SUPPORTING INFORMATION

Synthesis of 1,2,4-Triazines and the Triazinoisoquinolinedione DEF Ring System of Noelaquinone

Liming Cao, John P. Maciejewski, Stephan Elzner, David Amantini and Peter Wipf*

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A. Fax: 412-624-0787; Tel: 412-624-8606; E-mail: <u>pwipf@pitt.edu</u>

General Information.

All reactions were performed under an N₂ atmosphere and all glassware was dried in an oven at 140 °C for 2 h prior to use. Reactions carried out at -78 ° \square employed a CO₂/acetone bath. THF and Et₂O were distilled over sodium/benzophenone ketyl, Et₃N was distilled from CaH₂, and CH₂Cl₂ and toluene were purified using an alumina column filtration system. All other reagents and solvents were used as received unless otherwise noted. Reactions were monitored by TLC analysis (pre-coated silica gel 60 F₂₅₄ plates, 250 µm layer thickness) and visualization was accomplished with a 254 nm UV light and by staining with a PMA solution (5 g of phosphomolybdic acid in 100 mL of 95% EtOH), *p*-anisaldehyde solution (2.5 mL of *p*-anisaldehyde, 2 mL of AcOH, and 3.5 mL of conc. H₂SO₄ in 100 mL of 95% EtOH), Vaughn's reagent (4.8 g of (NH₄)₆Mo₇O₂₄•4H₂O and 0.2 g of Ce(SO₄)₂ in 100 mL of a 3.5 N H₂SO₄ solution) or a KMnO₄ solution (1.5 g of KMnO₄ and 1.5 g of K₂CO₃ in 100 mL of a 0.1% NaOH solution). Flash chromatography on SiO₂ was used to purify the crude reaction mixtures.

NMR spectra were recorded using XWIN-NMR software. ¹H NMR spectra were obtained at 400 MHz in CDCl₃ unless otherwise noted. Chemical shifts were reported in parts per million with the residual solvent peak used as an internal standard. ¹H NMR spectra were obtained and are tabulated as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), number of protons, and coupling constant(s). ¹³C NMR spectra were run at 100 MHz using a proton-decoupled pulse sequence with a d₁ of 3 sec, and are tabulated by observed peak unless otherwise noted. Melting points were determined on a Mel-Temp II and are uncorrected. High-resolution mass spectrometry (HRMS) data (ESI/APCI technique) were recorded using a

Waters Q-Tof Ultima API-US instrument. HRMS data (EI technique) were recorded using a Micromass Autospec instrument. Mass spectrometry data were also recorded using an Applied Biosystems MDS SCIEX API 2000 LC/MS/MS system.

All organic azides and azide waste products should be considered toxic as well as potentially explosive and must be handled and stored with care. Avoid using halogenated solvents when performing reactions involving sodium azide, in addition to using halogenated solvents in reaction workup. Avoid quenching/manipulating/treating sodium azide reactions with acid, as generation of trace amounts of hydrazoic acid (HN₃) may result in an explosion. In general, a safety shield must be used when conducting reactions involving either sodium azide or organic azide derivatives.

Experimental Part.

2-(2-Azidoethylamino)isoindoline-1,3-dione (5). A solution of 3 (2.43 g, 15.0 mmol) in dichloromethane (150 mL) was treated with 4 Å MS (15.0 g), and freshly prepared α bromoacetaldehyde 4 (15 mL of a 2 M solution in MeOH, 30 mmol) was added dropwise under vigorous stirring at room temperature. After 10 min, the mixture turned clear, and filtration and solvent removal under reduced pressure gave the crude α -bromohydrazone as a slightly yellow solid that was added into a 500 mL round bottom flask and dissolved in CH₃CN (150 mL) and AcOH (25 mL). NaCNBH₃ (9.45 g, 150.0 mmol) was added portionwise in 2 min, and the solution was stirred for 2 h. Solvent removal under reduced pressure at room temperature gave a viscous yellow oil that was transferred into a separatory funnel containing a saturated aqueous solution of NaHCO₃ (300 mL) and extracted with EtOAc ($4 \times 100 \text{ mL}$), and dried (Na₂SO₄). The combined organic layers were evaporated to give the crude bromoethyl derivative as a yellow oil that was rapidly purified by chromatography on SiO₂ (EtOAc:Hexanes, 2:3) to afford an oil (ca. 3 g) containing mostly the bromoethyl derivative. This oil was transferred into a 100 mL round bottom flask containing DMF (45 mL) and NaN₃ (2.93 g, 45.0 mmol) and the resulting solution was stirred at 60 °C for 15 h, poured into a separatory funnel containing H₂O (300 mL) and extracted with EtOAc (5 x 50 mL). The combined organic layers were washed with H₂O (4×30 mL), dried (Na₂SO₄) and concentrated to give a viscous yellow oil. Chromatography on SiO₂ (EtOAc:Hexanes, 1:9 to 2:8 to 3:7 to 1:1)

afforded **5** (1.62 g, 7.01 mmol, 47% from **3**) as a yellowish solid: Mp 56-57 °C (EtOAc/Hexanes); Rf 0.21 (EtOAc:Hexanes, 3:7); IR (neat) 3303, 2930, 2103, 1784, 1731, 1614, 1390, 1298, 1194, 884 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.90-7.85 (m, 2 H), 7.79-7.73 (m, 2 H), 4.83 (t, *J* = 5.3 Hz, 1 H), 3.54 (t, *J* = 5.3 Hz, 2 H), 3.23 (q, *J* = 5.6 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 166.3 (2C), 133.9 (2C), 129.8 (2C), 123.0 (2C), 49.8, 49.4; MS (EI) *m/z* (rel intensity) 231 (M⁺⁺, 22), 176 (74), 175 (48), 148 (63), 131 (55), 76 (100); HRMS (EI) *m/z* calcd for C₁₀H₉N₅O₂ 231.0756, found 231.0756.

3,4-Dihydro-[1,2,4]triazino[3,2-*a***]isoindol-6(2***H***)-one (6). A solution of 5** (0.462 g, 2.00 mmol) in toluene (20 mL) on a 50 mL round bottom flask equipped with a reflux condenser was treated with PBu₃ (0.809 g, 4.00 mmol) and stirred at 100 °C for 3.5 h. The solvent was removed under reduced pressure and the resulting yellow oil was purified by chromatography on SiO₂ (MeOH:CH₂Cl₂, 2:98) to afford **6** (326 mg, 1.74 mmol, 87%) as colorless solid: Mp 183-184 °C (EtOAc); Rf 0.26 (MeOH:CHCl₃, 5:95); IR (neat) 3183, 1723, 1668, 1384, 1193, 957, 695 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.84-7.78 (m, 2 H), 7.70-7.59 (m, 2 H), 4.42 (t, *J* = 7.1 Hz, 1 H), 3.82 (t, *J* = 5.0 Hz, 2 H), 3.37-3.35 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 163.6, 148.5, 132.8, 132.4, 131.6, 129.2, 122.8, 120.5, 46.0, 42.9; MS (EI) *m/z* (rel intensity) 187 (M⁺⁺, 62), 160 (10), 130 (100), 102 (52); HRMS (EI) *m/z* calcd for C₁₀H₉N₃O 187.0746, found 187.0736.

