Synthesis of pyrido[2,3-b]indoles and pyrimidoindoles via

Pd-catalyzed amidation and cyclization

Arepalli Sateesh Kumar, P.V. Amulya Rao and Rajagopal Nagarajan*

School of Chemistry, University of Hyderabad

Hyderabad-500046, India

E-mail: rnsc@uohyd.ernet.in

SUPPORTING INFORMATION

Table of Contents	<u>Page</u>
General Information	S2
General Procedures	S2-S7
Materials	S7
Tables S1A, S1B, S2A, S2B, S3A, Computational studies, FIGURES	
S2, S3, S4, & S5 (IR & GC-MS spectra)	S8-S18
References	S19
Analytical data	S20-S47
Spectra	S48-S238
Computational Outputs	S239-S243

General Information:

The procedure does not require inert atmosphere. All the amide products obtained were purified by column chromatography using silica gel (100-200 mesh). Hexane was used as a co-eluent. ¹H and ¹³C NMR were recorded in 400 and 100 MHz spectrometer respectively. The chemical shifts are reported in ppm downfield to TMS ($\delta = 0$) for ¹H NMR and relative to the central CDCl₃ resonance ($\delta = 77.0$) for ¹³C NMR. IR spectra were recorded on FT/IR. Elemental analyses were recorded on Flash EA 1112 analyzer in School of Chemistry, University of Hyderabad. Mass spectra were recorded on either VG7070H mass spectrometer using EI technique or LCMS-2010 mass spectrometer. Melting points were measured in open capillary tubes and are uncorrected.

General procedure for the coupling of 1-benzyl-3-chloro-1*H*-indole-2carbaldehyde and thiophene-2-carboxamide:

An oven dried Ace Pressure tube with Teflon stir bar was charged with $Pd_2(dba)_3$ (5.7 mg, 1.85 μ mol, 2.0 mol % Pd), BINAP (5.0 mg, 0.92 μ mol, 0.5 mol %), thiophene-2-carboxamide (28 mg, 0.07 mmol) and base [Cs₂CO₃ (195 mg) or K₃PO₄ (127 mg) or K₂CO₃ (83 mg) or *t*-BuOK (58 mg), 1-benzyl-3-chloro-1H-indole-2-carbaldehyde (0.05g ,0.185 mmol) and *t*-BuOH (2.0 mL) and then capped with a Teflon screw cap and the mixture was heated to 110 °C with stirring for 8 h. At this point, the reaction mixture was allowed to cool to room temperature, diluted with ethyl acetate, and the resulting solution was filtered through celite, and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (eluting with hexanes/ethyl acetate) to give the corresponding coupled product (**1e**).

General procedure for the coupling of 3-bromo-1-ethyl-1*H*-indole-2carbaldehyde and benzamide:

An oven dried Ace Pressure tube with Teflon stir bar was charged with $Pd_2(dba)_3$ (1.3 mg, 1.4 µmol, 1.0 mol % Pd), BINAP (0.60 mg, 0.9 µmol, 0.25 mol %), benzamide (28 mg, 0.239 mmol) and base [Cs₂CO₃ (195 mg) or K₃PO₄ (127 mg) or K₂CO₃ (83 mg) or *t*-BuOK (58 mg), 3-bromo-1-ethyl-1H-indole-2-carbaldehyde (0.05g ,0.199 mmol) and toluene (2.0 mL) and then capped with a Teflon screw cap and the mixture was heated to 110 °C with stirring for 8 h. At this point, the reaction mixture was allowed to cool to room temperature, diluted with ethyl acetate, and the resulting solution was filtered through celite, and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (eluting with hexanes/ethyl acetate) to give the corresponding coupled product (**1a**).

General procedure for the coupling of 2-bromo-1-ethyl-1*H*-indole-3carbaldehyde and thiophene-2-carboxamide:

An oven dried Ace Pressure tube with Teflon stir bar was charged with $Pd_2(dba)_3$ (0.9 mg, 0.99 µmol, 1.0 mol % Pd), BINAP (0.31 mg, 0.49 µmol, 0.25 mol %), thiophene-2-carboxamide (30 mg, 0.239 mmol) and base [Cs₂CO₃ (195 mg) or K₃PO₄ (127 mg) or K₂CO₃ (83 mg) or *t*-BuOK (58 mg), 2-bromo-1-ethyl-1H-indole-3-carbaldehyde (0.2g ,5.9 µmol) and *t*-BuOH (2.0 mL) and then capped with a Teflon screw cap and the mixture was heated to 110 °C with stirring for 8 h. At this point, the reaction mixture was allowed to cool to room temperature, diluted with ethyl acetate, and the resulting solution was filtered through celite, and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (eluting with hexanes/ethyl acetate) to give the corresponding coupled product (**1f**).

General procedure for the coupling of 3-halo-indole-2-carbaldehyde and amide:

An oven dried Ace Pressure tube with Teflon stir bar was charged with $Pd_2(dba)_3$ (if X = Cl, 1.0 mol %, 2.0 mol % Pd, if X = Br, 0.75 mol %, 1.5 mol % Pd), BINAP (0.50 mol %), amide (1.2 equiv) and Cs_2CO_3 (3.0 equiv), 3-halo-indole-2-carbaldehyde (1.0 equiv) and if X = Br, toluene (1.0 mL); X = Cl, *t*-BuOH (2.0 mL) and then capped with a Teflon screw cap and the mixture was heated to 110 °C with stirring according to mentioned time in Table 1. At this point, the reaction mixture was allowed to cool to room temperature, diluted with ethyl acetate, and the resulting solution was filtered through celite, and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (eluting with hexanes/ethyl acetate) to give the corresponding coupled product.

General procedure for the coupling of 2-halo-3-carbonylindoles and amide:

An oven dried Ace Pressure tube with Teflon stir bar was charged with $Pd_2(dba)_3$ (0.50 mol %, 1.0 mol % Pd), BINAP (0.25 mol %), amide (1.2 equiv) and Cs_2CO_3 (3.0 equiv), 2-halo-3-carbonylindoles (1.0 equiv) and if X = Br, toluene (2.0 mL); X = Cl, *t*-BuOH (2.0 mL) and then capped with a Teflon screw cap and the mixture was heated to 110 °C with stirring according to mentioned time in Table 1. At this point, the reaction mixture was allowed to cool to room temperature, diluted with ethyl acetate, and the resulting solution was filtered through celite, and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (eluting with hexanes/ethyl acetate) to give the corresponding coupled product.

General procedure for base-promoted cyclization to 2-substitued-4-hydroxy- α -carbolines:

An oven dried Ace Pressure tube with Teflon stir bar was charged with *N*-(3-acetyl-1-(substituted)-1*H*-indol-2-yl)amides (1.0 equiv) and *t*-BuOK (5.0 equiv) in THF (6 mL). The pressure tube was then sealed with a Teflon screw-cap and the reaction was placed in a preheated oil bath at 110 °C. The reaction mixture was stirred for according to mentioned time in Table 2 and then removed from the oil bath and allowed to cool to room temperature. The reaction mixture was then diluted with ethyl acetate. The resultant reaction mixture was extracted with EtOAc (20 mL), washed with water (100 mL) and dried over anhydrous Na₂SO₄. The solvent was removed *in vacuo* to obtain the pure product (2**a-2j**). Hexane was added and removed twice more before the product was dried *in vacuo*.

General procedure for the one-pot synthesis of pyrimido[4,5-*b*] & [5,4*b*]indoles (Method A):

An oven dried Ace Pressure tube with Teflon stir bar was charged with $Pd_2(dba)_3$ (1.3 mg, 1.4 µmol, 1.0 mol % Pd), BINAP (0.18 mg, 2.9 µmol, 1.5 mol %), amide (86 mg, 0.07 mmol) and base [Cs₂CO₃ (195 mg) or K₃PO₄ (127 mg) or K₂CO₃ (83 mg) or *t*-BuOK (58 mg), 3-halo-2-formylindoles or 2-halo-3-carbonylindoles (0.2g ,5.9 µmol) and *t*-BuOH (2.0 mL) and then capped with a Teflon screw cap and the mixture was heated to 110 °C with stirring and the reaction was monitored by TLC. When the starting material was completely consumed, the reaction mixture was cooled to <80 °C and HCOONH₄ (6.0 equiv) in *t*-BuOH (2 mL) was added in one portion. The resulting mixture was heated back to 110 °C and the reaction mixture was stirred for according time mentioned in Table 3. When the reaction was complete, reaction

mixture was allowed to cool to room temperature, diluted with ethyl acetate, and the resulting solution was filtered through celite, and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (eluting with hexanes/ethyl acetate) to give the corresponding pyrimido[4,5-*b*] & [5,4-*b*]indole product.

General procedure for the one-pot synthesis of pyrimido[4,5-b] & [5,4b]indoles (Method B):

An oven dried Ace Pressure tube with Teflon stir bar was charged with *N*-(3-carbonyl-1-(substituted)-1*H*-indol-2-yl)amides or *N*-(1-(substituted)-2-formyl-1*H*-indol-3-yl)amides (1.0 equiv) and HCOONH₄ (6.0 equiv) in *t*-BuOH (6 mL). The pressure tube was then sealed with a Teflon screw-cap and the reaction was placed in a preheated oil bath at 110 °C. The reaction mixture was stirred for according to mentioned time in Table 4 and then removed from the oil bath and allowed to cool to room temperature. The reaction mixture was then diluted with ethyl acetate. The resultant reaction mixture was extracted with EtOAc (20 mL), washed with water (100 mL) and dried over anhydrous Na₂SO₄. The solvent was removed *in vacuo* to obtain the pure product (**3a-3t**). Hexane was added and removed twice more before the product was dried *in vacuo*.

General procedure for the synthesis of dihydropyrido[4,5-*b*]indoles:

A R.B. flask with Teflon stir bar charged with N-(3-formyl-1-(substituted)-1H-indol-2yl)amides (1.0 mmol), nitro styrene (1.0 mmol) and DABCO (0.5 mmol) were mixed under stirring and heated at 70 °C for 3h. After the reaction was over, the residue was diluted with dichloromethane, adsorbed on silicagel and subjected to column chromatography to obtain the **4a-b** in good yields.

Materials:

The starting materials 3-carbonyl-2-haloindole¹ and 2-formyl-3-haloindole² were prepared based on the literature procedures.

Table S1A Optimization of the Pd-catalyzed cross-coupling of 1-benzyl-3-chloro-1*H*-indole-2-carbaldehyde and thiophene-2-carboxamide ^a

Entry	Pd source-Ligand	Solvent	Base	Time (h)	Yield $(\%)^a$
1	Pd ₂ (dba) ₃ - BINAP	t-BuOH	Cs ₂ CO ₃	12	62 ^b
2	$Pd_2(dba)_3 - BINAP$	DMF	Cs ₂ CO ₃	24	-
3	$Pd_2(dba)_3 - BINAP$	DMSO	Cs_2CO_3	24	-
4	$Pd_2(dba)_3 - BINAP$	toluene	Cs_2CO_3	24	40 ^b
5	$Pd_2(dba)_3 - BINAP$	toluene	K_2CO_3	24	32 ^b
6	$Pd_2(dba)_3 - PPh_3$	t-BuOH	Cs_2CO_3	24	-
7	$Pd_2(dba)_3$ - Pcy_3	t-BuOH	Cs ₂ CO ₃	24	10
8	Pd(OAc) ₂ - BINAP	toluene	Cs_2CO_3	24	14
9	$Pd(OAc)_2 - Pcy_3$	toluene	Cs ₂ CO ₃	24	trace
10	$PdCl_2 - Pcy_3$	toluene	Cs ₂ CO ₃	24	-
11	$PdCl_2(PPh_3)_2$	toluene	Cs_2CO_3	24	-
12	Pd ₂ (dba) ₃ - BINAP	toluene	Cs ₂ CO ₃	20	46 ^c
13	$Pd_2(dba)_3 - BINAP$	toluene	K_2CO_3	24	42
14	Pd ₂ (dba) ₃ - BINAP	t-BuOH	K_2CO_3	10	85°
15	Pd ₂ (dba) ₃ - BINAP	t-BuOH	Cs ₂ CO ₃	8	92 ^c
16	$Pd_2(dba)_3 - BINAP$	toluene	Cs ₂ CO ₃	15	60 [°]
17	$Pd_2(dba)_3 - BINAP$	t-BuOH	K_3PO_4	12	83°

