acid 24⁵

A mixture of 1,8-naphthalic anhydride (6.0 g, 30 mmol), 2-aminobenzoic acid (4.3, 30 mmol), triethylamine (4.5 g, 43.5 mmol) and DMF (50 cm³) was heated and stirred at 140 °C for 16 h. Volatile components were then removed by heating under reduced pressure (75 °C at 15 mmHg) and the residue heated in boiling methanol (50 cm³) for 30 min. The resulting solid was then filtered off and dried at 150 °C to give the pure acid **24** (6.5 g, 72 %) as a colourless powder, mp 294-295 °C (lit., ⁵ 298-299 °C, lit., ⁶ 292 °C), $\delta_{\rm H}(270 \text{ MHz}, d_6-DMSO)$ 7.56 (1 H, d, *J* 8, 3-H), 7.61 (1 H, t, *J* 8, 5-H), 7.79 (1 H, t, *J* 8, 4-H), 7.89 (2 H, t, *J* 8, 5'/8'-H), 8.16 (1 H, d, *J* 8, 6-H), 8.45-8.53 (4 H, m, 4'/6'/7'/9'-H); $\delta_{\rm C}(67.9 \text{ MHz}, d_6-DMSO)$ 122.4 (x2)(C-3a'/9a'), 127.3 (x2)(C-5'/8'), 127.9 (C-1), 128.0 (C-5), 129.0 (C-6a'), 130.8 (x2)(C-4'/9'), 131.1 (C-3), 131.3 (C-6), 131.5 (C-9b'), 133.2 (C-4), 134.6 (x2)(C-6'/7'), 136.4 (C-2), 163.8 (x2)(C-1'/3'), 166.0 (CO₂H).

2-(2,5-Dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)benzoic acid 31a

A mixture of 2-aminobenzoic acid (4.2 g, 30 mmol), maleic anhydride (3.0 g, 30 mmol) and acetic acid was heated under reflux in an oil bath at 120-125 °C for 16 h. The reaction mixture was cooled and solvent evaporated under reduced pressure (75 °C at 15 mmHg) to leave a green slurry. DCM (50 cm³) was added, the mixture stirred for 2 h and any solid filtered off, washed with DCM (50 cm³) and air dried. This minor product (850 mg, 12 %) was shown to be 2-{[(2Z)-3-carboxyprop-2-enoy]]amino}benzoic acid; $\delta_{\rm H}(400 \text{ MHz}, d_{6})$ DMSO) 6.68 (1 H, d, J 15.5, 2'-H), 7.00 (1 H, d, J 15.5, 3'-H), 7.21 (1 H, t, J 7.5, 5-H), 7.60 (1 H, td, J 7.5 and 1.3, 4-H), 7.98 (1 H, dd, J 7.5 and 1.3, 6-H), 8.41 (1 H, J 7.5, 3-H), 11.41 (1 H, s, NH), 13.3 (1 H, bs, CO₂H); δ_c (109.2 MHz, d₆-DMSO) 118.3 (C-1), 121.0 (C-3), 123.8 (C-5), 131.1 (C-6), 131.6 (C-2'), 133.9 (C-4), 137.3 (C-3'), 139.7 (C-2), 161.4 (C-4'), 166.2 (C-1'), 169.2 (CO₂H); v_{max}/cm⁻¹ (ATM) 3312, 3100-2500 br, 1688, 1668, 1632, 1605, 1582, 1531, 1411, 1311, 1266, 1170, 971, 883. The major product **31a** was isolated by removing the solvent from the filtrate under reduced pressure (35 °C at 15 mmHg) to give a viscous oil which was then purified by column chromatography on silica gel eluting with a DCM/MeOH 9:1 mixture. The resulting solid was crystallised by the slow evaporation of a DCM solution to give the pure 2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic acid 31a (2.8 g, 43%) as a fawn coloured solid (r_f = 0.15) mp 161-163 °C [lit.,⁷ 160-162 °C (EtOH)]; $\delta_{\rm H}(270 \text{ MHz}, d_6\text{-DMSO})$ 7.23 (2 H, s, 3'/4'-H), 7.41 (1 H, dd, J 8 and 2, 3-H), 7.59 (1 H, td, J 8 and 2, 5-H), 7.72 (1 H, td, J 8 and 2, 4-H), 8.01 (1 H, dd, J 8 and 2, 6-H), 13.12 (1 H, br s, CO₂H); $\delta_c(67.9)$ MHz, d₆-DMSO) 129.7 (x2)(C-1, C-5), 131.2 (C-3), 131.6 (C-6), 131.7 (C-2), 133.6 (C-4), 135.7 (x2)(C-3'/4'), 166.7 (CO₂H), 170.7 $(x_2)(C-2^2/5^2); v_{max}/cm^{-1}$ (ATM) 2973, 2861, 2666, 1683, 1600, 1576, 1494, 1422, 1301, 1269, 1212, 1154, 1096, 1060, 1040, 1008, 955, 909, 831, 805, 772.