2-((2-Azidoethyl)(benzyl)amino)isoindoline-1,3-dione. A solution of **5** (1.50 g, 6.49 mmol) in DMF (15 mL) was treated with K₂CO₃ (3.58 g, 25.9 mmol), TBAHS (44.0 mg, 1.30 mmol) and BnBr (7.75 mL, 64.8 mmol). The heterogeneous mixture was stirred at 70 °C for 20 h, transferred into a separatory funnel containing H₂O (200 mL) and extracted with EtOAc (4×50 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure to give a yellow oil. Chromatography on SiO₂ (EtOAc:Hexanes, 1:9) afforded 2-((2-azidoethyl)(benzyl)amino)isoindoline-1,3-dione (2.05 g, 6.34 mmol, 98%) as a colorless solid: Mp 59-61 °C (CHCl₃); Rf 0.54 (EtOAc:Hexanes, 2:3); IR (neat) 3063, 2924, 2866, 2102, 1785, 1717, 1610, 1467, 1372 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.86-7.83 (m, 2 H), 7.79-7.75 (m, 2 H), 7.53-7.50 (m, 2 H), 7.35-7.29 (m, 3 H), 4.55 (s, 2 H), 3.60-3.56 (m, 2 H), 3.52-3.48 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 166.8 (2C), 135.6, 133.9 (2C), 129.6, 129.4, 128.8 (2C), 128.0

(2C), 127.5, 122.9 (2C), 59.6, 53.3, 49.2; MS (EI) *m/z* (rel intensity) 321 (M⁺⁺, 2), 277 (17), 265 (28), 118 (43), 91 (100); HRMS (EI) *m/z* calcd for C₁₇H₁₅N₅O 321.1226, found 321.1219.

4-Benzyl-3,4-dihydro-[1,2,4]triazino[3,2-*a***]isoindol-6(2***H***)-one (7). A solution of 2-((2-azidoethyl)(benzyl)amino)isoindoline-1,3-dione (642 mg, 2.00 mmol) and PBu₃ (809 mg, 4.00 mmol) in toluene (20 mL) in a 50 mL round bottom flask equipped with a reflux condenser was stirred at 100 °C for 8 h. The solvent was removed under reduced pressure and the resulting yellow oil was purified by chromatography on SiO₂ (EtOAc:Hexanes, 3:7) to afford 7 (538 mg, 1.94 mmol, 97%) as a yellowish solid: Mp 121-122 °C (EtOAc); Rf 0.08 (EtOAc:Hexanes, 3:7); IR (neat) 2935, 2853, 1733, 1667, 1385, 1182, 928 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) \delta 7.87-7.84 (m, 2 H), 7.70-7.60 (m, 2 H), 7.51-7.48 (m, 2 H), 7.42-7.32 (m, 3 H), 4.13 (s, 2 H), 3.80 (t,** *J* **= 5.1 Hz, 2 H), 3.14 (t,** *J* **= 5.2 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) \delta 163.0, 149.2, 135.3, 133.1, 132.8, 131.9, 129.7 (C), 129.3, 128.6 (2C), 128.2, 123.2, 120.7, 59.7, 44.6, 39.5; MS (EI)** *m/z* **(rel intensity) 277 (M⁺⁺, 19), 186 (26), 130 (52), 91 (100); HRMS (EI)** *m/z* **calcd for C₁₇H₁₅N₃O 277.1215, found 277.1214.**

(*E*)-Ethyl 2-(2-(2-hydroxyethyl)hydrazono)propanoate (11). To a solution of 10 (3.6 mL, 32 mmol) in THF (75 mL) was added a mixture of EtOH (1 mL) and 2hydroxyethylhydrazine (3.0 mL, 45 mmol). The reaction mixture was heated at reflux for 5 h, concentrated *in vacuo* to a thick oil, and diluted with water (10 mL) and EtOAc (10 mL). The aqueous phase was extracted with EtOAc ($3 \times 10 \text{ mL}$), washed with brine, dried (Na₂SO₄), concentrated *in vacuo* and purified by chromatography on SiO₂ (EtOAc) to afford 11 (3.32 g, 19.1 mmol, 59%) as a pale oil: IR (ATR) 3308, 2938, 1697, 1561, 1442, 1369, 1313, 1144, 1054 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.08 (s, *J* = 4.0 Hz, 1 H), 4.27 (q, *J* = 7.2 Hz, 2 H), 3.85 (t, *J* = 4.8 Hz, 2 H), 3.59-3.56 (m, 2 H), 2.98 (bs, 1 H), 1.95 (s, 3 H), 1.32 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR(150 MHz, CDCl₃) δ 165.2, 132.8, 62.5, 61.3, 52.4, 14.5, 10.3; MS (EI) *m/z* 174 (M⁺⁺, 9), 128 (30), 117 (69), 73 (88), 61(100); HRMS (EI) *m/z* calcd for C7H14N2O3 174.1004, found 174.1009.

(*E*)-Ethyl 2-(2-(2-azidoethyl)hydrazono)propanoate (12). To a solution of 11 (1.96 g, 11.3 mmol) and Et_3N (2.4 mL, 17 mmol) in THF (50 mL) was added MsCl (1.1 mL, 15

mmol). The reaction mixture was stirred at 25 °C for 15 min, quenched with satd. NaHCO₃ (20 mL), diluted with water (20 mL) and extracted with $E_{t_2}O$ (3×10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo to afford a yellow oil that was used without further purification. To the crude oil was added DMF (70 mL) followed by NaN₃ (2.19 g, 33.8 mmol). This mixture was heated to 50 °C behind a blast shield for 16 h when TLC analysis (Hexanes:EtOAc, 1:1) showed that the mesylate intermediate was completely consumed. The reaction mixture was cooled to 25 $^{\circ}$ C, diluted with water (50 mL) and brine (30 mL) and extracted with EtOAc (4×50 mL). The combined organic phases were washed with water (50 mL), brine (50 mL), dried (Na_2SO_4) , concentrated in vacuo and purified by chromatography on SiO₂ (100%) Hexanes to Hexanes: EtOAc, 2:1 with 1% Et₃N) to afford 12 (1.57 g, 7.88 mmol, 70% for 2 steps) as a yellow oil: IR (ATR) 3310, 2982, 2099, 1699, 1569, 1445, 1369, 1307, 1149 cm^{-1} ; ¹H NMR (600 MHz, CDCl₃) δ 5.84 (s, 1 H), 4.29 (q, J = 7.2 Hz, 2 H), 3.63-3.60 (m, 2 H), 3.55-3.53 (m, 2 H), 1.96 (s, 3 H), 1.33 (t, J = 7.2 Hz, 3 H); 13 C NMR (150 MHz, CDCl₃) δ 165.1, 134.0, 61.4, 51.5, 49.9, 14.6, 10.5; MS (EI) m/z 184 ([M-CH₃]^{+•}, 46), 174 (42), 130 (53), 117 (100), 56 (75); HRMS (EI) *m/z* calcd for C₆H₁₀N₅O₂ 184.0833 (M-CH₃), found 184.0835.