Conditions: 1-benzyl-3-chloro-1*H*-indole-2-carbaldehyde (1.0 mmol), thiophene-2-carboxamide (1.2 mmol), Pd (2.0 mol %), ligand (1.0 mol %), base (3.0 mmol), solvent (2.0 mL/mmol), 110 °C, 8-24 h. [a] isolated yields. [b] $Pd_2(dba)_3$ (0.50 mol %), BINAP (0.25 mol %), [c] $Pd_2(dba)_3$ (1.0 mol %), BINAP (0.50 mol %)

Table S1B Optimization of the Pd-catalyzed cross-coupling of 3-bromo-1-ethyl-1*H*-indole-2-carbaldehyde and benzamide, 2-bromo-1-ethyl-1*H*-indole-3-carbaldehyde and thiophene-2-carboxamide

Entry	Pd source-Ligand	Solvent	Base	Time (h)	Yield (%) ^a
1	Pd ₂ (dba) ₃ - BINAP	t-BuOH	Cs_2CO_3	24	1a (49); 1f (62)
2	$Pd_2(dba)_3 - BINAP$	THF	Cs ₂ CO ₃	24	1a (18); 1f (27)
3	$Pd_2(dba)_3 - BINAP$	dioxane	Cs ₂ CO ₃	24	1a (15); 1f (21)
4	$Pd_2(dba)_3 - BINAP$	DMF	Cs ₂ CO ₃	24	1a (-); 1f (-)
5	$Pd_2(dba)_3 - BINAP$	DMSO	Cs ₂ CO ₃	24	1a (-); 1f (-)
6	Pd ₂ (dba) ₃ - BINAP	dioxane	Cs_2CO_3	24	1a (12); 1f (20)
7	$Pd_2(dba)_3 - PPh_3$	t-BuOH	Cs_2CO_3	26	1a (57); 1f (62)
8	$Pd_2(dba)_3 - Pcy_3$	t-BuOH	Cs ₂ CO3	20	1a (57); 1f (62)
9	$Pd_2(dba)_3 - Pcy_3$	toluene	Cs ₂ CO ₃	18	1a (78); 1f (83)
10	Pd ₂ (dba) ₃ - BINAP	toluene	Cs ₂ CO ₃	10	1a (81) ^b ;1f(94) ^b
11	Pd ₂ (dba) ₃ - BINAP	toluene	Cs_2CO_3	6	1a (90) ^c ;1f (94) ^b
12	Pd ₂ (dba) ₃ - BINAP	toluene	K_3PO_4	15	1a (51); 1f (64)
13	Pd ₂ (dba) ₃ - BINAP	toluene	K_2CO_3	24	1a (56); 1f (65)
14	Pd(OAc) ₂ - BINAP	toluene	Cs ₂ CO ₃	24	1a (55); 1f (70)
15	$Pd(OAc)_2 - PPh_3$	toluene	K_2CO_3	24	1a (42); 1f (48)
16	$Pd(OAc)_2 - Pcy_3$	toluene	K_2CO_3	24	1a (45); 1f (53)
17	$PdCl_2 - Pcy_3$	toluene	K_2CO_3	24	1a (11); 1f (26)
18	$PdCl_2(PPh_3)_2$	toluene	Cs_2CO_3	24	1a (-); 1f (-)

Conditions: 3-bromo-1-ethyl-1*H*-indole-2-carbaldehyde (1.0 mmol), benzamide (1.2 mmol), Pd (1.5 mol %), ligand (0.75 mol %), 2-bromo-1-ethyl-1*H*-indole-3-carbaldehyde (1.0 mmol), thiophene-2-carboxamide (1.2 mmol), Pd (1 mol %), ligand (0.25 mol %), base (3.0 mmol), solvent (2.0 mL/mmol), 110 °C, 6-24 h. [a] isolated yields. [b] $Pd_2(dba)_3$ (0.50 mol %), BINAP (0.25 mol %), [c] $Pd_2(dba)_3$ (0.75 mol %), BINAP (0.50 mol %)

Table S2A Optimization for the synthesis of 9-ethyl-2-methyl-9H-pyrido[2,3-b]indol-4-ol ^a

Entry	Base	Solvent	Temp (°C)	Time (h)	Yield $(\%)^{b}$
1	Cs ₂ CO ₃	t-BuOH	110	24	25
2	NaOH	THF	70	24	12
3	NaOH	t-BuOH	110	24	16
4	NaOH	DMF	110	24	-
5	NaOH	dioxane	110	24	12
6	NaOEt	toluene	110	24	-
7	Cs_2CO_3	THF	70	24	40
8	NaOMe	dioxane	110	24	-
9	NaOAc	t-BuOH	110	24	20
10	t-BuOK	MeOH	70	24	47
11	t-BuOK	THF	70	6	88
12	t-BuOK	dioxane	110	24	42
13	t-BuOK	toluene	110	24	13
14	t-BuOK	DMF	110	24	20

^aConditions: *N*-(3-acetyl-1-ethyl-1*H*-indol-2-yl)acetamide (1.0 mmol) and base (5.0 mmol), solvent (2.0 mL/mmol), 70-110 °C, 6-24 h. [b] Isolated yields.

Computational Analysis:

Generally, aliphatic carbonyl compounds which have alpha hydrogens undergo *keto-enol* tautomerism; among them the *keto* form is favored over the *enol* form due to the stabilization of the C=O bond. Though, this common fashion is not obeyed by the cyclic conjugated ketone systems. In this tautomerism, the *enol* form is predominant over *keto* form albeit literature ³also supports the existence of the *enol* form almost exclusively. This conclusion was achieved by performing electronic structure calculations on the isomers of these molecules.

Density functional theory (DFT) hybrid method with the Becke's 3 parameter exchange functional of Lee, Yang and Parr (B3LYP) and 6-31+G(D) (valence double zeta plus polarization functions of d type) basis set is used to optimize the geometries of the two tautomers of the 9ethyl-2-methyl-1H-pyrido[2,3-b]indol-4(9H)-one. The effect of solvation also studied here. Three types (gas phase, using methanol and tetra hydro furan as solvents with polarizable continuum model (PCM) solvent model) of calculations are done on the two tautomers. All the calculations were done using Gaussian 09 package. It is well recognized that this method and basis set are reliable for organic molecules. The two structures converged to a minimum and both minima were verified by establishing that the matrix of energy second derivatives (Hessian) has only positive Eigen values (all vibrational frequencies real). The optimized keto and enol forms are depicted by **Fig S2a & S2b**. The transition state is verified by the presence of only one large negative vibrational frequency (-1671cm⁻¹). The obtained transition state is depicted in **Fig S2c**. The electronic and activation energies of the two tautomers and transition states in the three models of theory are tabulated in Table S2B.

Fig S2. B3LYP and 6-31+G(D) Optimized (a) keto form (b) enol form (c) transition state

Table S2B. The total energy of the Keto, Enol and Transition states at B3LYP/6-

31+G(D) level of theory in gas phase and solvent

Method	Keto form	Enol form	Transition	Activation Energy
	(Hartree)	(Hartree)	State (Hartree)	(K.cal/mol)
Gas Phase	-726.6992284	-726.7088136	-726.3832852ª	198.255
Methanol	-726.7225416	-726.7177769	-726.6256917	60.774
THF	-726.8643483	-726.8604681	-726.7665929	61.342

^a The transition state was optimized with B3LYP method and 6-31g basis set but reactant and product were optimized with B3LYP method and 6-31+G(D) basis. Because the transition state search with 6-31+G(D) is unsuccessful.

From the Table S2B, it can be seen that the relative energy difference between the enol forms to keto form is very small. While the enol form is stable in gas phase than keto form by 6.011 Kcal/mol, the keto form is stable than the enol form by ~3 Kcal/mol in the solvent model. This stabilization can be attributed to the hydrogen bonding by the keto group with methanol. The relative energies are very small enough to be in equilibrium with the other counterpart even at room temperature. But in our synthesis only enol form is predominant than the keto form. So, we optimized the transition state for the conversion, the energies are tabulated in Table S2B. The activation energy for keto-enol tautomerism is 198.255, 60.774, 61.342 Kcal/mol in the gas

phase and solvent models respectively. These energy barriers cannot be attained with room temperature energy. So, only one form is predominant. The variable temperature (VT-PXRD) spectroscopic studies also support this statement.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Figure S3 (a) ¹³C NMR of 2f in liquid state (DMSO), (b) Solid State ¹³C NMR, (c) NOESY of 2f (d) VT-PXRD patterns of 2f on -30 $^{\circ}$ C to 110 $^{\circ}$ C.

The IR spectrum of the molecule shows a broad peak at $\Delta v_{max} 3410 \text{ cm}^{-1}$. This peak was assigned as an O-H vibration. The peak cannot be assigned for the N-H bond vibrational frequency (~3300 cm⁻¹)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Figure S4. IR Spectrum of 2f

Although tautomerism is a difficult subject to study in the gas phase, we recorded the GCMS of **2f** which shows a fragment by elimination of OH (M-17). This indicates the presence of a OH group in **2f**.

Figure S5. GC-MS of 2f

Table S3A Optimization for the synthesis of 9-butyl-2,4-dimethyl-9*H*-pyrimido[4,5-*b*]indole ^a

Entry	Ammonia Source	Solvent	Temp (°C)	Time (h)	Yield (%) ^b
1	NH ₄ OH	t-BuOH	110	24	45
2	$\rm NH_4OH$	THF	110	24	-
3	$\rm NH_4OH$	MeOH	110	24	10
4	NH ₄ Cl	t-BuOH	110	24	12
5	NH ₄ OAc	t-BuOH	110	24	40
6	NH ₄ OAc	MeOH	80	24	17
7	NH ₄ OAc	DMF	110	24	-
8	HCOONH ₄	t-BuOH	110	5	91
9	HCOONH ₄	MeOH	80	24	43
10	HCOONH ₄	MeCN	110	24	-
11	HCOONH ₄	DMF	110	24	-
12	HCOONH ₄	DMSO	110	24	-

^aConditions: *N*-(3-acetyl-1-ethyl-1*H*-indol-2-yl)acetamide (1.0 mmol) and NH₃ source (6.0 mmol), solvent (2.0 mL/mmol), 80-110 °C, 5-24 h. ^bIsolated yields.

Quantum Yield Calculations:

Quantum yield calculations have been done following the equation

$$\frac{\Phi_{sample}}{\Phi_{std.}} = \frac{A_{sample}}{A_{std.}} \times \frac{OD_{std.}}{OD_{sample}} \times \frac{\eta^{2 sample}}{\eta^{2 std.}}$$

where std. abbreviates for the standard (here quinine sulfate), A is the integrated emission intensity, O.D. stands for the optical density at the excited wavelength and η is the refractive index (for dichloromethane $\eta = 1.424$ and for water solutions $\eta = 1.333$). The excitations have been performed at iso-O.D. where the absorption curve of the sample intersects the same of quinine sulfate.

References:

- (1) (a) Lu, S. C.; Duan, X. Y.; Shi, Z. J.; Li, B.; Ren Y. W.; Zhang, W. Org. Lett. 2009, 11, 3902-3905. (b) Ketcha, D. M.; Lieurance, B.A.; Homan, D. F. J. J. Org. Chem. 1996, 61, 6523-6525.
- (2) Majo, V. J.; Perumal, P. T. J. Org. Chem. 1996, 61, 6523-6525.
- (3) A. S. Kumar, R. Nagarajan, Org. Lett. 2011, 6, 1398.