2-(3,4-Dichloro-2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic acid 31c

This compound was prepared from dichloromaleic anhydride and 2-aminobenzoic acid using the procedure previously described for the benzoic acids **13** and purified by recrystallisation from a chloroform/methanol 95:5 mixture. The pure product **31c** (3.9 g, 69 %) was isolated as a yellow powder, mp 241-242 °C (lit.⁸ 237-239 °C), $\delta_{\rm H}(270 \text{ MHz}, d_6\text{-DMSO})$ 7.50 (1 H, d, *J* 8, 3-H), 7.65 (1 H, t, *J* 8, 5-H), 7.89 (1 H, t, *J* 8, 4-H), 8.08 (1 H, d, *J* 8, 6-H), 13.37 (1 H, br s, CO₂H); $\delta_{\rm C}(67.9 \text{ MHz}, d_6\text{-DMSO})$ 128.7 (C-1), 130.1 (C-5), 130.3 (C-2), 130.7 (C-3), 131.5 (C-6), 133.2 (x2)(C-3'/4'), 133.6 (C-4), 162.3 (x2)(C-2'/5'), 165.9 (CO₂H); $v_{\rm max}/\rm cm^{-1}$ (ATM) 3222, 1718, 1603, 1491, 1453, 1372, 1226, 1122, 1081, 1018, 901, 883, 820, 758, 732, 648.

General procedure for the preparation of acid chlorides 14

DMF (1 drop) was added to a mixture of the benzoic acid derivative **13** (3.0 mmol) and thionyl chloride (10 cm³) and the mixture stirred at room temperature for 16 h. If any solid remained the mixture was then heated under reflux for 5 min. Volatile components were removed under reduced pressure (40 °C at 15 mmHg). To ensure the removal of any residual thionyl chloride, the residue was redissolved in warm dry toluene (20 cm³) and the toluene and other volatile compounds were then removed under reduced pressure (55 °C at 15 mmHg) taking care to rigorously exclude moisture from the product. The resulting acid chloride **14** was used without further purification.

 $\begin{aligned} & 2-(1,3-Dioxoisoindolin-2-yl)benzoyl chloride 14a \text{ gave } \delta_{\text{H}}(270 \text{ MHz, CDCl}_3) \ 7.42 \ (1 \text{ H, dd}, J \ 8 \text{ and } 1, 3-\text{H}), \ 7.58 \ (1 \text{ H, td}, J \ 8 \text{ and } 1, 5-\text{H}), \ 7.74 \ (1 \text{ H, td}, J \ 8 \text{ and } 1, 4-\text{H}), \ 7.74-7.78 \ (2 \text{ H, m}, 5'/6'-\text{H}), \ 7.86-7.91 \ (1 \text{ H, m}, 4'/7'-\text{H}), \ 8.27 \ (1 \text{ H, dd}, J \ 8 \text{ and } 1, 6-\text{H}); \ \delta_{\text{C}}(67.9 \text{ MHz, CDCl}_3) \ 124.1 \ (x2)(\text{C-4}'/7'), \ 129.5 \ (\text{C-5}), \ 130.4 \ (\text{C-3}), \ 131.1 \ (\text{C-1}), \ 131.4 \ (\text{C-2}), \ 131.8 \ (x2)(\text{C-3a}'/7a'), \ 133.8 \ (\text{C-6}), \ 134.7 \ (x2)(\text{C-5}'/6'), \ 135.3 \ (\text{C-4}), \ 166.3 \ (\text{COCl}), \ 166.9 \ (x2)(\text{C-1}'/3'). \end{aligned}$

4-*Chloro-2*-(*1*,3-*dioxoisoindolin-2*-*yl*)*benzoyl chloride* **14b** gave $\delta_{\rm H}(270 \text{ MHz}, \text{CDCl}_3)$ 7.45 (1 H, d, *J* 2, 3-H), 7.57 (1 H, dd, *J* 8 and 2, 5-H), 7.77-7.82 (2 H, m, 5'/6'-H), 7.90-7.95 (2 H, m, 4'/7'-H), 8.24 (1 H, d, *J* 8, 6-H); $\delta_{\rm C}(67.9 \text{ MHz}, \text{CDCl}_3)$ 124.3 (x2)(C-4'/7'), 129.7 (C-5), 129.8 (C-1), 130.7 (C-3), 131.7 (x2)(C-3a'/7a'), 132.3 (C-2), 134.9 (C-6), 135.0 (x2)(C-5'/6'), 141.5 (C-4), 165.5 (COCl), 165.5 (x2)(C-1'/3').