(E)-Ethyl 2-(2-(2-azidoethyl)-2-benzylhydrazono)propanoate (13). To a solution of 12 (491 mg, 2.46 mmol) in DMF (10 mL) was added K₂CO₃ (681 mg, 4.92 mmol), NaI (369 mg, 2.46 mmol), and benzyl bromide (1.8 mL, 15 mmol). The reaction mixture was heated at 70 °C behind a blast shield for 17 h, cooled to 25 °C, quenched with water (10 mL) and extracted with EtOAc (3×15 mL). The combined organic layers were washed with water (20 mL), brine (20 mL), dried (Na₂SO₄), concentrated *in vacuo* and purified by chromatography on SiO₂ (100% Hexanes to Hexanes:EtOAc, 1:1 with 1% Et₃N) to afford 13 (510 mg, 1.76 mmol, 72%) as a golden oil: IR (ATR) 2982, 2100, 1710, 1585, 1496, 1453, 1364, 1301, 1150, 1129, 1027 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.38-7.35 (m, 4 H), 7.32-7.29 (m, 1 H), 4.33 (q, *J* = 7.2 Hz, 2 H), 4.07 (s, 2 H), 3.34 (t, *J* = 5.4 Hz, 2 H), 2.22 (s, 3 H), 1.36 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 165.1, 153.2, 136.8, 128.9, 128.4, 127.9, 62.0, 61.1, 56.2, 49.9, 16.2, 14.5; MS (EI) *m*/*z* 289 (M⁺⁺, 27), 234 (62), 188 (54), 91 (71), 65 (100); HRMS (EI) *m*/*z* calcd for C₁₄H₁₉N₅O₂ (M⁺⁺) 289.1542, found 289.1539.

1-(2-Azidoethyl)-1-benzylhydrazine (14). To a solution of **13** (87 mg, 0.30 mmol) in THF (2.5 mL) and H₂O (500 μL) at 25 °C was added hydrazine dihydrochloride (96 mg, 0.90 mmol). The reaction mixture was stirred at 25 °C for 3 h, quenched with solid Na₂CO₃, and concentrated *in vacuo*. The resulting oil was immediately purified by chromatography on SiO₂ (Hexanes:EtOAc, 1:1 with 1% NEt₃) to afford **14** (36 mg, 0.19 mmol, 63%) as an unstable, colorless oil: IR (ATR) 3345, 2937, 2815, 2099, 1717, 1600, 1495, 1453, 1352, 1279 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.36-7.33 (m, 4 H), 7.31-7.27 (m, 1 H), 3.74 (s, 2 H), 3.48 (t, *J* = 5.4 Hz, 2 H), 2.75 (t, *J* = 6.0 Hz, 2H), 2.74 (br s, 2 H); ¹³C NMR (150 MHz, CDCl₃) δ 137.3, 129.2, 128.7, 127.7, 67.7, 58.8, 48.8; MS (ESI) *m/z* 192 ([M+H]⁺); HRMS (ESI) *m/z* calcd for C₉H₁₄N₅ ([M+H]⁺) 192.1249, found 192.1215.

N'-(2-Azidoethyl)-N'-benzyl-2-iodobenzohydrazide (16). To a solution of **15** (4.33 g, 16.3 mmol) in CH₂Cl₂ (20 mL) cooled to 0 °C was added a solution of **14** (3.27 g, 17.1 mmol) in CH₂Cl₂ (5 mL) via syringe, followed by Et₃N (3.0 mL, 22 mmol). The reaction mixture was allowed to warm to 25 °C overnight. After 12 h, the reaction was quenched with satd. NaHCO₃ (15 mL), and extracted with CH₂Cl₂ (3 ×10 mL). The combined organic phases were dried (Na₂SO₄), concentrated *in vacuo*, and recrystallized using Hexanes/EtOAc to afford **16** (4.74 g, 11.3 mol, 69%) as cream colored needles: Mp 100-101 °C; IR (ATR) 3232, 2871, 2104, 1658, 1580, 1513, 1461, 1278 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.82 (dd, *J* = 7.9, 0.8 Hz, 2 H), 7.45 (app d, *J* = 7.2 Hz, 2 H), 7.37 (app t, *J* = 7.2 Hz, 2 H), 7.33-7.27 (m, 2 H), 7.07 (td, *J* = 7.8 Hz, 1 H), 6.93 (dd, *J* = 7.5, 1.2 Hz, 1 H), 6.74 (s, 1 H), 4.35 (s, 2 H), 3.56 (t, *J* = 6.0 Hz, 2 H), 3.43 (t, *J* = 6.0 Hz, 2 H); ¹³C NMR (150 MHz, CDCl₃) δ 169.2, 140.5 140.1, 136.9, 131.6, 129.6, 128.8, 128.3, 128.0, 92.8, 60.5, 54.8, 49.2; MS (ESI) *m/z* 422 ([M+H]⁺); HRMS (ESI) *m/z* calcd for C₁₆H₁₇IN₅O ([M+H]⁺) 422.0478, found 422.0465.

2-((2-Azidoethyl)(benzyl)amino)isoquinoline-1,3(2*H***,4***H***)-dione (18). To a flame-dried 100 mL flask was added 16** (3.20 g, 7.60 mmol), CuI (72 mg, 0.37 mmol), 2-picolinic acid (94 mg, 0.76 mmol) and Cs_2CO_3 (7.42 g, 22.8 mmol). The reaction mixture was purged 3x with N₂ and diluted with anhydrous dioxane (36 mL). After addition of **17** (2.3 mL, 15 mmol), the flask was placed in a pre-heated oil bath at 70 °C under a N₂

atmosphere. TLC analysis (Hexanes: EtOAc, 6:1) after 3 h showed that the starting material was consumed. The mixture was cooled to 25 °C, quenched with satd. NH₄Cl (10 mL), extracted with EtOAc (3×10 mL), washed with brine (20 mL), and concentrated in vacuo. A solution of the resulting residue in toluene (13 mL) and H₂O (3 mL) was treated with p-TSA (28.0 mg, 0.147 mmol) and the pink colored mixture was heated at reflux for 20 h, cooled to 25 °C, and quenched with satd. NaHCO₃ (20 mL). The biphasic mixture was partitioned and the aqueous phase was extracted with EtOAc (3×10 mL). The crude mixture showed one spot by TLC (Hexanes:EtOAc, 5:1). The combined organic phases were washed with brine (10 mL), dried (Na₂SO₄), concentrated *in vacuo*, and purified by chromatography on SiO₂ (Hexanes:EtOAc, 10:1 to 5:1) to afford 18 (1.87 g, 5.57 mmol, 73%, 2 steps) as a light yellow-green oil: IR (ATR) 3063, 2924, 2098, 1730, 1683, 1605, 1462, 1345, 1228 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, J = 7.2 Hz, 1 H), 7.55 (dd, J = 7.2, 1.2 Hz, 1 H), 7.47 (d, J = 7.2 Hz, 2 H), 7.42 (t, J = 7.8 Hz, 1 H), 7.28-7.26 (m, 2 H), 7.22-7.19 (m, 2 H), 4.45, 4.39 (AB, J = 12.6 Hz, 2 H), 4.00, 3.83 $(AB, J = 22.2 \text{ Hz}, 2 \text{ H}), 3.50-3.38 \text{ (m, 4 H)}; {}^{13}\text{C NMR} (150 \text{ MHz}, \text{CDCl}_3) \delta 169.9, 165.2,$ 137.0, 133.9, 133.8, 129.5, 129.4, 128.5, 127.9, 127.9, 127.2, 125.9, 60.2, 53.0, 50.4, 37.9, 23.6; MS(ESI) m/z 336 ([M+H]⁺); HRMS (ESI) m/z calcd for C₁₈H₁₈N₅O₂ $([M+H]^+)$ 336.1461, found 336.1449.