έt

Analytical data for all new compounds

N-(1-Ethyl-2-formyl-1*H*-indol-3-yl)benzamide (1a):

Pale brown solid

mp. 113-115 °C

IR (KBr): 3352, 3217, 2920, 1789, 1653, 1519, 1454, 1390, 1222, 1210, 1109, 918, 727 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 9.87 (s, 1H), 9.62 (s, 1H), 7.94 (d, 2H, *J* = 8.0 Hz), 7.74 (d, 1H, *J* = 8.0 Hz), 7.62 (d, 1H, *J* = 8.0 Hz), 7.47-7.43 (m, 1H), 7.29-7.20 (m, 4H), 3.92 (q, 2H, *J* = 8.0 Hz), 1.22 (t, 3H, *J* = 8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 189.2, 167.8, 136.2, 136.0, 134.8, 132.5, 132.4, 128.6, 127.8, 124.5, 123.0, 121.7, 121.6, 120.6, 110.4, 106.5, 38.2, 14.5.

LC-MS: m/z = 293 (M+H), positive mode; Anal. Calcd for molecular formula C₁₈H₁₆N₂O₂; C, 73.95; H, 5.52; N, 9.58 %; found: C, 73.85; H, 5.51; N, 9.45 %.

N-(1-Butyl-2-formyl-1*H*-indol-3-yl)nicotinamide (1b):

¹H NMR (400 MHz, TMS, CDCl₃) δ : 10.79 (s, 1H), 10.02 (s, 1H), 9.30 (s, 1H), 8.76 (s, 1H), 8.35 (d, 1H, J = 8.0 Hz), 7.99-7.97 (m, 1H), 7.39-7.28 (m, 4H), 4.11 (t, 2H, J = 8.0 Hz), 1.81-1.74 (m, 2H), 1.30-1.22 (m, 2H), 0.86 (t, 3H, J = 8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 184.8, 165.0, 153.0, 149.0, 135.9, 134.5, 132.3, 128.7, 126.9, 125.0, 123.8, 123.4, 123.1, 119.1, 110.8, 44.9, 30.9, 20.1, 13.6.

LC-MS: m/z = 322 (M+H), positive mode; Anal. Calcd for molecular formula $C_{19}H_{19}N_3O_2$;

C, 71.01; H, 5.96; N, 13.08 %; found: C, 71.22; H, 5.89; N, 13.15 %.

N-(1-Butyl-2-formyl-1*H*-indol-3-yl)acetamide (1c):

H₃ Orange solid

mp. 131-133 °C

N CHO IR (KBr): 3317, 3222, 2950, 1795, 1655, 1562, 1498, 1329, 1225, 1209, *n*-Bu 1127, 919, 725 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 9.99 (s, 1H), 9.61 (s, 1H), 8.02 (d, 1H, J = 8.0 Hz), 7.33-7.24 (m, 3H), 4.09 (t, 2H, J = 8.0 Hz), 2.28 (s, 3H), 1.79-1.71 (m, 2H), 1.33-1.25 (m, 2H), 0.91 (t, 3H, J = 8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 184.6, 170.5, 141.6, 134.3, 124.8, 123.8, 123.4, 123.0, 119.3, 110.7, 107.2, 44.4, 30.9, 20.1, 13.6.

LC-MS: m/z = 259 (M+H), positive mode; Anal. Calcd for molecular formula $C_{15}H_{18}N_2O_2$; C, 69.74; H, 7.02; N, 10.84 %; found: C, 69.81; H, 7.12; N, 10.76 %.

N-(1-Butyl-2-formyl-1*H*-indol-3-yl)thiophene-2-carboxamide (1d):

¹H NMR (400 MHz, TMS, CDCl₃) δ : 10.66 (s, 1H), 10.12 (s, 1H), 7.93-7.91 (m, 2H), 7.65-7.38 (m, 2H), 7.32-7.29 (m, 2H), 7.19-7.17 (m, 1H), 4.33 (t, 2H, *J* = 8.0 Hz), 1.85-1.78 (m, 2H), 1.28-1.26 (m, 2H), 0.90 (t, 3H, *J* = 8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 184.3, 160.6, 142.2, 137.5, 134.5, 132.7, 132.5, 130.8, 129.2, 128.3, 125.4, 123.0, 117.7, 111.0, 45.7, 30.8, 20.1, 13.6.

LC-MS: m/z = 327 (M+H), positive mode; Anal. Calcd for molecular formula C₁₈H₁₈N₂O₂S; C, 66.23; H, 5.56; N, 8.58 %; found: C, 66.38; H, 5.51; N, 8.49 %.

N-(1-Benzyl-2-formyl-1*H*-indol-3-yl)thiophene-2-carboxamide (1e):

Pale yellow solid

mp. 217-219 °C

сно

IR (KBr): 3259, 3120, 2845, 1763, 1669, 1632, 1529, 1427, 1372, 1209, 1109, 1012, 915, 739 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ: 10.62 (s, 1H), 10.22 (s, 1H), 7.95 (d, 1H, *J* = 8.0 Hz), 7.83-7.82 (m, 1H), 7.64-7.63 (m, 1H), 7.33-7.31 (m, 1H), 7.30-7.24 (m, 5H), 7.18-7.15 (m, 1H), 7.09-7.07 (m, 2H), 5.62 (s, 2H).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 185.6, 160.7, 142.3, 137.7, 136.0, 134.9, 134.4, 133.7,
133.1, 132.1, 130.8, 128.9, 128.3, 127.7, 126.8, 125.5, 123.2, 117.8, 111.6, 105.2, 49.4.

LC-MS: m/z = 361 (M+H), positive mode; Anal. Calcd for molecular formula $C_{21}H_{16}N_2O_2S$; C, 69.98; H, 4.47; N, 7.77 %; found: C, 69.71; H, 4.38; N, 7.67 %.

N-(1-Ethyl-3-formyl-1*H*-indol-2-yl)thiophene-2-carboxamide (1f):

сно mp. 147-149 °C Ét

Pale yellow solid

IR (KBr): 3252, 3159, 2876, 1778, 1669, 1612, 1466, 752, 717 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 10.67 (s, 1H), 10.09 (s, 1H), 7.92-7.91 (m, 2H), 7.61 (d, 1H, J = 8.0 Hz), 7.39-7.37 (m, 1H), 7.31-7.13 (m, 3H), 4.30 (q, 2H, J = 8.0 Hz), 1.46 (t, 3H, J =8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 184.8, 160.8, 141.9, 137.5, 134.4, 134.1, 132.7, 130.9, 128.9, 125.4, 123.1, 123.0, 118.0, 110.8, 40.8, 14.1.

LC-MS: m/z = 299 (M+H), positive mode; Anal. Calcd for molecular formula C₁₆H₁₄N₂O₂S; C, 64.41; H, 4.73; N, 9.39 %; found: C, 64.32; H, 4.79; N, 9.28 %.

N-(1-Butyl-3-formyl-1*H*-indol-2-yl)acetamide (1g):

Orange solid

mp. 176-178 °C

IR (KBr): 3259, 3160, 2852, 1776, 1670, 1635, 1532, 1479, 1452, 1382, 1210, 1120, 1020, 915, 720 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 9.99 (s, 1H), 9.61 (s, 1H), 8.02 (d, 1H, J = 8.0 Hz), 7.33-7.24 (m, 3H), 4.09 (t, 2H, J = 8.0 Hz), 2.28 (s, 3H), 1.79-1.71 (m, 2H), 1.33-1.25 (m, 2H), 0.91 (t, 3H, J = 8.0 Hz)

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 184.6, 170.5, 141.6, 134.3, 127.9, 124.8, 123.4, 123.0, 119.3, 110.7, 107.2, 44.4, 30.9, 20.1, 13.6.

LC-MS: m/z = 259 (M+H), positive mode; Anal. Calcd for molecular formula $C_{15}H_{18}N_2O_2$; C, 69.74; H, 7.02; N, 10.84 %; found: C, 69.85; H, 7.12; N, 10.76 %.

N-(1-Benzyl-3-formyl-1*H*-indol-2-yl)thiophene-2-carboxamide (1h) :

Yellow solid

mp. 229-231 °C IR (KBr): 3262, 3129, 2852, 1769, 1662, 1635, 1520, 1414, 1375, 1202, 1102, 1010, 919, 735 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 10.60 (s, 1H), 10.20 (s, 1H), 7.95 (d, 1H, J = 8.0 Hz), 7.83-7.82 (m, 1H), 7.65-7.63 (m, 1H), 7.31-7.24 (m, 6H), 7.18-7.15 (m, 1H), 7.09-7.07 (m, 2H), 5.62 (s, 2H).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 185.0, 160.6, 142.4, 137.3, 135.8, 134.9, 132.8, 131.2, 130.9, 128.8, 128.2, 127.9, 127.5, 126.7, 125.4, 123.2, 123.1, 117.5, 111.4, 105.2, 49.5. LC-MS: m/z = 361 (M+H), positive mode; Anal. Calcd for molecular formula C₂₁H₁₆N₂O₂S; C, 69.98; H, 4.47; N, 7.77 %; found: C, 69.91; H, 4.52; N, 7.86 %.

N-(3-Acetyl-1-ethyl-1*H*-indol-2-yl)nicotinamide (1i):

Dark brown solid

mp. 116-118 °C

 $\begin{array}{c} N \\ \dot{E}t \\ 1370, 1228, 1110, 1021, 915 \ \mathrm{cm}^{-1}. \end{array}$ IR (KBr): 3289, 3150, 2929, 2862, 1685, 1624, 1550, 1432, 1427,

¹H NMR (400 MHz, TMS, CDCl₃) δ: 11.78 (s, 1H), 9.33 (s, 1H), 8.82 (s, 1H), 8.40-8.38 (m, 1H), 7.82-7.79 (m, 1H), 7.48-7.43 (m, 2H), 7.31-7.29 (m, 2H), 4.35 (q, 2H, *J* = 8.0 Hz), 2.67 (s, 3H), 1.48 (t, 3H, *J* = 8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 195.8, 164.6, 153.2, 149.4, 142.5, 135.5, 134.3, 129.0, 124.9, 123.6, 122.7, 122.6, 120.0, 110.9, 104.3, 41.0, 30.6, 14.1.

LC-MS: m/z = 306 (M+H), negative mode; Anal. Calcd for molecular formula $C_{18}H_{17}N_3O_2$; C, 70.34; H, 5.58; N, 13.67 %; found: C, 70.45; H, 5.51; N, 13.76 %.

N-(3-Acetyl-1-ethyl-1*H*-indol-2-yl)thiophene-2-carboxamide (1j):

Orange solid

mp. 132-134 °C

¹H NMR (400 MHz, TMS, CDCl₃) δ : 11.78 (s, 1H), 7.94 (d, 1H, J = 8.0 Hz), 7.82-7.80 (m, 1H), 7.64 (d, 1H, J = 8.0 Hz), 7.46-7.44 (m, 1H), 7.32-7.30 (m, 2H), 7.21-7.18 (m, 1H), 4.40 (q, 2H, J = 8.0 Hz), 2.70 (s, 3H), 1.50 (t, 3H, J = 8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 195.7, 160.7, 143.1, 138.3, 134.4, 132.5, 130.7, 128.3, 125.0, 122.6, 122.4, 119.9, 110.9, 103.7, 41.2, 30.6, 14.1.

LC-MS: m/z = 313 (M+H), positive mode; Anal. Calcd for molecular formula $C_{17}H_{16}N_2O_2S$; C, 65.36; H, 5.16; N, 8.97 %; found: C, 65.26; H, 5.24; N, 8.91 %.

N-(3-Acetyl-1-hexyl-1*H*-indol-2-yl)acetamide (1k):

¹H NMR (400 MHz, TMS, CDCl₃) δ : 10.46 (s, 1H), 7.82-7.80 (m, 1H), 7.39-7.38 (m, 1H), 7.30-7.27 (m, 2H), 4.24 (t, 2H, J = 8.0 Hz), 2.69 (s, 3H), 2.33 (s, 3H), 1.81-1.78 (m, 2H), 1.33-1.23 (m, 6H), 0.89-0.86 (m, 3H).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 195.4, 169.9, 142.3, 134.3, 124.9, 122.4, 122.2, 120.0, 110.9, 104.1, 45.6, 31.3, 30.7, 28.6, 26.5, 24.4, 22.5, 13.9.

LC-MS: m/z = 301 (M+H), positive mode; Anal. Calcd for molecular formula $C_{18}H_{24}N_2O_2$; C, 71.97; H, 8.05; N, 9.33 %; found: C, 71.85; H, 8.12; N, 9.45 %.