2-(5,6-Dichloro-1,3-dioxoisoindolin-2-yl)benzoyl chloride 14c gave $\delta_{H}(270 \text{ MHz, CDCl}_{3})$ 7.45 (1 H, dd, J 7.5 and 1, 3-H), 7.68 (1 H, td, J 7.5 and 1, 5-H), 7.82 (1 H, td, J 7.5 and 1, 4-H), 8.05 (2 H, s, 4'/7'-H), 8.37 (1 H, dd, J 7.5 and 1, 6-H); $\delta_{C}(67.9 \text{ MHz, CDCl}_{3})$ 126.3 (x2)(C-4'/7'), 130.0 (C-5), 130.6 (C-3), 130.8 (C-1), 131.1 (x2)(C-3a'/7a'), 131.3 (C-2), 134.4 (C-6), 135.5 (C-4), 139.9 (x2)(C-5'/6'), 165.1 (x2)(C-1'/3'), 166.4 (COCl).

4-Chloro-2-(5,6-dichloro-1,3-dioxoisoindolin-2-yl)benzoyl chloride **14d** gave $\delta_{H}(270 \text{ MHz, CDCl}_3)$ 7.43 (1 H, d, *J* 2, 3-H), 7.58 (1 H, dd, *J* 8 and 2, 5-H), 7.98 (2 H, s, 4'/7'-H), 8.24 (1 H, d, *J* 8, 6-H); $\delta_{C}(67.9 \text{ MHz, CDCl}_3)$ 126.1 (x2)(C-4'/7'), 128.3 (C-1), 129.9 (C-3), 130.6 (C-5), 130.7 (x2)(C-3a'/7a'), 131.7 (C-2), 135.0 (C-6), 139.8 (x2)(C-5'/6'), 141.6 (C-4), 164.5 (x2)(C-1'/3'), 165.4 (COCl). *N,N-(1,8-Naphthaloyl)-2-aminobenzoyl chloride* **25** was prepared from the acid **24** using the same procedure as that used to prepare the acid chlorides **14** and gave $\delta_{H}(270 \text{ MHz, CDCl}_3)$ 7.42(1 H, dd, *J* 8 and 1.5, 3-H), 7.67 (1 H, td, *J* 8 and 1.5, 5-H), 7.76 (2 H, t, *J* 7.5, 5'/8'-H), 7.82 (1 H, td, *J* 8 and 1.5, 4-H), 8.26 (2 H, d, *J* 7.5, 6'/7'-H), 8.40 (1 H, dd, *J* 8 and 1.5, 6-H), 8.60 (2 H, d, *J* 7.5, 4'/9'-H); $\delta_{C}(67.9 \text{ MHz, CDCl}_3)$ 122.7 (x2)(C-3a'/9a'), 127.2 (x2)(C-5'/8'), 129.2 (C-9b'), 129.7 (C-3), 131.3 (C-5), 131.4 (C-6a'), 131.9 (x2)(C-4'/9'), 132.0 (C-1), 134.8 (x2)(C-6'/7'), 135.0 (C-6), 135.8 (C-4), 136.3 (C-2), 164.4 (x2)(C-1'/3'), 165.9 (COCl).

2-(3,4-Dichloro-2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoyl chloride **32c** was prepared from the acid **31c** using the same procedure as that used to prepare the acid chlorides **14** and gave $\delta_{\text{H}}(270 \text{ MHz}, \text{CDCl}_3)$ 7.32 (1 H, d, *J* 8, 3-H), 7.62 (1 H, t, *J* 8, 5-H), 7.74 (1 H, t, *J* 8, 4-H), 8.32 (1 H, d, *J* 8, 6-H); $\delta_{\text{C}}(67.9 \text{ MHz}, \text{CDCl}_3)$ 130.0 (C-2), 130.5 (C-5), 130.9 (C-3), 131.0 (C-1), 134.3 (x2)(C-3'/4'), 134.9 (C-6), 135.8 (C-4), 161.8 (x2)(C-2'/5'), 166.5 (COCl).