2'-((2-Azidoethyl)(benzyl)amino)-1'H-spiro[[1,3]dithiane-2,4'-isoquinoline]-

1',3'(2'*H***)-dione (20).** To a solution of **18** (889 mg, 2.65 mmol) in CH₂Cl₂ (30 mL) at 25 °C was added Et₃N (760 μ L, 5.45 mmol) followed by **19** (1.27 g, 3.05 mmol). The greenyellow solution was stirred at 25 °C under N₂ for 21 h, quenched with satd. NH₄Cl (10 mL), extracted with CH₂Cl₂ (2×10 mL), dried (Na₂SO₄), concentrated, and purified by chromatography on SiO₂ (Hexanes:EtOAc, 4:1) to afford **20** (989 mg, 2.25 mmol, 85%) as a light green oil: IR (ATR) 2921, 2099, 1724, 1684, 1598, 1455, 1337, 1224 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 8.18 (dd, *J* = 7.9, 1.8 Hz, 1 H), 8.10 (app d, *J* = 7.8 Hz, 1 H), 7.65 (app dt, *J* = 7.5 Hz, *J* = 1.8 Hz, 1 H), 7.52 (d, *J* = 7.8 Hz, 2 H), 7.53-7.49 (m, 1 H), 7.29 (app t, *J* = 7.2 Hz, 2 H), 7.22 (t, *J* = 7.3 Hz, 1 H), 4.44 (app q, *J* = 13.2 Hz, 2 H), 3.82 (td, *J* = 13.5, 2.5 Hz, 1 H), 3.76 (td, *J* = 13.5, 2.5 Hz, 1 H), 3.50-3.32 (m, 4 H), 2.76 (dt, *J* = 13.9, 3.7 Hz, 1 H), 2.68 (dt, *J* = 13.9, 3.7 Hz, 1 37.0, 134.4, 129.9, 129.7, (m, 2 H); ¹³C NMR (150 MHz, CDCl₃) δ 170.0, 163.3, 137.2, 137.0, 134.4, 129.9, 129.7, 129.6, 129.3, 128.5, 127.9,125.1, 60.5, 52.5, 50.0, 49.6, 29.2, 29.1; MS (ESI) m/z 440 ([M+H]⁺); HRMS (ESI) m/z calcd for C₂₁H₂₂N₅O₂S₂ ([M+H]⁺) 440.1215, found 440.1212.

2-((2-Azidoethyl)(benzyl)amino)-4,4-dimethoxyisoquinoline-1,3(2H,4H)-dione (21).

To a solution of **20** (343 mg, 0.780 mmol) in dry MeOH (8.0 mL) was added TFA (180 μ L, 2.35 mmol) and PIFA (674 mg, 2.35 mmol) at 23 °C. The reaction mixture was stirred for 15 min when TLC analysis (Hexanes:EtOAc, 4:1) of an aliquot quenched with Na₂CO₃ showed that the starting material was converted to a slightly more polar spot. After 20 min, the mixture was quenched with solid Na₂CO₃ to pH>7, causing the yellow solution to change to a colorless one as the pH increased. The solution was extracted with CH₂Cl₂ (4×10 mL), dried (MgSO₄), concentrated, and purified by chromatography on SiO₂ (Hexanes:EtOAc, 5:1 to 3:1 with 1% Et₃N) to afford **21** (226 mg, 0.571 mmol, 73%) as a pale yellow oil: ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, *J* = 8.1 Hz, 1 H), 7.68-7.65 (m, 2 H), 7.59-7.56 (m, 1 H), 7.45 (d, *J* = 7.2 Hz, 2 H), 7.25 (t, *J* = 7.2 Hz, 2 H), 7.19 (t, *J* = 7.2 Hz, 1 H), 4.46, 4.37 (AB, *J* = 12.6 Hz, 2 H), 3.54-3.49 (m, 1 H), 3.42-3.37 (m, 3 H), 3.32 (s, 3 H), 3.08 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 168.5, 164.0, 136.6, 135.7, 133.9, 130.4, 129.8, 129.3, 128.5, 128.0, 126.6, 126.6, 96.0, 60.3, 52.9, 52.4, 52.2, 49.8; HRMS (ESI) *m/z* calcd for C₂₀H₂₂N₅O₄ ([M+H]⁺) 396.1672, found 396.1663.

4-Benzyl-11,11-dimethoxy-3,4-dihydro-2*H*-**[1,2,4]triazino[2,3-***b***]isoquinolin-6(11***H***)one (22). To a flame-dried microwave vial was added a solution of 21** (385 mg, 0.974 mmol) in distilled PhCl (2.5 mL), followed by a solution of PBu₃ (337 mg, 1.67 mmol) in distilled PhCl (580 µL). The green-brown reaction mixture was stirred at room temperature for 10 min, and then heated at 180 °C for 20 min. TLC analysis (CH₂Cl₂:EtOH, 50:1) showed that the starting material was converted to a single, streaky, more polar spot. The dark purple solution was concentrated under a stream of N₂ and purified by chromatography on SiO₂ (100% CH₂Cl₂ to CH₂Cl₂:EtOH, 100:1 to 25:1) to produce an oily wax that was triturated with hexanes and then recrystallized from Et₂O:Hexanes to afford **22** (210 mg, 0.597 mmol, 61%) as cream colored needles: Mp 127-128 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.18 (dd, *J* = 7.8, 0.6 Hz, 1 H), 7.73 (d, *J* = 7.2 Hz, 1 H), 7.66 (dt, *J* = 7.2, 1.2 Hz, 1 H), 7.56-7.53 (m, 3 H), 7.36 (t, *J* = 7.2 Hz, 2 H), 7.31 (t, J = 7.2 Hz, 1 H), 4.07 (brs, 2 H), 3.80 (brs, 2 H), 3.39 (brs, 6 H), 3.18 (t, J = 6.0 Hz, 2 H); ¹³C NMR (150 MHz, CDCl₃) δ 159.8, 148.1, 135.8, 135.6, 133.0, 130.1, 130.0, 129.3, 128.7, 128.2, 127.3, 126.3, 96.4, 58.4, 45.7, 39.0; MS (ESI) *m/z* 352 ([M+H]⁺); HRMS (ESI) *m/z* calcd for C₂₀H₂₂N₃O₃ ([M+H]⁺) 352.1661, found 352.1643.