N-(3-Acetyl-1-benzyl-1*H*-indol-2-yl)acetamide (11):

Pale purple solid

mp. 223-225 °C

IR (KBr): 3252, 3232, 2910, 2855, 1672, 1634, 1575, 1556, 1477, 1329, 1125, 960, 907 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ: 10.45 (s, 1H), 7.85 (d, 1H, *J* = 8.0 Hz), 7.32-7.19 (m, 6H), 7.03-7.01 (m, 2H), 5.51 (s, 2H), 2.72 (s, 3H), 2.26 (s, 3H).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 195.5, 170.1, 142.5, 136.1, 134.7, 128.7, 128.1, 127.6, 126.7, 126.5, 124.8, 122.7, 122.5, 120.0, 111.3, 104.5, 49.1, 30.8, 24.3.

LC-MS: m/z = 307 (M+H), positive mode; Anal. Calcd for molecular formula $C_{19}H_{18}N_2O_2$; C, 74.49; H, 5.92; N, 9.14 %; found: C, 74.63; H, 5.88; N, 9.07 %.

N-(3-acetyl-1-(phenylsulfonyl)-1*H*-indol-2-yl)nicotinamide (1m)(Known compound)

Solid, R_f (8 % EtOAc/hexane)

mp: 171-172 °C

IR (KBr): 3352, 2961, 2926, 2856, 1726, 1668, 1614, 1460, 1373, 1248, 1099, 1043, 800, 744, 696 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 12.89 (s, 1H), 9.33 (s, 1H,), 8.85 (d, 1H, J = 8.0 Hz),

7.77-7.45 (m, 1H), 7.46-7.43 (m, 2H), 7.41-7.20 (m, 2H), 7.18-7.15 (m, 3H), 7.14-7.05 (m, 1H);

6.86-6.79 (m, 2H), 2.72 (s, 3H). Spectral data matched reported for this compound.

N-(3-acetyl-1-(phenylsulfonyl)-1*H*-indol-2-yl)benzamide(1n): (Known compound)

Solid, R_f (6 % EtOAc/hexane)

mp. 167-168 °C

IR (KBr): 3359, 2963, 2936, 2872, 1729, 1668, 1624, 1465, 1473, 1348, 1099, 1043, 810, 745, 699 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ: 12.81 (s, 1H), 8.11-8.09 (m, 1H), 7.80-7.69 (m, 1H), 7.67-7.60 (m, 2H), 7.58-7.55 (m, 2H), 7.44-7.35 (m, 2H), 7.32-7.27 (m, 4H), 7.26-7.14 (m, 2H), 2.75 (s, 3H). Spectral data matched reported for this compound.

N-(3-acetyl-1-benzyl-1*H*-indol-2-yl)benzamide (10): (Known compound)

Solid, R_f (5 % EtOAc/Hexane) m.p. 217-218 °C

IR (KBr): 3295, 3157, 2991, 2962, 2872, 1689, 1614, 1545, 1462, 1417, 1373, 1271, 1228, 1155, 1107, 1022, 978, 914, 800, 746, 709 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ: 11.64 (s, 1H), 8.07-8.05 (m, 2H), 7.89-7.82 (m, 2H), 7.61-

7.54 (m, 1H), 7.52-7.40 (m, 2H), 7.36-7.34 (m, 1H), 7.26-7.24 (m, 4H), 7.09-7.07 (m, 2H), 5.66

(s, 2H), 2.75 (s, 3H). Spectral data matched reported for this compound

N-(3-acetyl-1-hexyl-1*H*-indol-2-yl)nicotinamide (1p):

Solid, R_f (5 % EtOAc/hexane)

m.p. 271-272 °C

IR (KBr): 3057, 2959, 2928, 2866, 2247, 1689, 1614, 1554, 1419, 1271, 1228, 1155, 1107, 1022, 912, 748 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 11.80 (s, 1H), 9.37 (s, 1H), 8.86 (s, 1H), 8.42 (d, 1H, J = 4.0 Hz), 7.84-7.83 (m, 1H), 7.47-7.45 (m, 2H), 7.35-7.31 (m, 1H), 7.29-7.14 (m, 1H), 4.43 (q, 2H, J = 14.2 Hz), 2.70 (s, 3H), 1.29-1.23 (m, 9H), 0.91-0.78 (m, 2H). Spectral data matched reported for this compound.

N-(3-acetyl-1-butyl-1*H*-indol-2-yl)benzamide(1q):

Solid, R_f (4 % EtOAc/hexane)

m.p. 212-213 °C

^{*n*-Bu} IR (KBr): 3271, 3057, 2961, 2930, 2866, 1685, 1614, 1548, 1462, 1417, 1373, 1271, 1228, 1155, 1107, 1022, 978, 914, 800, 746, 709 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 11.70 (s, 1H), 8.16-8.14 (m, 2H), 7.85-7.83 (m, 1H), 7.64-7.62 (m, 1H), 7.59-7.55 (m, 1H), 7.47-7.45 (m, 2H), 7.34-7.31 (m, 2H), 4.43 (t, 2H, J =

14.8 Hz), 2.75 (s, 3H), 1.85 (m, 2H), 1.33 (m, 2H), 0.93 (s, 3H). Spectral data matched reported³ for this compound.

N-(3-acetyl-1-butyl-1*H*-indol-2-yl)thiophene-2-carboxamide (1r):

Solid, R_f (5 % EtOAc/hexane) m.p. 201-202 °C

 $\begin{array}{c} N & H & M \\ n-Bu & & \\ 1373, 1271, 1228, 1165, 1117, 1022, 978, 914, 800, 746, 718 \ \mathrm{cm}^{-1}. \end{array}$

¹H NMR (400 MHz, TMS, CDCl₃) δ : 11.83 (s, 1H), 7.96 (d, 1H, *J* = 4.0 Hz), 7.83-7.81 (m, 1H), 7.65-7.64 (m, 1H), 7.45-7.43 (m, 1H), 7.34-7.32 (m, 2H), 7.20-7.19 (m, 1H) 4.43-4.39 (m, 2H), 2.71 (s, 3H), 1.87-1.80 (m, 2H), 1.33-1.27 (m, 2H), 0.94 (t, 3H, *J* = 4.0 Hz). Spectral data matched reported³ for this compound.

N-(3-acetyl-1-butyl-1*H*-indol-2-yl)acetamide (1s):

Solid, R_f (8 % EtOAc/hexane)

 $\begin{array}{c} & \text{m.p. } 102\text{-}103 \ ^{\circ}\text{C} \\ & \text{n-Bu} \\ & \text{IR (KBr): } 3059, \ 2959, \ 2930, \ 2866, \ 1689, \ 1616, \ 1554, \ 1462, \ 1419, \ 1269, \\ & 1155, \ 1107, \ 1020, \ 746 \ \text{cm}^{-1}. \end{array}$

¹H NMR (400 MHz, TMS, CDCl₃) δ : 10.48 (s, 1H), 7.82-7.80 (m, 1H), 7.42-7.39 (m, 1H), 7.32-7.28 (m, 2H), 4.26 (t, 2H, J = 14.8 Hz), 2.69 (s, 3H), 2.34 (s, 3H), 1.79 (q, 2H, J = 8.0 Hz), 1.28 (q, 2H, J = 8.0 Hz), 0.93 (s, 3H). Spectral data matched reported³ for this compound.

N-(3-acetyl-1-ethyl-1*H*-indol-2-yl)benzamide (1t):

Solid, R_f (8 % EtOAc/hexane)

N-(3-acetyl-1-ethyl-1*H*-indol-2-yl)acetamide (1u): (Known compound)

¹H NMR (400 MHz, TMS, CDCl₃) δ : 10.50 (s, 1H), 7.82-7.81 (m, 1H), 7.43-7.42 (m, 1H), 7.32-7.30 (m, 2H), 4.28 (q, 2H, J = 17.2 Hz), 2.69 (s, 3H), 2.34 (s, 3H), 1.46 (t, 3H, J = 4.2 Hz). Spectral data matched reported³ for this compound.

9-Ethyl-2-methyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2a)

mp. 117-119 °C

IR (KBr): 3429, 2927, 1658, 1026, 1003, 769, 725, 570, 528 cm⁻¹.

¹H NMR (400 MHz, TMS, DMSO-*d*₆) δ: 10.88 (s, br, 1H), 7.94 (1H, d, J

= 6.16 Hz), 7.54 (d, 1H, *J* = 8.0 Hz), 7.36-7.33 (m, 1H), 7.20-7.17 (m, 1H), 6.29 (s, 1H), 4.40 (q, 2H, *J* = 5.68 Hz), 2.68 (s, 3H), 1.29 (t, 3H, *J* = 5.72 Hz).

¹³C NMR (100 MHz, TMS, DMSO-*d*₆) δ: 162.9, 149.5, 145.7, 137.6, 124.0, 121.7, 121.2, 120.0, 109.5, 106.8, 103.3, 36.0, 26.0, 14.3.

LC-MS: m/z = 225 (M+H), negative mode; Anal. Calcd for molecular formula C₁₄H₁₄N₂O; C, 74.31; H, 6.24; N, 12.38 %; found: C,74.42; H, 6.21; N, 12.28 %.

9-Ethyl-2-phenyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2b)

Yellowish orange solid

mp. 152-154 °C IR (KBr): 3425, 2924, 1635, 1572, 1456, 1379, 1338, 1178, 1109,

 $1022, 750 \text{ cm}^{-1}.$

¹H NMR (400 MHz, TMS, CDCl₃) δ : 11.73 (s, br, 1H), 8.24 (d, 1H, J = 6.0 Hz), 8.11 (d, 2H, J = 6.0 Hz), 7.50-7.40 (m, 4H), 7.39-7.32 (m, 1H), 7.31-7.29 (m, 1H), 7.06 (s, 1H), 4.61 (q, 2H, J = 6.0 Hz); 1.52 (t, 3H, J = 5.6 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 159.3, 155.3, 153.5, 140.0, 138.6, 128.9, 128.6, 128.5, 128.0, 127.1, 125.2, 122.9, 120.0, 119.7, 108.6, 102.8, 100.3, 36.3, 14.1.

LC-MS: m/z = 289 (M+H), positive mode ; Anal. Calcd for molecular formula C₁₉H₁₆N₂O; C, 79.14 ; H, 5.59; N, 9.72 %; found: C,79.24; H, 5.51; N, 9.65 %.

9-Butyl-2-phenyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2c)

IR (KBr): 3431, 2920, 1635, 1568, 1452, 1362, 1330, 1176, 1100, 1025, 756 cm⁻¹.

¹H NMR (400 MHz, TMS, DMSO- d_6) δ : 11.63 (s, br, 1H), 8.27 (d, 1H, J = 6.16 Hz), 8.00 (d,

2H, J = 4.0 Hz), 7.47-7.40 (m, 4H), 7.36 (d, 1H, J = 5.6 Hz), 7.31-7.28 (m, 1H), 6.98 (s, 1H),

4.53 (t, 2H, *J* = 8.0 Hz), 1.91-1.96 (m, 2H), 1.47-1.39 (m, 2H), 0.97 (t, 3H, *J* = 8.0 Hz).

¹³C NMR (100 MHz, TMS, DMSO-*d*₆) δ: 160.2, 154.7, 153.4, 139.6, 138.8, 128.9, 128.6, 128.5,

128.0, 127.1, 125.1, 122.8, 120.0, 119.9, 108.9, 103.0, 100.8, 41.4, 31.1, 20.3, 13.8.

LC-MS: m/z = 317 (M+H), positive mode; Anal. Calcd for molecular formula $C_{21}H_{20}N_2O$; C,

79.72; H, 6.37; N, 8.85 %; found: C,79.61; H, 6.31; N, 8.79 %.