The reaction of 2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic acid 31a with oxalyl chloride and thionyl chloride *1. Limited reaction with oxalyl chloride*

A mixture of the benzoic acid **31a** (540 mg, 2.5 mmol), oxalyl chloride (5 cm³) and DMF (1 drop) was stirred for 1 h at room temperature and volatile components were then removed under reduced pressure (40 °C at 15 mmHg). Toluene (15 cm³) was then added and removed under reduced pressure (40 °C at 15 mmHg) to give a brown viscous residue that contained the desired acid chloride **32a** [$\delta_{\rm H}$ (270 MHz, CDCl₃) 6.85 (s, =CH)] as only the minor component (*ca.* 23%). The major component was the halogenated derivative **41** [$\delta_{\rm H}$ (270 MHz, CDCl₃) 3.05 (1 H, dd, *J* 18.8 and 4), 3.48 (1 H, dd, *J* 18.8 and 8.5), 4.82 (1 H, dd, *J* 8.5 and 4)] (*ca.* 77%). Since these components could not be readily separated, the mixture was used to investigate their reactions with triethyl phosphite. 2. Reaction with thionyl chloride for a more extended period.

2-(2,5-Dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)benzoic acid **31a** (1.5 g, 6.9 mmol), thionyl chloride (3 cm³) and dry DCM (15 cm³) were stirred at room temperature for 16 h by which time a dark brown/orange solution had been obtained. The solution was filtered and the filtrate evaporated under reduced pressure (50 °C at 15 mmHg) to leave a viscous residue. Final traces of thionyl chloride were removed by repeatedly adding DCM (20 cm³) and then evaporating the solution under reduced pressure (50 °C, 15 mmHg). The resulting viscous residue was shown to be *2-(3-chloro-2,5-dioxopyrrolidin-1-yl)benzoyl chloride* **41** (1.72 g, 92 %) in a good state of purity and this was used without further purification; $\delta_{\rm H}(270 \text{ MHz}, \text{CDCl}_3)$ 3.05 (1 H, dd, *J* 18.5 and 4, 4'-H), 3.45 (1 H, dd, *J* 18.5 and 8.5, 4-H), 4.82(1 H, dd, *J* 8.5 and 4, 3-H), 7.18-7.32 (1 H, br m, 4-H), 7.58 (1 H, t, *J* 8, 5-H), 7.71 (1 H, br d, *J* 8, 6-H), 8.32 (1 H, d, *J* 8, 3-H); $\delta_{\rm C}(67.9 \text{ MHz}, \text{CDCl}_3)$ 39.6 (C-4'), 49.2 (C-3'), 129.9 (C-3), 130.3 (C-5), 130.9 (C-1), 134.5 (C-6), 134.9 (C-2), 135.8 (C-4), 166.3 (COCl), 171.8 (C-5'), 172.0 (C-2')

X-Ray crystallography

For all complexes, the crystals were glued to a glass fibre and mounted on the diffractometer head. Intensity data for all crystals were collected at 120 K, using a Bruker-Nonius FR591CCD deffractometer, equipped with a Mo-K_a rotating anode ($\lambda = 0.71073$ Å), monochromated by graphite (**15a**) or 10 cm confocal focusing mirrors (**28**, **35c** and **37c**). The crystals were positioned 30 mm from the CCD and all intensities were measured using a counting time of 20 seconds with 1.0° increments (ø and Ω) to fill the Ewald sphere. The unit cell parameters were determined by least-squares refinement of all data automatically centred reflections with setting angles of 2.91 $\leq 20 \leq 27.48^{\circ}$.

All intensities were collected using the programs COLLECT⁹. Data reductions and refinements were performed using both DENZO¹⁰ and COLLECT according to Lorentz and polarisation effects. Absorption corrections were applied based on multi-scan method and were obtained using SADABS¹¹. X-ray crystal structures were determined using the DirAx¹² program. The programs ORTEP-3¹³ and PLATON¹⁴ were used for drawing the molecules. WINGX¹⁵ was used to prepare material for publication.

All structures were solved by the heavy-atom method using the DIRDIFF99¹⁶ program and refined anisotropically (non-hydrogen atoms) by full-matrix least-squares technique against F^2 using the SHELXL-97¹⁷ program. All H atoms were calculated geometrically and refined by a riding model.