2-Benzyl-3,4-dihydro-2H-[1,2,4]triazino[4,3-b]isoquinoline-6,11-dione (23a); 4benzyl-3,4-dihydro-2H-[1,2,4]triazino[2,3-b]isoquinoline-6,11-dione (23b). After concentrated H_2SO_4 (3.0 mL) was added dropwise into H_2O (3.0 mL), the mixture was stirred for 5 min, cooled to room temperature and treated with a solution of 22 (29.8 mg, 0.0848 mmol) in CH₂Cl₂ (6.0 mL). The reaction mixture was stirred at 40 °C for 12 h under argon, cooled to 25 °C, and solid Na₂CO₃ was added until pH>7. The mixture was extracted with CH₂Cl₂ (3×30 mL), dried (Na₂SO₄), concentrated, and purified by chromatography on SiO₂ (Hexanes: EtOAc, 1:1 with 1% Et₃N) to afford 23a (3.5 mg, 0.011 mmol, 13%) as golden needles and 23b (8.4 mg, 0.028 mmol, 32%) as yellow crystals. 23a: Mp 171.1-174.5 °C; IR (neat) 2923, 2852, 1659, 1597, 1527, 1453, 1361, 1342, 1314, 1281, 1246, 1079, 1064, 1008 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.33 (td, J = 7.0, 2.0 Hz, 1 H), 8.32 (t, J = 6.5 Hz, 1 H), 7.80 (dtd, J = 18, 7.5, 1.5 Hz, 2 H), 7.35-7.33 (m, 5 H), 4.73 (s, 2 H), 4.15 (t, J = 5.2 Hz, 2 H), 3.25 (t, J = 5.2 Hz, 2 H); ¹³C NMR (125 MHz, CDCl₃; some rearrangement and decomposition occurred during the spectral data collection) & 173.8, 157.7, 135.6, 134.4, 133.3, 130.3, 129.0, 128.8, 128.4, 127.2, 63.1, 43.8, 38.1; HRMS (ESI) m/z calcd for C₈H₁₆N₃O₂ ([M+H]⁺) 306.1243, found 306.1250. 23b: Mp 121.1-124.3 °C; IR (neat) 3068, 2917, 2974, 2924, 2865, 1698, 1597, 1489, 1376, 1355, 1226, 1084, 1070, 984, 690 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.37 (dd, J = 7.5, 1.0 Hz, 1 H), 8.28 (dd, J = 7.5, 1.0 Hz, 1 H), 7.87 (td, J = 7.5, 1.0 Hz, 1 H),7.79 (td, J = 7.5, 1.0 Hz, 1 H), 7.54 (d, J = 7.0 Hz, 2 H), 7.4-7.3 (m, 3 H), 4.10 (s, 2 H), 3.97 (t, J = 6.5 Hz, 2 H), 3.12 (t, J = 6.5 Hz, 2 H); ¹³C NMR (125 MHz, CDCl₃; some rearrangement and decomposition occurred during the spectral data collection) δ 176.0, 157.5, 144.4, 135.6, 135.2, 133.8, 131.4, 130.1, 129.7, 129.5, 128.7, 128.3, 127.7, 58.7, 43.3, 40.6; HRMS (ESI) m/z calcd for C₁₈H₁₆N₃O₂ ([M+H]⁺) 306.1237, found 306.1243.

N'-(2-Azidoethyl)-2-iodo-N'-(4-methoxybenzyl)benzohydrazide. To a solution of 15 (259 mg, 0.972 mmol) in CH₂Cl₂ (20 mL) cooled to 0 °C was added a solution of 24 (226

mg, 1.02 mmol) in CH₂Cl₂ (5 mL) via syringe, followed by Et₃N (0.20 mL, 1.5 mmol). After addition, the vessel was removed from the ice bath and the solution was allowed to warm to 25 °C overnight. After 12 h, the reaction mixture was quenched with satd. NaHCO₃ (15 mL) and extracted with CH₂Cl₂ (3 ×10 mL). The combined organic phases were dried (Na₂SO₄), concentrated *in vacuo*, and purified by chromatography on SiO₂ (Hexanes:EtOAc, 4:1 with 1% Et₃N) to afford N'-(2-azidoethyl)-2-iodo-N'-(4-methoxybenzyl)benzohydrazide (304 mg, 0.675 mmol, 69%) as colorless flake-like crystals: IR (neat) 3215.2, 3047.4, 2907.6, 2093.1, 1653.2, 1610.4, 1509.7, 1459.4, 1297.2, 1245.1, 1172.4, 1030.7, 820.1 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.69 (dd, *J* = 8.0, 1.0 Hz, 1 H), 7.40 (s, 1 H), 7.28 (dt, *J* = 8.5, 2.0 Hz, 2 H), 7.18 (td, *J* = 7.5, 1.0 Hz, 1 H), 6.86 (dd, *J* = 7.5, 1.5 Hz, 1 H), 6.82 (dt, *J* = 9.0, 2.0 Hz, 2 H), 4.10 (s, 2 H), 3.73 (s, 3 H), 3.44 (t, *J* = 6.0 Hz, 2 H), 3.18 (t, *J* = 6.0 Hz, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 168.5, 158.9, 140.3, 139.4, 131.0, 130.4, 128.6, 127.8, 113.6, 92.6, 59.8, 55.1, 54.4, 48.6; HRMS (ESI) *m/z* calcd for C₁₇H₁₉IN₅O₂ ([M+H]⁺) 452.0584, found 452.0564.

2-((2-Azidoethyl)(4-methoxybenzyl)amino)isoquinoline-1,3(2H,4H)-dione (25). To a flame-dried flask was added N'-(2-azidoethyl)-2-iodo-N'-(4methoxybenzyl)benzohydrazide (215 mg, 0.476 mmol), CuI (9.1 mg, 0.048 mmol), 2picolinic acid (11.7 mg, 0.0951 mmol) and Cs₂CO₃ (465 mg, 1.43 mmol). The reaction mixture was purged 3x with N₂, and diluted with anhydrous dioxane (19 mL). After addition of 17 (94 mg, 0.59 mmol), the reaction flask was placed in a pre-heated oil bath at 70 °C under a N₂ atmosphere. TLC analysis (Hexanes:EtOAc, 6:1) after 3 h showed that the starting material was consumed. The mixture was cooled to 25 °C, quenched with satd. NH_4Cl (10 mL), extracted with EtOAc (3×10 mL), washed with brine (20 mL), and concentrated in vacuo. The residue was dissolved in toluene (13 mL) and H₂O (3 mL), and p-TSA (45.2 mg, 0.238 mmol) was added. The pink colored mixture was heated at reflux for 20 h, cooled to 25 °C, and quenched with satd. NaHCO₃ (20 mL). The biphasic mixture was partitioned and then the aqueous phase was extracted with EtOAc (3x10 mL). The crude mixture showed one spot by TLC (Hexanes: EtOAc, 5:1). The combined organic phases were washed with brine (10 mL), dried (Na₂SO₄), concentrated in vacuo, and purified by chromatography on SiO₂ (Hexanes: EtOAc, 10:1 to 5:1) to afford 25 (109)

mg, 0.297 mmol, 63%) as a bright yellow oil: IR (neat) 3068, 2947, 2097, 1726, 1681, 1609, 1510, 1459, 1342, 1245, 1171, 1033, 757 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, *J* = 8.0 Hz, 1 H), 7.52 (t, *J* = 7.5 Hz, 1 H), 7.39 (t, *J* = 7.5 Hz, 1 H), 7.34 (dt, *J* = 8.5, 2.0 Hz, 2 H), 7.16 (d, *J* = 7.5 Hz, 1 H), 6.76 (dt, *J* = 8.5, 2.0 Hz, 2 H), 4.35, 4.30 (AB, *J* = 12.0 Hz, 2 H), 3.96, 3.80 (AB, *J* = 22.0 Hz, 2 H), 3.71 (s, 3 H), 3.43-3.31 (m, 4 H); ¹³C NMR (125 MHz, CDCl₃) δ 169.7, 165.0, 159.1, 133.7, 130.6, 129.2, 128.8, 127.7, 127.0, 125.7, 113.6, 59.2, 55.2, 52.7, 50.1, 37.6; HRMS (ESI) *m/z* calcd for C₁₇H₂₀N₅O₃ ([M+H]⁺) 366.1566, found 366.1589.