9-Hexyl-2-(pyridin-3-yl)-9*H*-pyrido[2,3-*b*]indol-4-ol (2d)

Pale yellow solid,

тр. 112-113 °С

N N IR (KBr): 3412, 2918, 1572, 1458, 1375, 1340, 1170, 1109, 1024, $c_{6}H_{13}$ 771, 750, 694 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ: 10.59 (s, br, 1H), 8.45-8.10 (m, 2H), 7.59-7.13 (m, 7H), 4.48 (t, 2H, J = 4.0 Hz), 1.82 (t, 2H, J = 4.0 Hz), 1.32-1.12 (m, 6H), 0.75 (t, 3H, J = 8.0 Hz). ¹³C NMR (100 MHz, TMS, CDCl₃) δ: 161.0, 153.9, 138.8, 134.3, 133.0, 126.8, 125.8, 122.8, 121.4, 120.4, 120.2, 119.8, 119.7, 109.7, 103.0, 100.2, 41.1, 31.1, 28.6, 26.3, 22.4, 14.2. LC-MS: m/z = 346 (M+H), positive mode; Anal. Calcd for molecular formula C₂₂H₂₃N₃O; C, 76.49; H, 6.71; N, 12.16 %; found: C, 76.38; H, 6.63; N, 12.23 %.

9-Benzyl-2-methyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2e)

IR (KBr): 3406, 2912, 1560, 1452, 1379, 1336, 1172, 1122, 1022,

770, 732, 654 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 10.88 (s, br, 1H), 7.95 (d, 1H, J = 7.68 Hz), 7.42 (d, 1H,

J = 7.68 Hz), 7.29-7.17 (m, 7H), 6.34 (s, 1H), 5.59 (s, 2H), 2.71 (s, 3H).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 163.0, 160.4, 150.2, 145.7, 138.1, 138.0, 128.8, 128.6,

127.5, 127.2, 124.1, 121.8, 121.2, 120.3, 110.0, 107.0, 103.5, 44.4, 20.1.

LC-MS: m/z = 289 (M+H), positive mode ; Anal. Calcd for molecular formula C₁₉H₁₆N₂O; C,

79.14; H, 5.59; N, 9.72 %; found: C, 79.03; H, 5.51; N, 9.65 %.

9-Hexyl-2-methyl-9H-pyrido[2,3-b]indol-4-ol (2f)

Pale yellow solid

mp. 122-124 °C IR (KBr): 3410, 2916, 2345, 2254, 2127, 1645, 1045, 1026, 997, 825, 761 cm⁻¹.

¹H NMR (400 MHz, TMS, DMSO- d_6) δ : 10.88 (s, br, 1H), 7.94 (d, 1H, J = 7.72 Hz), 7.53 (d, 1H, J = 7.72 Hz), 7.34 (t, 1H, J = 8.0 Hz), 7.18 (t, 1H, J = 8.0 Hz), 6.29 (s, 1H), 4.32 (t, 2H, J = 8.0 Hz), 2.68 (s, 3H), 1.75-1.72 (m, 2H), 1.24-1.20 (m, 6H), 0.80 (t, 3H, J = 8.0 Hz).

¹³C NMR (100 MHz, TMS, DMSO-*d*₆) δ: 162.9, 149.9, 145.6, 138.0, 124.0, 121.6, 121.1, 120.0, 109.7, 106.6, 103.5, 41.2, 31.4, 28.8, 26.4, 22.4, 20.1, 14.3.

LC-MS: m/z = 283 (M+H), positive mode; Anal. Calcd for molecular formula $C_{18}H_{22}N_2O$; C, 76.56; H, 7.85; N, 9.92 %; found: C, 76.45; H, 7.81; N, 9.88 %.

9-Butyl-2-methyl-9H-pyrido[2,3-b]indol-4-ol (2g)

IR (KBr): 3450, 2932, 1552, 1460, 1372, 1372, 1317, 1195, 1120,

1019, 779, 715 cm⁻¹.

¹H NMR (400 MHz, TMS, DMSO-*d*₆) δ: 10.83 (s, br, 1H), 7.94 (d, 1H, *J* = 8.0 Hz), 7.55-7.52 (m, 1H), 7.35 (t, 1H, *J* = 8.0 Hz), 7.18 (t, 1H, *J* = 8.0 Hz), 6.28 (s, 1H), 4.32 (t, 2H, *J* = 8.0 Hz), 2.69 (s, 3H), 1.75-1.71 (m, 2H), 1.22-1.19 (m, 2H), 0.81 (t, 3H, *J* = 8.0 Hz).

¹³C NMR (100 MHz, TMS, DMSO-*d*₆) δ: 163.2, 150.4, 146.1, 138.5, 124.2, 121.7, 121.0, 120.0,

110.0, 107.0, 103.3, 41.4, 31.5, 22.7, 20.3, 14.7.

LC-MS: m/z = 255 (M+H), positive mode; Anal. Calcd for molecular formula C₁₆H₁₈N₂O; C,

75.56; H, 7.13; N, 11.01 %; found: C, 75.46; H, 7.21; N, 11.12 %.

9-Ethyl-2-(pyridin-3-yl)-9H-pyrido[2,3-b]indol-4-ol (2h)

mp. 122-124 °C

Pale yellow solid

IR (KBr): 3459, 2969, 1585, 1492, 1375, 1332, 1197, 1102, 1095,

785, 715 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 11.7 (s, br, 1H), 8.22 (d, 1H, J = 8.0 Hz), 8.13-8.08 (m, 2H), 7.47-7.43 (m, 3H), 7.39-7.37 (m, 1H), 7.28-7.26 (m, 1H), 7.04 (s, 1H), 4.59 (q, 2H, J = 8.0 Hz), 1.49 (t, 3H, J = 8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 160.2, 155.7, 153.9, 140.0, 138.6, 128.9, 128.6, 128.1, 127.2, 125.3, 122.9, 120.1, 119.8, 108.7, 102.9, 100.4, 36.6, 13.8.

LC-MS: m/z = 290 (M+H), positive mode; Anal. Calcd for molecular formula C₁₈H₁₅N₃O; C, 75.69; H, 6.03; N, 13.24 %; found: C, 74.65; H, 5.28; N, 14.43 %.

9-Butyl-2-(thiophen-2-yl)-9H-pyrido[2,3-b]indol-4-ol (2i)

¹H NMR (400 MHz, TMS, CDCl₃) δ : 11.70 (s, br, 1H), 7.92-7.91 (m, 2H), 7.65-7.63 (m, 1H), 7.40-7.29 (m, 5H), 4.33 (t, 2H, J = 8.0 Hz), 1.85-1.78 (m, 2H), 1.28-1.26 (m, 2H), 0.90 (t, 3H, J = 8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 160.5, 156.6, 149.5, 142.2, 137.5, 134.5, 132.7, 130.8, 128.3, 125.4, 123.1, 123.0, 117.7, 111.0, 105.2, 45.7, 30.8, 20.1, 13.6.

LC-MS: *m/z* = 323 (M+H), positive mode; Anal. Calcd for molecular formula C₁₉H₁₈N₂OS; C, 70.78; H, 5.63; N, 8.69 %; found: C, 70.65; H, 5.58; N, 8.59 %.

9-Benzyl-2-phenyl-9H-pyrido[2,3-b]indol-4-ol (2j)

Brown solid

mp. 128-130 °C

IR (KBr): 3452, 2927, 1572, 1445, 1372, 1327, 1190, 1130,

 $1052, 752, 711 \text{ cm}^{-1}.$

¹H NMR (400 MHz, TMS, CDCl₃) δ: 11.15 (s, br, 1H), 8.12 (d, 2H, *J* = 8.0 Hz), 7.57 (d, 1H, *J* = 8.0 Hz), 7.46-7.43 (m, 2H), 7.36 (d, 1H, *J* = 8.0 Hz), 7.20-7.13 (m, 6H), 6.99 (s, 1H), 6.75-6.72 (m, 1H), 6.59 (d, 1H, *J* = 8.0 Hz), 4.86 (s, 2H).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 163.2, 160.4, 140.8, 136.1, 134.3, 134.1, 130.5, 130.4, 129.7, 129.0, 128.8, 128.7, 128.6, 128.4, 127.5, 127.3, 127.1, 123.6, 122.3, 122.2, 121.1, 116.8, 108.7, 43.5.

LC-MS: m/z = 351 (M+H), positive mode; Anal. Calcd for molecular formula C₂₄H₁₈N₂O; C, 82.26; H, 5.18; N, 7.99 %; found: C, 82.45; H, 5.23; N, 7.91 %.

4-Methyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3a):

Yellow solid

H₃C N N H

mp: 127-129 °C

IR (KBr): 3050, 2856, 1919, 1852, 1680, 1570, 1462, 1252, 1170, 1100,

1028, 990, 752 cm⁻¹

¹H NMR (400 MHz, TMS, CDCl₃) δ: 11.0 (s, 1H,), 7.89-7.88 (m, 1H), 7.78-7.70 (m, 1H), 7.69-7.29 (m, 3H), 7.24-7.21 (m, 2H,), 2.73 (s, 3H).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 161.8, 158.4, 144.4, 137.2, 133.0, 132.3, 130.7, 128.4,
123.7, 122.7, 122.3, 119.3, 111.8, 101.0, 29.9.

LC-MS: m/z = 265 (M+H), positive mode; Anal. Calcd for molecular formula C₁₅H₁₁N₃S;

C, 67.90; H, 4.18; N, 15.84 %; found: C, 67.81; H, 4.23; N. 15.76 %.

9-Butyl-2,4-dimethyl-9*H*-pyrimido[4,5-*b*]indole(3b)

Pale purple solid or Pink

mp: 117-119 °C

IR (KBr): 3059, 2926, 2856, 1923, 1886, 1682, 1622, 1574, 1494, 1469, 1408, 1255, 1174, 1111, 1028, 999, 927, 794, 736 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 8.07 (d, 1H, *J* = 8.0 Hz), 7.53-7.50 (m, 2H), 7.35-7.26 (m, 1H), 4.43 (t, 2H, *J* = 8.0 Hz), 2.95 (s, 3H), 2.82 (s, 3H), 1.89-1.85 (m, 2H), 1.41-1.35 (m, 2H), 0.96 (t, 3H, *J* = 8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 163.7, 159.2, 155.8, 139.0, 126.3, 122.5, 120.9, 120.2, 109.7, 109.5, 41.1, 30.8, 29.7, 26.4, 20.2, 13.7.
LC-MS: m/z = 254 (M+H), positive mode; Anal. Calcd for molecular formula $C_{16}H_{19}N_3$; C, 75.85; H, 7.56; N, 16.59 %; found: C, 75.96; H, 7.52; N, 16.51 %.

9-Butyl-4-methyl-2-phenyl-9*H*-pyrimido[4,5-*b*]indole (3c)

¹H NMR (400 MHz, TMS, CDCl₃) δ : 8.64 (d, 2H, J = 8.0 Hz), 8.11 (d, 1H, J = 8.0 Hz), 7.55-7.35 (m, 6H), 4.55 (t, 2H, J = 8.0 Hz), 3.08 (s, 3H,), 2.32-2.29 (m, 2H), 1.96-1.92 (m, 2H), 0.99 (t, 3H, J = 8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 160.3, 159.4, 145.7, 144.2, 139.7, 130.1, 128.4, 126.7, 122.7, 121.2, 120.2, 118.2, 114.8, 112.7, 110.4, 109.7, 41.2, 31.9, 29.7, 20.2, 14.1.

LC-MS: m/z = 316 (M+H), positive mode; Anal. Calcd for molecular formula $C_{21}H_{21}N_3$; C, 79.97; H, 6.71; N, 13.32 %; found: C, 79.85; H, 6.81; N, 13.45 %.

9-Butyl-4-methyl-2-(pyridin-3-yl)-9*H*-pyrimido[4,5-*b*]indole (3d):

¹H NMR (400 MHz, TMS, CDCl₃) δ : 9.82 (s, 1H), 8.87-8.84 (m, 1H), 8.69 (s, 1H), 8.07 (d, 1H, J = 8.0 Hz), 7.57-7.49 (m, 2H), 7.44-7.35 (m, 2H), 4.49 (t, 2H, J = 4.0 Hz), 3.01 (s, 3H), 1.95-1.87 (m, 2H), 1.45-1.34 (m, 2H), 0.99 (t, 3H, J = 8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 159.7, 158.0, 155.6, 150.3, 149.9, 139.5, 135.5, 134.3,
126.8, 123.2, 122.7, 121.1, 120.0, 110.9, 109.7, 41.2, 30.8, 23.1, 20.2, 13.7.
LC-MS: m/z = 317 (M+H), positive mode; Anal. Calcd for molecular formula C₂₀H₂₀N₄;
C, 75.92; H, 6.37; N, 17.71 %; found: C, 75.85; H, 6.31; N, 17.65 %.