Compound	15a	28	35c	37c
Formula	$C_{19}H_{18}NO_5P$	$C_{23}H_{20}NO_5P$	$C_{15}H_{14}Cl_2NO_5P$	$C_{11}H_5Cl_2NO_2$
$M_{\rm r}({\rm Da})$	371.31	421.37	390.14	254.06
Т (К)	120 (2)	120 (2)	120 (2)	120 (2)
Crystal system	Triclinic	Monoclinic	Monoclinic	Orthorhombic
Space group	P -1	I 2/a	$P2_1/n$	P 2 ₁ n b
<i>a</i> (Å)	8.5690 (2)	22.2526 (5)	12.4096 (3)	3.7524(7)
<i>b</i> (Å)	8.7336 (2)	7.0132 (2)	9.6934 (2)	12.666(3)
c (Å)	11.8798 (3)	25.1963 (6)	27.4755 (7)	21.009(4)
α (°)	81.6460 (10)	90	90	90
β(°)	85.9310 (10)	106.297 (2)	92.9430 (10)	90
γ (°)	88.264 (2)	90	90	90
$V(\text{\AA}^3)$	877.23 (4)	3774.19 (16)	3300.70 (13)	998.5(4)
$D_{\text{Calc}} (\text{Mg/m}^3) (Z)$	1.406 (2)	1.483 (8)	1.570 (8)	1.690 (4)
$\mu_{M}(mm^{-1})$	0.187	0.184	0.516	0.629
Crystal size (mm ³)	0.32 x 0.27 x 0.17	0.30 x 0.17 x 0.04	0.20 x 0.12 x 0.06	0.30 x 0.06 x 0.03
Index ranges for <i>h</i> , <i>k</i> , <i>l</i>	-11/11,-11/11,-15/15	-28/28, -9/9, -27/32	-14/16,-12/12,-34/35	-4/4, -16/16, -26/27
No. of reflections collected	20152	19986	29073	5015
No.of reflections unique (R_{int})	4033 (0.0416)	4293 (0.0538)	7515 (0.0494)	1941 (0.0560)
No. of reflections observed	3408	3406	6115	1681
T _{max/min}	0.9688 and 0.9425	0.9927 and 0.9468	0.9697 and 0.9038	0.9814 and 0.8337
Data/restraints/parameters	4033 / 0 / 237	4293/0/273	7515/0/437	1941 / 1 / 149
Goodness-of-fit (GOF)	1.052	1.092	1.144	1.078
R1, wR ₂ [$I > 2\sigma(I)$]	0.0408, 0.0982	0.0540, 0.1035	0.0648, 0.1204	0.0842, 0.2141
(all data)	0.0498, 0.1037	0.0747, 0.1142	0.0838, 0.1298	0.0983, 0.2260
Largest diff. peak and hole	0.452 and -0.410	0.325 and -0.396	0.407 and -0.435	0.587 and -0.653
$(e/Å^3)$				

Table 1: Crystallographic data for 15a, 28, 35c and 37c¹⁸

Table 1 Selecter	d bond lengths and ang	les for compounds 28 and 3	57c		
	28		37c		
Bond lengths (Å)					
O(1)-C(1)	1.392 (3)	O(1)-C(1)	1.231 (9)		
O(5)-C(16)	1.219 (3)	O(2)-C(5)	1.325 (9)		
N(1)-C(3)	1.402 (3)	N(1)-C(1)	1.362 (9)		
N(1)-C(8)	1.420 (3)	N(1)-C(4)	1.412 (10)		
N(1)-C(16)	1.396 (3)	N(1)-C(7)	1.440 (8)		
P(1)-O(1)	1.597 (2)	C(1)-C(2)	1.468 (10)		
C(1)-C(2)	1.429 (3)	C(2)-C(3)	1.349 (12)		
C(1)-C(8)	1.364 (3)	C(3)-C(4)	1.435 (10)		
C(2)-C(3)	1.411 (3)	C(4)-C(5)	1.358 (10)		
C(8)-C(9)	1.451 (3)	C(5)-C(6)	1.460 (10)		
C(9)-C(14)	1.424 (3)	C(6)-C(7)	1.415 (11)		
C(15)-C(16)	1.480 (3)				
Bond angles (°)					
C(2)-C(1)-C(8)	110.4 (2)	N(1)-C(1)-C(2)	104.9 (6)		
O(1)-C(1)-C(8)	124.8 (2)	N(1)-C(4)-C(3)	105.6 (7)		
O(1)-C(1)-C(2)	124.6 (2)	N(1)-C(4)-C(5)	110.2 (6)		
P(1)-O(1)-C(1)	122.1 (2)	N(1)-C(7)-C(6)	106.2 (6)		
C(1)-C(2)-C(3)	106.0 (2)	C(1)-N(1)-C(4)	111.4 (6)		
C(2)-C(3)-N(1)	107.9 (2)	C(4)-N(1)-C(7)	108.0 (6)		
C(3)-N(1)-C(8)	108.8 (2)	C(1)-C(2)-C(3)	109.4 (7)		
C(8)-N(1)-C(16)	124.8 (2)	C(2)-C(3)-C(4)	108.5 (7)		
C(1)-C(8)-N(1)	106.9 (2)	C(3)-C(4)-C(5)	144.2 (8)		
N(1)-C(8)-C(9)	119.8 (2)	C(4)-C(5)-C(6)	107.4 (7)		
C(8)-C(9)-C(14)	117.4 (2)	C(5)-C(6)-C(7)	108.1 (6)		
C(9)-C(14)-C(15)	121.6 (2)				
C(14)-C(15)-C(16	b) 121.3 (2)				
C(15)-C(16)-N(1)	115.1 (2)				