2'-((2-Azidoethyl)(4-methoxybenzyl)amino)-1'H-spiro[[1,3]dithiane-2,4'-

isoquinoline]-1',3'(2'H)-dione. To a solution of 25 (109 mg, 0.297 mmol) in CH₂Cl₂ (30 mL) at 25 °C was added Et₃N (91.9 μL, 0.654 mmol) followed by **19** (156 mg, 0.357 mmol). The green-yellow solution was stirred at 25 °C under N_2 for 21 h, quenched with satd. NH_4Cl (10 mL), extracted with CH_2Cl_2 (2×10 mL), dried (Na₂SO₄), concentrated, and purified by chromatography on SiO₂ (Hexanes:EtOAc, 4:1) to afford 2'-((2azidoethyl)(4-methoxybenzyl)amino)-1'H-spiro[[1,3]dithiane-2,4'-isoquinoline]-1',3'(2'H)-dione (92.1 mg, 0.196 mmol, 66%) as a colorless oil: IR (neat) 3009, 2927, 2871, 2097, 1723, 1681, 1611, 1512, 1335, 1243, 1171,751, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.16 (dd, J = 8.0, 1.0 Hz, 1 H), 8.10 (dd, J = 8.0, 1.0 Hz, 1 H), 7.63 (td, J= 8.0, 1.0 Hz, 1 H), 7.48 (td, J = 8.0, 1.0 Hz, 1 H), 7.42 (dt, J = 8.0, 2.0 Hz, 2 H), 6.81 (dt, J = 8.0, 2.0 Hz, 2 H), 4.38, 4.34 (AB, J = 7.0 Hz, 2 H), 3.80 (td, J = 13.5, 2.0 Hz, 1 H), 3.75 (td, J = 13.5, 2.0 Hz, 1 H), 3.74 (s, 3 H), 3.45-3.30 (m, 4 H), 2.73 (dt, J = 13.5, 3.5 Hz, 1 H), 2.66 (dt, J = 13.5, 3.5 Hz, 1 H), 2.32-2.29 (m, 1 H), 2.05-1.97 (m, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 169.8, 163.1, 159.2, 136.9, 134.2, 130.7, 129.7, 129.5, 129.0, 125.0, 113.7, 59.6, 55.3, 52.2, 49.8, 49.4, 29.0, 28.9, 23.5; HRMS (ESI) m/z calcd for $C_{22}H_{23}N_5O_3S_2Na$ ([M+Na]⁺) 492.1140, found 492.1170.

2-((2-Azidoethyl)(4-methoxybenzyl)amino)-4,4-dimethoxyisoquinoline-1,3(2H,4H)dione. To a solution of 2'-((2-azidoethyl)(4-methoxybenzyl)amino)-1'Hspiro[[1,3]dithiane-2,4'-isoquinoline]-1',3'(2'H)-dione (92.1 mg, 0.196 mmol) in dry MeOH (8.0 mL) was added TFA (43.7 μL, 0.588 mmol) and PIFA (288 mg, 0.670 mmol) at 23 °C. The mixture was stirred for 15 min when TLC analysis (Hexanes:EtOAc, 4:1) of an aliquot neutralized with Na₂CO₃ showed that the starting material was converted to a slightly more polar spot. After 20 min, the reaction was quenched with solid Na₂CO₃ until pH>7, causing the yellow solution to change to colorless as the pH increased. The mixture was extracted with CH₂Cl₂ (4×10 mL), dried (MgSO₄), concentrated, and purified by chromatography on SiO₂ (Hexanes:EtOAc, 5:1 to 3:1 with 1% Et₃N) to afford 2-((2-azidoethyl)(4-methoxybenzyl)amino)-4,4-dimethoxyisoquinoline-1,3(2*H*,4*H*)-dione (56.6 mg, 0.133 mmol, 68%) as a pale yellow oil: IR (neat) 2992, 2936, 2863, 2097, 1739, 1691, 1739, 1512, 1458, 1333, 1282, 1243, 1172, 1083, 764 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, *J* = 12.0 Hz, 1 H), 7.65 (d, *J* = 4.0 Hz, 2 H), 7.56-7.53 (m, 1 H), 7.33 (d, *J* = 8.5 Hz, 2 H), 6.75 (d, *J* = 8.5 Hz, 2 H), 4.38, 4.29 (AB, *J* = 12.5 Hz, 2 H), 3,71 (s, 3 H), 3.50-3.45 (m, 1 H), 3.37-3.33 (m, 3 H), 3.30 (s, 3 H), 3.11 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 168.5, 163.8, 159.3, 135.7, 133.6, 130.9, 130.3, 129.2, 128.6, 126.6, 126.5, 113.7, 95.9, 59.5, 55.3, 52.7, 52.2, 52.1, 49.7; HRMS (ESI) *m/z* calcd for C₂₁H₂₃N₅O₅Na ([M+Na]⁺) 448.1597, found 448.1629.

11,11-Dimethoxy-4-(4-methoxybenzyl)-3,4-dihydro-2H-[1,2,4]triazino[2,3-

b]isoquinolin-6(11*H*)-one (26). To a flame-dried microwave vial was added a solution of 2-((2-azidoethyl)(4-methoxybenzyl)amino)-4,4-dimethoxyisoquinoline-1,3(2*H*,4*H*)-dione (56.6 mg, 0.133 mmol) in distilled PhCl (2.5 mL), followed by a solution of PBu₃ (46.0 mg, 0.228 mmol) in distilled PhCl (580 μ L). The green-brown mixture was stirred at room temperature for 10 min then heated at 180 °C in the microwave reactor for 20 min. TLC analysis (EtOAc:Hexanes, 4:1) showed that the starting material was converted to a much more polar spot. The dark purple solution was concentrated under a stream of N₂ and the residue was purified by chromatography on SiO₂ (EtOAc:Hexanes, 4:1 with 1% Et₃N) to produce **26** (44.5 mg, 0.117 mmol, 88%) as a dark brown oil: IR (neat) 3096, 3046, 2990, 2936, 2872, 1735, 1692, 1646, 1586, 1512, 1443, 1363, 1351, 1297, 1277, 1234, 1172, 1073, 1033, 938 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.14 (dd, *J* = 8.0, 1.0 Hz, 1 H), 7.69 (dd, *J* = 7.5, 1.0 Hz, 1 H), 7.61 (td, *J* = 7.5, 1.5 Hz, 1 H), 7.50 (td, *J* = 7.5, 1.5 Hz, 1 H), 7.42 (dt, *J* = 9.5, 2.5 Hz, 2 H), 6.85 (dt, *J* = 9.5, 2.5 Hz, 2 H), 3.97 (brs, 2 H), 3.76 (s, 3 H), 3.77-3.72 (m, 2 H), 3.35 (brs, 6 H), 3.14 (t, *J* = 6.0 Hz, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 159.6, 159.4, 148.1, 135.6, 132.7, 131.0. 129.8, 129.0, 127.8, 127.3,

126.1, 113.9, 96.2, 57.6, 55.2, 52.4, 45.4, 38.9; HRMS (ESI) *m/z* calcd for C₂₁H₂₃N₃O₄ (M⁺) 381.1689, found 381.1718.