9-Butyl-4-methyl-2-(thiophen-2-yl)-9H-pyrimido[4,5-b]indole (3e):

Brown colour solid

mp: 131-133 °C

IR (KBr): 2926, 2858, 1620, 1572, 1531, 1494, 1469, 1400, 1263, 1097, 848, 798, 718 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) *δ*: 8.13-8.08 (m, 2H), 7.57-7.46 (m, 3H), 7.39-3.28 (m, 1H), 7.19-7.17 (m, 1H), 4.51 (t, 2H, *J* = 8.0 Hz), 3.02 (s, 3H), 1.91-1.90 (m, 2H), 1.44-1.38 (m, 2H), 1.13 (t, 3H, *J* = 8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 159.7, 157.1, 155.6, 144.9, 139.4, 128.7, 128.1, 128.0, 126.4, 122.5, 121.0, 120.4, 110.1, 109.7, 41.0, 30.7, 23.0, 20.1, 13.7.

LC-MS: m/z = 322 (M+H), positive mode; Anal. Calcd for molecular formula C₁₉H₁₉N₃S; C, 70.99; H, 5.96; N, 13.07 %; found: C, 70.85; H, 5.91; N, 13.18 %.

9-Hexyl-2,4-dimethyl-9*H*-pyrimido[4,5-*b*]indole (3f)

Yellow solid

mp: 102-103 °C

IR (KBr): 3049, 2930, 2866, 1930, 1682, 1622, 1574, 1496, 1469, 1402, 1205, 1018, 993, 823, 792, 742, 711, 435 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 8.05 (d, 1H, *J* = 8.0 Hz), 7.53-7.47 (m, 2H), 7.37-7.33 (m, 1H), 4.41 (t, 2H, *J* = 4.0 Hz), 2.97 (s, 3H), 2.82 (s, 3H), 1.88-1.85 (m, 2H), 1.34-1.26 (m, 6H), 0.86 (t, 3H, *J* = 4.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 163.5, 159.0, 155.6, 139.6, 126.4, 122.5, 121.0, 120.1, 109.7, 41.3, 31.4, 29.7, 28.6, 26.6, 26.1, 22.6, 22.5, 14.0.

LC-MS: m/z = 282 (M+H), positive mode; Anal. Calcd for molecular formula $C_{18}H_{23}N_3$; C, 76.83; H, 8.24; N, 14.93 %; found: C, 76.65; H, 8.19; N, 14.85 %.

9-Ethyl-4-methyl-2-(thiophen-2-yl)-9H-pyrimido[4,5-b]indole (3g):

Off-white solid

mp: 122-124 °C

^S⁻¹ IR (KBr): 2950, 2892, 1526, 1452, 1398, 1256, 1166, 1112, 1035, 856,

795, 722 cm^{-1} .

¹H NMR (400 MHz, TMS, CDCl₃) δ: 8.07-8.05 (m, 2H), 7.55-7.50 (m, 2H), 7.48-7.14 (m, 3H),

4.51 (q, 2H, *J* = 8.0 Hz), 2.98 (s, 3H), 1.49 (t, 3H, *J* = 8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 159.8, 157.2, 155.2, 144.8, 139.1, 131.6, 128.7, 128.0, 126.4, 122.5, 121.1, 120.6, 110.4, 109.6, 36.3, 29.7, 14.0.

LC-MS: m/z = 294 (M+H), positive mode; Anal. Calcd for molecular formula $C_{17}H_{15}N_3S$; C, 69.59; H, 5.15; N, 14.32 %; found: C, 69.45; H, 5.21; N, 14.25 %.

9-Benzyl-4-methyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3h)

IR (KBr): 2924, 2858, 1570, 1494, 1427, 1398, 1249, 1163, 1151, 1101, 1093, 1020, 844, 796, 711 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ: 8.15-8.07 (m, 2H), 7.47-7.17 (m, 10H), 5.70 (s, 2H), 3.04 (s, 3H).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 160.0, 157.3, 155.7, 144.7, 139.3, 138.2, 136.7, 128.9, 128.7, 128.5, 128.2, 128.0, 127.9, 127.6, 126.5, 123.2, 122.4, 122.2, 121.4, 120.6, 110.2, 45.1. LC-MS: m/z = 356 (M+H), positive mode; Anal. Calcd for molecular formula C₂₂H₁₇N₃S; C, 74.34; H, 4.82; N, 11.82 %; found: C, 74.19; H, 4.78; N, 11.75 %.

9-Hexyl-4-methyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3i)

light yellow solid

mp: 129-131°C

IR (KBr): 3020, 2950, 2828, 1522, 1454, 1422, 1362, 1207, 1160, 1109,1052, 1032, 850, 752 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 8.89-8.71 (m, 1H), 8.14-8.13 (m, 1H), 7.61-7.28 (m, 5H), 4.63-4.40 (m, 2H), 2.87 (s, 3H), 1.55 -1.46 (m, 5H), 1.31-1.26 (m, 4H), 0.91-0.86 (m, 2H). ¹³C NMR (100 MHz, TMS, CDCl₃) δ : 159.8, 158.2, 155.3, 153.3, 150.5, 150.1, 149.6, 139.2,

135.6, 126.8, 122.8, 121.2, 111.1, 109.6, 41.1, 36.3, 31.6, 30.5, 29.6, 23.1, 13.9.

LC-MS: m/z = 350 (M+H), positive mode; Anal. Calcd for molecular formula C₂₁H₂₃N₃S; C,

72.17; H, 6.63; N, 12.02 %; found: C, 72.08; H, 6.69; N, 12.15 %.

9-Butyl-2-(pyridin-3-yl)-9H-pyrimido[4,5-b]indole (3j)

IR (KBr): 3059, 2922, 2852, 1612, 1573, 1459, 1400, 1252, 1160, 1121, 1020, 795, 738 cm⁻¹. ¹H NMR (400 MHz, TMS, CDCl₃) δ : 9.83 (s, 1H), 9.34 (s, 1H), 8.87-8.72 (m, 2H), 8.15 (d, 1H, J = 8.0 Hz), 7.60-7.58 (m, 1H), 7.55-7.53 (m, 1H), 7.47-7.44 (m, 1H), 7.41-7.37 (m, 1H), 4.55 (t, 2H, J = 8.0 Hz), 1.99-1.92 (m, 2H), 1.48-1.39 (m, 2H), 1.01 (t, 3H, J = 8.0 Hz). ¹³C NMR (100 MHz, TMS, CDCl₃) δ : 158.7, 155.6, 150.6, 150.0, 148.0, 139.9, 135.5, 134.2,

127.6, 123.4, 121.5, 121.3, 119.2, 112.9, 110.0, 41.2, 30.8, 20.1, 13.7.

LC-MS: *m/z* = 303 (M+H), positive mode; Anal. Calcd for molecular formula C₁₉H₁₈N₄; C, 75.47; H, 6.00; N, 18.53 %; found: C,75.54; H, 6.08; N, 18.41 %.

9-Ethyl-2-phenyl-9*H*-pyrimido[4,5-*b*]indole (3k)

Greenish brown solid

тр. 114-116 °С

Et 1433, 1400, 1359, 1224, 1140, 1091, 1066, 1024, 993, 923, 810, 769, 738, 698, 543, 449, 405 cm⁻¹.

IR (KBr): 3061, 2978, 2930, 1668, 1622, 1581, 1556, 1493, 1467,

¹H NMR (400 MHz, TMS, CDCl₃) *δ*: 9.33 (s, 1H), 8.65 (m, 2H), 8.13 (d, 1H, *J* = 7.8 Hz), 7.58-7.50 (m, 5H), 7.39-7.35 (m, 1H), 4.59 (q, 2H, *J* = 7.2 Hz), 1.54 (t, 3H, *J* = 7.24 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 160.8, 155.4, 148.0, 139.5, 138.7, 132.0, 130.1, 129.2, 128.4, 128.3, 127.3, 121.4, 121.1, 119.5, 112.5, 109.6, 36.2, 13.9.

LC-MS: *m/z* = 275 (M+H), positive mode; Anal. Calcd for molecular formula C₁₈H₁₅N₃; C, 79.10; H, 5.53; N, 15.53 %; found: C, 79.21; H, 5.58; N, 15.58 %.

9-Ethyl-2-(pyridin-3-yl)-9*H*-pyrimido[4,5-*b*]indole (3l)

Yellowish orange solid

mp. 92-94 °C

IR (KBr): 3042, 2935, 2920, 1610, 1562, 1552, 1530, 1485, 1475, 1390, 1200, 1132, 1085, 850, 795, 732, 709, 415 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 9.79 (s, 1H), 9.27 (d, 1H, J = 2.0 Hz), 8.81 (d, 1H, J = 7.84

Hz), 8.68 (s, 1H), 8.08 (d, 1H, J = 7.64 Hz), 7.54 (d, 1H, J = 7.32 Hz), 7.49-7.47 (m, 1H), 7.42-

7.39 (m, 1H), 7.36-7.32 (m, 1H), 4.53 (q, 2H, J = 4.0 Hz), 1.50 (t, 3H, J = 8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ : 158.6, 155.1, 149.9, 147.9, 139.5, 135.5, 134.1, 132.8,

123.3, 121.5, 121.3, 119.2, 113.0, 109.7, 108.2, 36.3, 13.9.

LC-MS: m/z = 275 (M+H), positive mode; Anal. Calcd for molecular formula $C_{17}H_{14}N_4$; C,

74.43; H, 5.14; N, 20.42 %; found: C, 74.32; H, 5.21; N, 20.36 %.

9-Ethyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3m)

IR (KBr): 3053, 2974, 2928, 1622, 1585, 1554, 1531, 1493, 1469,

1429, 1396, 1221, 1138, 1084, 852, 796, 738, 709, 451, 405 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ: 9.21 (s, 1H), 8.14-8.08 (m, 2H), 7.58-7.47 (m, 3H), 7.37-

7.33 (m, 1H), 7.20-7.18 (m, 1H), 4.54 (q, 2H, J = 7.2 Hz), 1.52 (t, 3H, J = 7.24 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ : 157.6, 155.1, 147.9, 144.7, 139.4, 128.9, 128.7, 128.2, 128.1, 127.2, 121.2, 119.6, 112.2, 109.6, 36.2, 13.9.

LC-MS: m/z = 280 (M+H), positive mode; Anal. Calcd for molecular formula C₁₆H₁₃N₃S; C, 68.79; H, 4.69; N, 15.04 %; found: C, 68.85; H, 4.61; N, 15.11 %.

9-Benzyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole(3n)

Pale brown Solid

mp. 92-94 °C

IR (KBr): 3120, 2960, 2952, 1610, 1530, 1512, 1490, 1452, 1350, 1220, 1150, 1082, 847, 752 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ: 9.25 (s, 1H), 8.15-8.14 (m, 1H), 8.09 (d, 1H, *J* = 7.76 Hz); 7.50-7.46 (m, 2H); 7.42-7.36 (m, 3H), 7.34-7.32 (m, 2H), 7.30-7.25 (m, 2H), 7.20-7.18 (m, 1H),

5.69 (s, 2H).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 157.8, 155.7, 148.1, 144.5, 139.6, 136.5, 131.7, 129.1, 128.8, 128.3, 128.2, 127.7, 127.5, 127.4, 126.4, 121.6, 121.2, 119.7, 112.2, 110.4, 45.1.

LC-MS: m/z = 342 (M+H), positive mode; Anal. Calcd for molecular formula C₂₁H₁₅N₃S; C, 73.87; H, 4.43; N, 12.31 %; found: C, 73.96; H, 4.38; N, 12.45 %.