5

15 a			35c			
Bond lengths (Å)			(a)	(b)		
C(9)-O(2)	1.215 (2)	C(1)-O(1)	1.209 (4)	1.207 (4)		
C(2)-O(1)	1.214 (2)	C(5)-O(2)	1.206 (4)	1.206 (4)		
C(1)-P(1)	1.842 (2)	C(4)-P(1)	1.858 (3)	1.855 (3)		
C(10)-C(11)	1.393 (2)	C(2)-C(3)	1.335 (5)	1.330 (4)		
C(11)-C(1)	1.504 (2)	C(3)-C(4)	1.498 (5)	1.498 (4)		
C(1)-C(2)	1.549 (2)	C(4)-C(5)	1.555 (5)	1.552 (5)		
C(9)-C(10)	1.479 (2)	C(1)-C(2)	1.476 (5)	1.477 (5)		
C(2)-C(3)	1.468 (2)	C(5)-C(6)	1.478 (5)	1.473 (5)		
C(3)-C(4)	1.395 (2)	C(6)-C(11)	1.390 (5)	1.394 (5)		
N(1)-C(9)	1.409 (2)	N(1)-C(1)	1.404 (4)	1.409 (4)		
N(1)-C(1)	1.474 (2)	N(1)-C(4)	1.474 (4)	1.474 (4)		
N(1)-C(4)	1.417 (2)	N(1)-C(11)	1.421 (4)	1.434 (4)		
Bond angles (°)						
C(2)-C(1)-C(11)	120.31 (12)	C(5)-C(4)-C(3)	119.0(3)	118.6 (3)		
P(1)-C(1)-N(1)	109.91 (9)	P(1)-C(4)-N(1)	105.7 (2)	105.7 (2)		
C(2)-C(1)-N(1)	104.40 (11)	C(5)-C(4)-N(1)	104.9 (3)	104.9 (3)		
C(11)-C(1)-N(1)	103.48 (11)	C(3)-C(4)-N(1)	102.7 (3)	102.8 (2)		
P(1)-C(1)-C(2)	108.24 (10)	P(1)-C(4)-C(5)	109.2 (2)	109.7 (2)		
P(1)-C(1)-C(11)	108.24 (10)	P(1)-C(4)-C(3)	113.8 (2)	113.6 (2)		
C(1)-(2)-C(3)	105.24 (12)	C(4)-C(5)-C(6)	104.6 (3)	104.7 (3)		
C(2)-C(3)-C(4)	109.49 (13)	C(5)-C(6)-C(11)	109.7 (3)	109.9 (3)		
C(3)-C(4)-N(1)	110.87 (13)	C(6)-C(11)-N(1)	111.2 (3)	110.6 (3)		
C(4)-N(1)-C(1)	108.87 (11)	C(11)-N(1)-C(4)	108.5 (3)	108.5 (3)		
C(1)-N(1)-C(9)	111.47 (12)	C(4)-N(1)-C(1)	110.8 (3)	110.7 (3)		
N(1)-C(9)-C(10)	106.05 (13)	N(1)-C(1)-C(2)	105.5 (3)	105.3 (3)		
C(9)-C(10)-C(11)	109.50 (14)	C(1)-C(2)-C(3)	110.1 (3)	110.6 (3)		
$\dot{C}(10)$ $\dot{C}(11)$ $\dot{C}(11)$	108 02 (12)	C(2) $C(3)$ $C(4)$	110 2 (2)	110 2 (2)		

Table 2 Selected bond lengths and angles for $\beta_{\rm c}$ ketophosphonates 15a and 35c (structures A and B)[§]

[§] Values on the same row of the table show the corresponding bond lengths or bond angles in the two compounds

Further information on NMR spectra provided.