11,11-Dimethoxy-3,4-dihydro-2H-[1,2,4]triazino[2,3-*b***]isoquinolin-6(11H)-one (27).** Concentrated H₂SO₄ (3 mL) was added dropwise into H₂O (3 mL), and the acid mixture was stirred for 5 min and cooled to 4 °C. A solution of **26** (15.5 mg, 0.0406 mmol) in CH₂Cl₂ (10 mL) was added into the acid solution at 4 °C. The reaction mixture was immediately cooled to -20 °C, stirred at -20 °C for 12 h, and quenched with solid Na₂CO₃ at -20 - 4 °C until pH>7. The mixture was diluted with H₂O (20 mL), extracted with CH₂Cl₂ (3×30 mL), dried (Na₂SO₄), concentrated, and purified by chromatography on SiO₂ (EtOAc:Hexanes, 4:1 with 1% Et₃N) to afford **27** (7.6 mg, 0.0291 mmol, 72%) as a light yellow solid: IR (neat) 3276.7, 3271.1, 3066.0, 2926.3, 2849.8, 2875.9, 2831.2, 1675.6, 1638.3, 1584.3, 1552.6, 1364.3, 1284.2, 1237.6, 1036.3 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.16 (dd, *J* = 8.0, 1.0 Hz, 1 H), 7.73 (dd, *J* = 7.5, 1.0 Hz, 1 H), 7.66 (td, *J* = 7.5, 1.0 Hz, 1 H), 7.55 (td, *J* = 7.5, 1.0 Hz, 1 H), 6.52 (br s, 1 H), 3.89 (t, *J* = 5.0 Hz, 2 H), 3.34 (s, 6 H), 3.28 (t, *J* = 5.0 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 157.7, 145.5, 136.1, 133.2, 130.0, 128.4, 126.4, 126.1, 96.0, 52.3, 46.5, 43.9; HRMS (ESI) *m/z* calcd for C₁₃H₁₆N₃O₃([M+H]⁺) 262.1192, found 262.1200;

3,4-Dihydro-2H-[1,2,4]triazino[2,3-b]isoquinoline-6,11-dione (28). Concentrated H_2SO_4 (3 mL) was added dropwise into H_2O (3 mL), and the acid mixture was stirred for 5 min and cooled to room temperature. A solution of **27** (18.0 mg, 0.0689 mmol) in CH₂Cl₂ (10 mL) was added into the acid solution. The reaction mixture was stirred for 6 h 15 min at room temperature, and quenched with solid Na₂CO₃ to pH>7. The mixture was diluted with H_2O (20 mL), extracted with CH₂Cl₂ (3×20 mL), dried (Na₂SO₄), and concentrated *in vacuo*. The crude ¹HNMR showed that the reaction was complete. The product was purified by chromatography on SiO₂ (EtOAc:Hexanes, 4:1 with 1% Et₃N) to afford **28** (9.2 mg, 0.0427 mmol, 62%) as yellow powder: IR 3282, 2924, 2867, 2850, 1694, 1661, 1609, 1596, 1581, 1458, 1437, 1379, 1297, 1241, 1215, 1102, 1010 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.28 (dd, *J* = 7.5, 1.0 Hz, 1 H), 8.25 (dd, *J* = 7.5, 1.0 Hz, 1 H), 7.85 (td, *J* = 7.5, 1.0 Hz, 1 H), 7.76 (td, *J* = 7.5, 1.0 Hz, 1 H), 6.64 (br s, 1 H), 4.05 (td, *J* = 5.0, 1.0 Hz, 2 H), 3.35-3.33 (m, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 175.4,

156.0, 141.8, 135.7, 133.8, 131.1, 129.2, 128.8, 128.0, 48.1, 42.6; HRMS (ESI) *m/z* calcd for $C_{11}H_{10}N_3O_2([M+H]^+)$ 216.0773, found 216.0759.

Integral

wdd

=

udd

5 mm CPTCI 1H- 2 20090108 16.22 5 pm CPTCI 1H- 2 20090108 16.22 5 pm CPTCI 1H- 2 20090108 15.22 5 pm CPTCI 1H- 2 2 5 535 65536 65536 65536 65536 65536 65536 0.548877 Hz 0.9110143 sec	21.95.2 13.900 usec 298.0 K 2.00000000 sec 0.03000000 sec 1	CHANNEL f1 ======= 13C 12.00 usec -0.70 dB 82.63385773 W 150.9178988 MHz	CHANNEL f2 ===================================	
NAME EXPNO PROCN	NG DE D1 TD0 TD0	======================================	CPDPRG2 CPDPRG2 CPDPRG2 PL12 PL13 PL13W PL13W PL13W PL13W SFO2 SFO2 SFO2 SFO2 SFO2 SFO2 SFO2 SFO2	mqq 0
				50
8/ • 87				40
08.82 09.10		-		- 09
				- 08
				100
τ <i>L</i> · <i>L</i> ζτ ε/·8ζτ				120
51.25. 729.19				140
MR 600				160
7-12 N				180
JM001440931				- 500

	A MO022202F22-35 A MO0222022F22-35 A MO022202F22-35 A MO022202F22-35 A MO022202F22-35 A MO0222022F22-35 A MO022202F22-35 A MO022	6.50 usec 298.0 K 2.0000000 sec 0.0300000 sec 1	<pre>==== CHANNEL f1 ===================================</pre>	ERG2 CHANNEL f2 ===================================	2 600.1324005 MHz 600.1324005 MHz 150.9027805 MHz EM 1.00 Hz 0 0 0 Hz	1.40
	PULLE PROF PULLE P	DE TE D1 TD0 TD0	==== NUCJ P1 P11 P11V SF01 SF03		SF02 SF02 SF02 SF02 SF02 SF02 SF02 SF02	ьс
					d	5 - 2
	58.7E					40
	~ 20·32 ~ 25·32 — 90·31					- 09
	₽₽. <i>TT</i> .23 20. <i>TT</i> .02					- 0
	26.321					100
	84.821 40.727.91 127.20		_			120
00	£₽.621 22.621 18.521 19.521					140
NMR 6	8T·S9T					160
F22-35	68 ⁻ 69I				¥	180
0222022						500
JMO						

C1M-374-027

Clm-374-027 13C 500

FERT Data Parameters ME CLM-374-027 DONO 1 1	- Acquisition Parameters ce20111104 me 22.06 STRUM Spect 22.06 22.06 STRUM Spect 22.06 65536 65536 65536 65536 1.1010548 sec 1.1010548 sec 1.1010548 sec 1.1010548 sec 2.00 usec 2.00 usec 2.00 usec 2.00 sec	CHANNEL fl ===================================	===== CHANNEL f2 ======= DPRG2 waltz16 1H PD2 18.7430000 wsec v2 18.74300003 w v12 0.36736000 w v13 0 w 22 500.1620006 MHz	- Processing parameters 32768 125.7653639 MHz M 3 0 1.00 Hz 0	1.40
Cul PRC	Т	=== NUC PLV SFC	C C C C C C C C C C C C C C C C C C C	F 2 SF MDV SSE GB	bpm
					5 -
					40
9187 90.52 90.52 90.84					- 09
68.97 21.77 94.77		_			- 08
25°76					100
LS.EII 728.721 728.721					120
138 821 130.32 130.32 130.32 130.32					140
58.821					160
ES'89T					- 8
					50