5-Butyl-2-methyl-5*H*-pyrimido[5,4-*b*]indole (30)

n-Bu IR (KBr): 3050, 2922, 1612, 1525, 1517, 1460, 1412, 1360, 1222, 1166, 1022, 867, 717 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 9.13 (s, 1H), 8.06 (d, 1H, J = 8.0 Hz); 7.53-7.51 (m, 1H), 7.47-7.45 (m, 1H), 7.34-7.32 (m, 1H), 4.41 (t, 2H, J = 8.0 Hz), 2.8 (s, 3H), 1.88-1.84 (m, 2H), 1.40-1.35 (m, 2H), 0.96 (t, 3H, J = 4.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 164.2, 155.7, 147.6, 139.3, 127.1, 121.1, 121.0, 119.3, 111.5, 109.8, 41.1, 30.8, 26.4, 20.2, 13.7.

LC-MS: m/z = 240 (M+H), positive mode; Anal. Calcd for molecular formula C₁₅H₁₇N₃; C,75.28 ; H, 7.16; N, 17.56 %; found: C, 75.36; H, 7.21; N, 17.45 %.

5-Butyl-2-phenyl-5*H*-pyrimido[5,4-*b*]indole (3p)

¹H NMR (400 MHz, TMS, CDCl₃) δ : 9.33 (s, 1H), 8.62-8.60 (m, 2H), 8.11 (d, 1H, J = 7.72 Hz), 7.55-7.44 (m, 5H) 7.37-7.33 (m, 1H), 4.53 (t, 2H, J = 7.04 Hz), 1.97-1.89 (m, 2H), 1.45-1.35 (m, 2H), 0.98 (t, 3H, J = 7.32 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 160.5, 155.9, 147.6, 139.9, 138.3, 137.3, 135.2, 130.2, 128.5, 128.3, 127.4, 121.4, 121.2, 119.4, 112.3, 109.9, 41.2, 30.8, 20.2, 13.7.

LC-MS: m/z = 302 (M+H), positive mode; Anal. Calcd for molecular formula $C_{20}H_{19}N_3$; C, 79.70; H, 6.35; N, 13.94 %; found: C, 79.86; H, 6.31; N, 13.81 %.

5-Ethyl-2-phenyl-5*H*-pyrimido[5,4-*b*]indole (3q)

Pale brown solid

mp. 133-135 °C

IR (KBr): 3046, 2992, 1655, 1585, 1575, 1462, 1417, 1379, 1235, 1216, 859, 792, 717 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 9.36 (s, 1H), 8.61-8.58 (m, 2H), 8.14-8.12 (m, 1H), 7.61-7.50 (m, 5H), 7.40-7.36 (m, 1H), 4.60 (q, 2H, *J* = 8.0 Hz), 1.54 (t, 3H, *J* = 8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 160.3, 155.0, 147.1, 139.7, 137.8, 130.4, 128.6, 128.3,

127.7, 121.6, 121.5, 119.4, 116.9, 114.7, 112.5, 109.8, 36.4, 13.9.

LC-MS: m/z = 274 (M+H), positive mode; Anal. Calcd for molecular formula C₁₈H₁₅N₃; C,

79.10; H, 5.53; N, 15.37 %; found: C, 79.25; H, 5.61; N, 15.26 %.

5-Ethyl-2-(thiophen-2-yl)-5*H*-pyrimido[5,4-*b*]indole (3r)

Yellow solid

mp. 129-131 °C

IR (KBr): 2950, 2822, 1652, 1621, 1582, 1557, 1492, 1443, 1372, 1236, 1217, 892, 819, 792, 712cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 9.23 (s, 1H), 8.14-8.13 (m, 1H), 8.09 (d, 1H, J = 8.0 Hz), 7.58-7.47 (m, 3H), 7.37-7.34 (m, 1H), 7.20-7.18 (m, 1H), 4.53 (q, 2H, J = 8.0 Hz), 1.52 (t, 3H, J = 8.0 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 158.1, 155.5, 148.4, 145.1, 139.6, 139.3, 129.3, 129.1,
128.2, 127.3, 121.4, 119.7, 112.4, 109.8, 36.3, 14.1.

LC-MS: m/z = 280 (M+H), positive mode; Anal. Calcd for molecular formula C₁₆H₁₃N₃S; C,

68.79; H, 4.69; N, 15.04 %; found: C, 68.62; H, 4.61; N, 15.16 %.

5-Butyl-2-(pyridin-3-yl)-5*H*-pyrimido[5,4-*b*]indole (3s)

White dirty solid

mp. 132-134 °C

IR (KBr): 2962, 2810, 1662, 1600, 1572, 1523, 1485, 1432, 1379, 1252, 1227, 891, 822, 779, 720cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ: 9.31 (s, 1H), 8.85 (d, 2H, *J* = 8.0 Hz), 8.12 (d, 1H, *J* = 7.76 Hz), 7.60-7.50 (m, 2H), 7.45-7.34 (m, 3H), 4.52 (t, 2H, *J* = 7.04 Hz), 1.97-1.90 (m, 2H), 1.46-1.36 (m, 2H), 0.99 (t, 3H, *J* = 7.04 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 164.0, 158.4, 155.6, 150.4, 149.8, 148.0, 139.9, 135.6, 132.6, 122.7, 121.5, 121.3, 119.2, 112.9, 110.0, 41.2, 30.8, 20.2, 13.7.

LC-MS: m/z = 303 (M+H), positive mode; Anal. Calcd for molecular formula $C_{19}H_{18}N_4$; C, 75.47; H, 6.00; N, 18.53 %; found: C, 75.38; H, 6.12; N, 18.45 %.

5-Butyl-2-(thiophen-2-yl)-5*H*-pyrimido[5,4-*b*]indole (3t)

Purple brown solid

mp. 119-121 °C

IR (KBr): 3012, 2912, 1672, 1612, 1880, 1532, 1480, 1462, 1395, 1386, 1332, 1289, 1252, 1212, 1192, 896, 852, 779, 715cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) δ : 9.23 (s, 1H), 8.13-8.09 (m, 2H), 7.58-7.47 (m, 3H), 7.38-7.34 (m, 1H), 7.28-7.18 (m, 1H), 4.51 (t, 2H, *J* = 4.0 Hz), 1.98-1.91 (m, 2H), 1.46-1.37 (m, 2H), 1.02 (t, 3H, *J* = 7.32 Hz).

¹³C NMR (100 MHz, TMS, CDCl₃) δ: 157.5, 155.6, 147.9, 144.7, 139.8, 129.0, 128.1, 128.0, 127.2, 121.3, 121.2, 119.6, 112.0, 109.9, 41.1, 30.7, 20.1, 13.6.

LC-MS: m/z = 306 (M-H), negative mode; Anal. Calcd for molecular formula C₁₈H₁₇N₃S; C, 75.47; H, 5.57; N, 13.67 %; found: C, 70.25; H, 5.51; N, 13.76 %.

(9-ethyl-3-nitro-2-phenyl-2,9-dihydro-1H-pyrido[2,3-b]indol-1-

yl)(phenyl)methanone (4a)

Pale yellow solid

mp. 232-234 °C

IR (KBr): 3063, 2926, 2854, 1670, 1612, 1508, 1464, 1352, 1269, 1095, 1018, 750, 690 cm⁻¹.

¹H NMR (400 MHz, TMS, CDCl₃) *δ*: 8.61 (s, 1H), 7.76-7.74 (m, 1H), 7.53-7.52 (m, 4H), 7.40-7.35 (m, 4H), 7.32-7.19 (m, 5H), 7.16 (s, 1H), 3.63 (q, 2H, *J* = 4.0 Hz), 0.91 (t, 3H, *J* = 7.32 Hz). ¹³C NMR (100 MHz, TMS, CDCl₃) δ: 169.7, 149.3, 139.6, 137.1, 136.4, 135.8, 133.1, 132.1,
128.9, 128.8, 128.7, 128.5, 127.1, 126.9, 126.6, 124.0, 123.4, 122.7, 118.6, 117.2, 112.4, 111.0,
102.1, 58.3, 39.6, 13.6.

LC-MS: m/z = 424 (M+H), positive mode; Anal. Calcd for molecular formula $C_{26}H_{21}N_3O_3$; C, 73.74; H, 5.00; N, 9.92 %; found: C,73.65; H,5.00; N, 9.98 %.

(9- Ethyl-3-nitro-2-phenyl-2, 9-dihydro-1 H-pyrido [2, 3-b] indol-1-yl) (thiophen-2-phenyl-2, 9-dihydro-1 H-pyrido [2, 3-b]

yl)methanone (4b)

Orange solid

mp. 217-219 °C

IR (KBr): 2916, 1651, 1612, 1527, 1509, 1432, 1272, 1105, 1018 cm⁻¹. ¹H NMR (400 MHz, TMS, CDCl₃) δ : 8.60 (s, 1H), 7.75-7.74 (m, 1H), 7.58-7.57 (m, 1H), 7.38-7.37 (m, 1H), 7.32-7.30 (m, 2H), 7.29-7.26 (m,

6H), 7.25-7.05 (m, 1H), 6.95-6.93 (m, 1H), 3.69 (q, 2H, *J* = 4.0 Hz), 0.87 (t, 3H, *J* = 4.0 Hz). ¹³C NMR (100 MHz, TMS, CDCl₃) δ: 162.7, 138.6, 137.4, 136.2, 135.8, 135.7, 135.5, 133.4, 133.3, 132.6, 128.8, 127.8, 127.1, 126.7, 126.4, 123.9, 123.6, 122.7, 118.7, 111.0, 102.5, 58.3, 39.5, 13.6.

LC-MS: m/z = 428 (M-H), negitive mode; Anal. Calcd for molecular formula $C_{24}H_{19}N_3O_3S$; C, 67.12; H, 4.46; N, 9.78 %; found: C, 67.26; H, 4.51; N, 9.65 %.

¹³C NMR of *N*-(1-ethyl-2-formyl-1*H*-indol-3-yl)benzamide (1a):

LCMS of *N*-(1-ethyl-2-formyl-1*H*-indol-3-yl)benzamide (1a):

CHN Analysis of N-(1-ethyl-2-formyl-1H-indol-3-yl)benzamide (1a):

¹H NMR of *N*-(1-butyl-2-formyl-1*H*-indol-3-yl)nicotinamide (1b):

¹³C NMR of *N*-(1-butyl-2-formyl-1*H*-indol-3-yl)nicotinamide (1b):

DEPT of *N*-(1-butyl-2-formyl-1*H*-indol-3-yl)nicotinamide (1b):

LCMS of *N*-(1-butyl-2-formyl-1*H*-indol-3-yl)nicotinamide (1b):

CHN Analysis of N-(1-butyl-2-formyl-1H-indol-3-yl)nicotinamide (1b):

¹H NMR of *N*-(1-butyl-2-formyl-1*H*-indol-3-yl)acetamide (1c):

LCMS of *N*-(1-butyl-2-formyl-1*H*-indol-3-yl)acetamide (1c):

CHN Analysis of N-(1-butyl-2-formyl-1H-indol-3-yl)acetamide (1c):

¹H NMR of *N*-(1-butyl-2-formyl-1*H*-indol-3-yl)thiophene-2-carboxamide (1d):

¹³C NMR of *N*-(1-butyl-2-formyl-1*H*-indol-3-yl)thiophene-2-carboxamide (1d):

LCMS of N-(1-butyl-2-formyl-1H-indol-3-yl)thiophene-2-carboxamide (1d):

CHN of *N*-(1-butyl-2-formyl-1*H*-indol-3-yl)thiophene-2-carboxamide (1d):

¹H NMR of *N*-(1-benzyl-2-formyl-1*H*-indol-3-yl)thiophene-2-carboxamide

¹³C NMR of *N*-(1-benzyl-2-formyl-1*H*-indol-3-yl)thiophene-2-carboxamide

(1e):

LCMS of N-(1-benzyl-2-formyl-1H-indol-3-yl)thiophene-2-carboxamide (1e):

CHN Analysis of N-(1-benzyl-2-formyl-1H-indol-3-yl)thiophene-2-

carboxamide (1e):

¹H NMR of *N*-(1-ethyl-3-formyl-1*H*-indol-2-yl)thiophene-2-carboxamide (1f):