1.	³¹ P NMR spectrum of 15a in CDCl ₃ at 109.3 MHz
2.	¹³ C NMR spectrum of 15a in CDCl ₃ at 67.9 MHz
3.	³¹ P NMR spectrum of 16a in CDCl ₃ at 109.3 MHz
4.	¹³ C NMR spectrum of 16a in CDCl ₃ at 67.9 MHz
5.	³¹ P NMR spectrum of 20a in CDCl ₃ at 109.3 MHz
6.	¹³ C NMR spectrum of 20a in CDCl ₃ at 100.6 MHz
7.	¹³ C NMR spectrum of 23a in CDCl ₃ at 67.9 MHz
8.	³¹ P NMR spectrum of 15b in CDCl ₃ at 109.3 MHz
9.	¹³ C NMR spectrum of 15b in CDCl ₃ at 100.6 MHz
10.	³¹ P NMR spectrum of 20b in CDCl ₃ at 109.3 MHz
11.	¹³ C NMR spectrum of 20b in CDCl ₃ at 67.9 MHz
12.	¹³ C NMR spectrum of 23b in CDCl ₃ at 100.6 MHz
13.	13 C NMR spectrum of 13c in d ₆ -DMSO at 67.9 MHz
14.	³¹ P NMR spectrum of 15c in CDCl ₃ at 109.3 MHz
15.	13 C NMR spectrum of 15c in CDCl ₃ at 100.6 MHz
16.	³¹ P NMR spectrum of 20c in CDCl ₃ at 109.3 MHz
17.	13 C NMR spectrum of 20c in CDCl ₃ at 100.6 MHz
18.	¹ H NMR spectrum of 23c in CCl ₄ at 270 MHz
19.	13 C NMR spectrum of 13d in d ₆ -DMSO at 67.9 MHz
20.	³¹ P NMR spectrum of 15d in CDCl ₃ at 109.3 MHz
21.	¹³ C NMR spectrum of 15d in CDCl ₃ at 100.6 MHz
22.	³¹ P NMR spectrum of 20d in CDCl ₃ at 109.3 MHz
23.	¹³ C NMR spectrum of 20d in CDCl ₃ at 100.6 MHz
24.	¹ H NMR spectrum of 23d in d ₆ -DMSO at 270 MHz
25.	³¹ P NMR spectrum of 26 in CDCl ₃ at 109.3 MHz
26.	13 C NMR spectrum of 26 in CDCl ₃ at 67.9 MHz
27.	³¹ P NMR spectrum of 27 in CDCl ₃ at 109.3 MHz
28.	13 C NMR spectrum of 27 in CDCl ₃ at 100.6 MHz
29.	³¹ P NMR spectrum of 28 in CDCl ₃ at 109.3 MHz
30.	13 C NMR spectrum of 28 in CDCl ₃ at 100.6 MHz
31.	13 C NMR spectrum of 29 in CDCl ₃ at 100.6 MHz
32.	31 P NMR spectrum of 35a in CDCl ₃ at 109.3 MHz
33.	¹³ C NMR spectrum of 35a in CDCl ₃ at 67.9 MHz
34.	⁵¹ P NMR spectrum of 44 in CDCl ₃ at 109.3 MHz
35.	13 C NMR spectrum of 44 in CDCl ₃ at 100.6 MHz
36.	13 C NMR spectrum of 50 in CDCl ₃ at 67.9 MHz
37.	11 P NMR spectrum of 52 in CDCl ₃ at 109.3 MHz
38.	13 C NMR spectrum of 52 in CDCl ₃ at 100.6 MHz
39.	³¹ P NMR spectrum of 35c in CDCl ₃ at 109.3 MHz
40.	¹³ C NMR spectrum of $35c$ in CDCl ₃ at 67.9 MHz

- ¹³C NMR spectrum of **38c** in CDCl₃ at 100.6 MHz
 ¹³C NMR spectrum of **40** in CDCl₃ at 100.6 MHz 41.
- 42.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Spectrum 3