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

CLM-374-031

				340	
BRUKER Current Data Parameters NAME EXPNO PROCNO 1	F2 - Acquisition Parameters Date	====== CHANNEL f1 ========= NUC1 13C P1 112.58000183 W SFO1 125.7779080 MHz	====== CHANNEL f2 ========= CPDPRG2 waltz16 NUC2 1H PCPD2 18.7430003 W PLW12 0.36736000 W PLW13 0 W PLW13 0 W SF02 500.1620006 MHz	F2 - Processing parameters SI 32768 SF 125.7653330 MHz WDW 5SB 0 1.00 Hz SB 0 1.00 Hz GB 0 1.40	
				-	udd
					20
£9.7£—					40
10 12.52 21.52 71.62					60
68°94~				-	
ST·LL Oħ·LL					08
				_	100
- 113'28 - 152'13 - 152'05 - 152'10					120
	=				40
733.67				-	\leftarrow
80°651 86°791 69°691					160
					180
					200
				-	

CLM-374-031 13C

						S	50	
RUKER	rent Data Parameters E CLM-374-034 NO 2 CNO 1	- Acquisition Parameters e	RES 29761.904 Hz 0.454131 Hz 1.1010548 sec 16.800 usec 6.50 usec 294.3 K 2.0000000 sec 0.0300000 sec	===== CHANNEL f1 ======== 1 13C 8.80 usec 1 112.58000183 W 1 125.7779080 MHz	===== CHANNEL f2 ========= PRG2 waltz16 1H D2 80.00 usec 18.7430003 W 12 0.36736000 W 13 0 W 2 500.1620006 MHz	- Processing parameters 32768 125.7653270 MHz 0 1 00 Hz	0 1.40	
	CUL NAM EXP PRC	F2 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	S MH F TD P D M D D M T TE D 1 D 1 1 1 1 1	EEE Pl SFO	C P P P C P =	Ч N N N N N N N N N N N N N N N N N N N		mqq
							-	- 0
78.8 74.6							-	- 50 - 50
95.99 95.99	57~ 57~						-	4 0
0.80 2.18 5.28 9.29							-	- 09
6.91 7.42 7.42								- 0
T / • • • •							-	100
59.00 53.00 59.52							_	120
89.62 21.45 78.35								140
29.21 63.11							-	1 160
4 13C)[180
-374-03								200
CLM-								-

BRACK ERVERT	F2 - Acquisition Parameters Date20120119 Time20120119 Time20120119 INSTRUM 5 mm PABBO BB- PULPROG 5 mm PABBO BB- PULPROG 5 mm PABBO BB- RG 5536 65536 65536 800 800 05 SOLVENT CDC13 NS 29761.904 Hz SWH 29761.904 Hz SWH 29761.904 Hz FIDRES 0.454131 Hz AQ 1.1010548 sec RG 1.01010548 sec RG 1.01010548 sec DE 29761.903 usec DE 20300000 sec D1 2.0000000 sec	====== CHANNEL fl ======== NUC1 13C P1 8.80 usec PLM1 112.58000183 W SFO1 125.7779080 MHz	====== CHANNEL f2 ======= CPDPRG2 waltz16 NUC2 NUC2 80.00 usec PLW2 18.7430003 W PLW12 0 0.36736000 W PLW13 0 W PLW13 0 W	F2 - Processing parameters SI 32768 SF 125.7653279 MHz WDW SSB 0 1.00 Hz LB 0 1.00 Hz CB 0 1.00 Hz	20 ppm
98.85					0
98.35-					4
~22·53 ~_21·28			_		- 09
06.97 91.77 14.77					- 08
81.96					100
-113.86 -127.26 -127.84					120
129.021 129.02 129.02 121.01		_			140
90.841					-
99.631 92.621					160
					- 180
					_

CLM-374-040 13C 500

{	rent Data Parameters NO 1 200 1	- Acquisition Parameters - Acquisition Parameters PROM 20111218 16.58 16.58 PROG 5536 65536 65536 VENT 25098 Hz 18028.846 Hz 25008 1.8175098 Hz 1.817518 sec 1.817518 sec 27.733 usec 27.733 usec 2.0000000 sec	===== CHANNEL f1 ===================================	CHANNEL f2 ===================================	- Processing parameters 32768 75.4928845 MHz EM 0 1.00 Hz 0 1.40	
	CULF1 CULF1 EXEP	F2 - Date PROF PROF PROF PULINS PROF PULINS PULINS PAC PAC PAC PC PAC PAC PC PC PC PC PC PC PC PC PC PC PC PC PC	PLW SFOU	E E E E E E E E E E E E E E E E E E E	F2 SF SF SF SF SE SF SB FC PC	[mdd
					ماليدين والمحاجمة المراجع المحاجمة المحاجمة المحاجمة المحاجمة المحاجمة المحاجمة المحاجمة المحاجمة المحاجمة الم محاجمة المحاجمة المحاج	20
	16°8⊅				the second s	40
	22.31				und für der Antonio der Antonio Antonio der Antonio der Antonio Antonio der Antonio der Antonio	- 09
	₽ <i>L</i> .9 <i>L</i> 9 <i>T</i> . <i>LL</i> 89. <i>LL</i> ===================================					- 08
	L6.26					100
	128.40 126.40 12.63				a transformer and the second secon	120
	- 130.00 - 133.24 - 138.13 - 145.54					140
	7 <i>L.</i> 721—					160
130 300					יישר או איז אין איז אין איז	180
LM-374-057					و معالم المحالي المحالية معالم المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالي محالية المحالية المحال	200
U U						

		AME Data Parameters AME CLM-374-086 APNO 1 AOCNO 1	2 - Acquisition Parameters ate20120111 Lme11.58 ASTRUM spect XOBHD 5 mm PABBO BB- ULPROG 65536 DLVENT 00213 SLVENT 00213	MH 29761.904 Hz MH 29761.904 Hz MH 0.454131 Hz 1.1010548 sec 1.1010548 sec 1.1010548 sec 6.50 usec	298.0 K 2.00000000 sec 1.0.03000000 sec	JC1 CHANNEL fl JC1 13C L 8.80 usec L 112.58000183 W C01 125.7779080 MHz	CHANNEL f2 E2 CHANNEL f2 waltz16 DPPRG2 waltz16 JC2 1H JC2 80.00 usec LM2 0.36736000 W LM13 0 CO2 500.1620006 MHz	2 - Processing parameters 7 32768 7 125.7653152 MHz 58 0 1.00 Hz	1.40
		D E N C C							ppm PC
									20
	₽I.8₽								
									6 0
	04.77 21.77 68.37								- 08
									1 0 0
	96°.271 18°.821								120
	S1 0001 S1 0001 S2 000 S2 00 S2 000 S2 000 S2 S2 000 S2 000 S2 000 S2 000 S2 00								1 4 0
ЗС	∠6°SST								160
374-086 1;	I₽.271—							_	180
C LM-									