-225

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Spectrum 5

Т

-4.30

ppm

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

200

150

100

50

0

ppm

-50

-100

-150

Т -25(

-200

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

---4.46

---6.56

Spectrum 18

150

180

160

140

120

80

60

40

100

-30

-50

-70

-90

-120

-150

-180

-4.36

20

--1.85

Т

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Spectrum 27

220

200

180

160

140

120

100

80

60

40

0 ppm -20

-40

-60

-80

-100

-120

-140

-160

-180

-200

-220

20

- 12.99

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Spectrum 29

220

28

-4.15

Т

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Т

0 ppm -50

-100

-150

-200

-250

-300

Spectrum 32

300

250

200

150

100

50

- 13.20

-90

-100 -110 -120 -130

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Spectrum 37

120

180

160

140

100

60

80

and states to the death of a state of the state of the states with the states with the states of the		والمتعادية والمتعادين والمعادية والمتعادية والمتعادية	the last that will be be be used and the second	مر بمرافع من من من من من المراجع المراجع الم	et a constant a transmister a bit of the second
		AND IN A MARKANINA AND AND AND AND AND AND AND AND AND A	ערינה אלג האני אין איני אני אין אין אין אין איי אין אין איי אין איי אין איי אין איי איי	A TAN MANA MANA ANA MANANA MANA MANANA M	. // الأعمار ((متابعا ((غلالات))) الأرابية الأرزية (الألية الثانية) الله الإرابية الرابة المتراط.
ու ին մին ով հայտես ին նումը, որում հայտես ին կանումը, անվան են էն ու հայտեսին հայտես հայտեն հայտես հայտե	on de la contraction de la con	ունունը ներակերությունը, որնունը, որնունը, որնունի հանդերությունը	a Rain an an Anna an Anna Anna Anna Anna An	والشابل بينيه مراميته باريك باري والألي بديار البي الباب المراب والمسابية	a in a fair a statistic a fair a statistic a statistic a statistic a fair a statistic a fair a statistic a stat

-20

-40

-60

-100

-80

-120

-140

-160

-180

--24.30

0	
ppm	

20

40

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

1

0 ppm -20

-40

-60

-80

-100

-120

-140

-160

-180

10

90 80 70 60 50 40 30 20

Spectrum 39

 \neg

190

170

150

130

110

Notes and references

- 1. P. Wiklund, I. Romero and I. Bergman, Org. Biomol. Chem. 2003, 1, 3396-3403
- 10 2. S. Gabriel, Ber., 1878, 11, 2260-2262.
- 3. C. M. Atkinson and J. C. E. Simpson, J. Chem. Soc., 1947, 232-237.
- 4. The molecular ions showed the expected isotopic ratio pattern.
- 5. J. Gawroński, M. Kwit, and K. Gawrońska, Org. Letters, 2002, 4(24), 4185-4188 (supplementary data).
- 6. V. L. Plakidin, E. S. Kosheleva, Zh. Org. Khim., 1975, 11, 1512-1516 (J. Org. Chem. USSR, Engl. Transl., 1975, 11, 1494).
- 15 7. M. Augustin and W. Meuller, J. Prakt Chem. (Leipzig), 1985, 327(5), 789 -798.
 - 8. E. L. Martins, C. L. Dickinson and J. R. Roland, J. Org. Chem., 1961, 26(6), 2032-2037
 - 9. R. Hooft, B. V. Nonius, COLLECT: A program for crystal data collection and processing user interface, 1998.
 - 10. Z. Otwinowski and W. Minor, Methods in Enzymology, ed. C.W. Carter, Jr and R.M. Sweet, Academic Press, New York, 1997, 276, part A, 307.
 - 11. G. M. Sheldrick (2007). SADABS. Version 2007/2. Bruker AXS INC., Madison, Wisconsin, USA.
- 20 12. A. J. M. Duisenberg. Indexing in Single-Crystal Diffractometry with an Obstinate list of reflections. J. Appl. Crystallography, 1992, 25, 92-96.
 - 13. L. J. Farrugia, ORTEP-3 for Windows, J. Appl. Cryst., 1997, 30, 565.
 - 14. A. L. Spek, PLATON: a multipurpose crystallographic tool, 1998, Utrecht Univ., Utrecht, The Netherlands.
 - 15. L. J. Farrugia, WinGX: a program for crystal structure analysis, 1998, Univ. of Glasgow.
- 16. P. T. Beurskens, G. Beurskens, W. P. Bosman, R. de Gelder, S. Garcia-Granda, R. O. Gould, R. Israel, J. M. M. Smits, DIRDIF99: a program system, 1999, Crystallography Lab., Univ. Nijmegen, The Netherlands.
- 17. G. M. Sheldrick, SHELXL-97: Program for crystal structure refinement, Acta Cryst., 2008, A64, 112.
- 18. Data have been deposited with the Cambridge Crystallographic Data Centre. For **15a** as CCDC 865150, **28** as CCDC 865151, **35c** as CCDC 865152, and for **37c** as CCDC 865153; they are available free of charge *via* www.ccdc.cam.ac.uk/data_request/cif.