¹³C NMR of *N*-(1-ethyl-3-formyl-1*H*-indol-2-yl)thiophene-2-carboxamide (1f):

LCMS of N-(1-ethyl-3-formyl-1H-indol-2-yl)thiophene-2-carboxamide (1f):

CHN Analysis of *N*-(1-ethyl-3-formyl-1*H*-indol-2-yl)thiophene-2-carboxamide (1f):

¹H NMR of *N*-(1-butyl-3-formyl-1*H*-indol-2-yl)acetamide (1g):

¹³C NMR of *N*-(1-butyl-3-formyl-1*H*-indol-2-yl)acetamide (1g):

DEPT of *N*-(1-butyl-3-formyl-1*H*-indol-2-yl)acetamide (1g):

LCMS of *N*-(1-butyl-3-formyl-1*H*-indol-2-yl)acetamide (1g):

CHN Analysis of *N*-(1-butyl-3-formyl-1*H*-indol-2-yl)acetamide (1g):

¹H NMR of *N*-(1-benzyl-3-formyl-1*H*-indol-2-yl)thiophene-2-carboxamide

(1h):

¹³C NMR of *N*-(1-benzyl-3-formyl-1*H*-indol-2-yl)thiophene-2-carboxamide(1h):

LCMS of N-(1-benzyl-3-formyl-1H-indol-2-yl)thiophene-2-carboxamide (1h):

CHN Analysis of N-(1-benzyl-3-formyl-1H-indol-2-yl)thiophene-2-

carboxamide (1h):

¹H NMR of *N*-(3-acetyl-1-ethyl-1*H*-indol-2-yl)nicotinamide (1i):

¹³C NMR of *N*-(3-acetyl-1-ethyl-1*H*-indol-2-yl)nicotinamide (1i):

LCMS of *N*-(3-acetyl-1-ethyl-1*H*-indol-2-yl)nicotinamide (1i):

CHN Analysis of *N*-(3-acetyl-1-ethyl-1*H*-indol-2-yl)nicotinamide (1i):

¹H NMR of *N*-(3-acetyl-1-ethyl-1*H*-indol-2-yl)thiophene-2-carboxamide (1j):

DEPT of N-(3-acetyl-1-ethyl-1H-indol-2-yl)thiophene-2-carboxamide (1j):

LCMS of N-(3-acetyl-1-ethyl-1H-indol-2-yl)thiophene-2-carboxamide (1j):

CHN Analysis of N-(3-acetyl-1-ethyl-1H-indol-2-yl)thiophene-2-carboxamide

(**1j**):

¹H NMR of *N*-(3-acetyl-1-hexyl-1*H*-indol-2-yl)acetamide (1k):

¹³C NMR of *N*-(3-acetyl-1-hexyl-1*H*-indol-2-yl)acetamide (1k):

LCMS of *N*-(3-acetyl-1-hexyl-1*H*-indol-2-yl)acetamide (1k):

CHN Analysis of *N*-(3-acetyl-1-hexyl-1*H*-indol-2-yl)acetamide (1k):

¹H NMR of *N*-(3-acetyl-1-benzyl-1*H*-indol-2-yl)acetamide (11):

¹³C NMR of *N*-(3-acetyl-1-benzyl-1*H*-indol-2-yl)acetamide (11):

DEPT of N-(3-acetyl-1-benzyl-1H-indol-2-yl)acetamide (11):

LCMS of *N*-(3-acetyl-1-benzyl-1*H*-indol-2-yl)acetamide (11):

CHN Analysis of N-(3-acetyl-1-benzyl-1H-indol-2-yl)acetamide (11):

¹H NMR of 9-ethyl-2-methyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2a):

¹³C NMR of 9-ethyl-2-methyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2a)

DEPT of 9-ethyl-2-methyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2a)

LCMS 9-ethyl-2-methyl-9H-pyrido[2,3-b]indol-4-ol (2a)

LCMS-2010A DATA REPORT SCHOOL OF CHEMISTRY UNIVERSITY OF HYDERABAD HO k CH_3 : Admin User : ASK-C2 Sample T : 5.000 Inj. Volume Et : C:\LCMSsolution\User\Data\ASK-C2-APCI-NEG1.qld Data Name : C:\LCMSsolution\User\Method\esi.qlm Method Name LC Chromatogram mAbs Ch1(254.0nm)*1.00 300 250 200 150 100 50 0 min MS Spectrum Line#:1 R.Time:0.802(Sean#:48) Negative MassPeaks:159 BasePeak:225.10(245679) RawMode:Single 0.802(48) BG Mode:Peak Start 0.560(34) 100-225 289 295 257 223 239 271 196 205 119 134 146 159 182 81 98 104 52 260 270 280 290 240 250 190 200 210 230 50 70 80 90 100 110 120 130 140 150 160 170 180 220 60 m/z MS Peak Table Base m/z Base Int. 225.10 245679 1.Time F.Time 0.560 1.143 A/H Mark %Total Name Height 2284097 Peak# R.Time 1 0.802 Area 100.00 34385003 15.05 34385003 2284097

S103

OPERATOR

CHN Analysis of 9-ethyl-2-methyl-9H-pyrido[2,3-b]indol-4-ol (2a)

¹H NMR of 9-ethyl-2-phenyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2b)

¹³C NMR of 9-ethyl-2-phenyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2b)

DEPT of 9-ethyl-2-phenyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2b)

LCMS of 9-ethyl-2-phenyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2b)

CHN Analysis of 9-ethyl-2-phenyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2b)

¹H NMR of 9-butyl-2-phenyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2c)

¹³C NMR of 9-butyl-2-phenyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2c)

DEPT of 9-butyl-2-phenyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2c)

LCMS of 9-butyl-2-phenyl-9H-pyrido[2,3-b]indol-4-ol (2c)

CHN Analysis of 9-butyl-2-phenyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2c)

¹H NMR of 9-hexyl-2-(pyridin-3-yl)-9*H*-pyrido[2,3-*b*]indol-4-ol (2d)

¹³C NMR of 9-hexyl-2-(pyridin-3-yl)-9*H*-pyrido[2,3-*b*]indol-4-ol (2d)

DEPT of 9-hexyl-2-(pyridin-3-yl)-9*H*-pyrido[2,3-*b*]indol-4-ol (2d)

LCMS of 9-hexyl-2-(pyridin-3-yl)-9*H*-pyrido[2,3-*b*]indol-4-ol (2d)

CHN Analysis of 9-hexyl-2-(pyridin-3-yl)-9H-pyrido[2,3-b]indol-4-ol (2d)

¹H NMR of 9-benzyl-2-methyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2e)

LCMS of 9-benzyl-2-methyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2e)

CHN Analysis of 9-benzyl-2-methyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2e)

¹H NMR of 9-hexyl-2-methyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2f)

DEPT of 9-hexyl-2-methyl-9H-pyrido[2,3-b]indol-4-ol (2f)

CHN Analysis of 9-hexyl-2-methyl-9H-pyrido[2,3-b]indol-4-ol (2f)

¹H NMR of 9-butyl-2-methyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2g)

LCMS of 9-butyl-2-methyl-9H-pyrido[2,3-b]indol-4-ol (2g)

CHN Analysis of 9-butyl-2-methyl-9H-pyrido[2,3-b]indol-4-ol (2g)

¹H NMR of 9-ethyl-2-(pyridin-3-yl)-9*H*-pyrido[2,3-*b*]indol-4-ol (2h)

LCMS of 9-ethyl-2-(pyridin-3-yl)-9*H*-pyrido[2,3-*b*]indol-4-ol (2h)

CHN Analysis of 9-ethyl-2-(pyridin-3-yl)-9H-pyrido[2,3-b]indol-4-ol (2h)

¹³C NMR of 9-butyl-2-(thiophen-2-yl)-9*H*-pyrido[2,3-*b*]indol-4-ol (2i)

DEPT of 9-butyl-2-(thiophen-2-yl)-9*H*-pyrido[2,3-*b*]indol-4-ol (2i)

LCMS of 9-butyl-2-phenyl-9H-pyrido[2,3-b]indol-4-ol (2i)

CHN Analysis of 9-butyl-2-phenyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2i)


```
<sup>1</sup>H NMR of 9-benzyl-2-phenyl-9H-pyrido[2,3-b]indol-4-ol (2j)
```


¹³C NMR of 9-benzyl-2-phenyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2j)

DEPT of 9-benzyl-2-phenyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2j)

LCMS of 9-benzyl-2-phenyl-9*H*-pyrido[2,3-*b*]indol-4-ol (2j)

CHN Analysis of 9-benzyl-2-phenyl-9H-pyrido[2,3-b]indol-4-ol (2j)

¹³C NMR of 4-methyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3a):

LCMS of 4-methyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3a):

CHN Analysis of 4-methyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3a):

LCMS of 9-butyl-2,4-dimethyl-9*H*-pyrimido[4,5-*b*]indole (3b):

CHN Analysis of 9-butyl-2,4-dimethyl-9*H*-pyrimido[4,5-*b*]indole (3b):

¹H NMR of 9-butyl-4-methyl-2-phenyl-9*H*-pyrimido[4,5-*b*]indole (3c)

LCMS of 9-butyl-4-methyl-2-phenyl-9*H*-pyrimido[4,5-*b*]indole (3c)

CHN Analysis of 9-butyl-4-methyl-2-phenyl-9*H*-pyrimido[4,5-*b*]indole (3c)

¹H NMR of 9-butyl-4-methyl-2-(pyridin-3-yl)-9*H*-pyrimido[4,5-*b*]indole (3d):

¹³C NMR of 9-butyl-4-methyl-2-(pyridin-3-yl)-9*H*-pyrimido[4,5-*b*]indole (3d):

LCMS of 9-butyl-4-methyl-2-(pyridin-3-yl)-9*H*-pyrimido[4,5-*b*]indole (3d):

CHN Analysis of 9-butyl-4-methyl-2-(pyridin-3-yl)-9H-pyrimido[4,5-b]indole

(**3d**):


```
<sup>1</sup>H NMR of 9-butyl-4-methyl-2-(thiophen-2-yl)-9H-pyrimido[4,5-b]indole (3e):
```


¹³C NMR of 9-butyl-4-methyl-2-(thiophen-2-yl)-9H-pyrimido[4,5-*b*]indole

(**3e**):

LCMS of 9-butyl-4-methyl-2-(thiophen-2-yl)-9H-pyrimido[4,5-b]indole (3e):

CHN Analysis of 9-butyl-4-methyl-2-(thiophen-2-yl)-9H-pyrimido[4,5-b]indole

(3e):

¹³C NMR of 9-hexyl-2,4-dimethyl-9*H*-pyrimido[4,5-*b*]indole (3f)

LCMS of 9-hexyl-2,4-dimethyl-9*H*-pyrimido[4,5-*b*]indole (3f)

LCMS-2010A DATA REPORT SCHOOL OF CHEMISTRY UNIVERSITY OF HYDERABAD

OPERATOR

CHN Analysis of 9-hexyl-2,4-dimethyl-9*H*-pyrimido[4,5-*b*]indole (3f)

LCMS of 9-ethyl-4-methyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3g):

OPERATOR

CHN Analysis of 9-ethyl-4-methyl-2-(thiophen-2-yl)-9H-pyrimido[4,5-b]indole

(**3**g):

¹H NMR of 9-benzyl-4-methyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole

(**3h**)

¹³C NMR of 9-benzyl-4-methyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole(3h)

LCMS of 9-benzyl-4-methyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3h)

CHN Analysis of 9-benzyl-4-methyl-2-(thiophen-2-yl)-9H-pyrimido[4,5-

b]indole (3h)

¹H NMR of 9-hexyl-4-methyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3i)

¹³C NMR of 9-hexyl-4-methyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3i)

LCMS of 9-hexyl-4-methyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3i)

CHN Analysis of 9-hexyl-4-methyl-2-(thiophen-2-yl)-9H-pyrimido[4,5-

b]indole (3i)

S182

¹H NMR of 9-butyl-2-(pyridin-3-yl)-9H-pyrimido[4,5-b]indole (3j)

¹³C NMR of 9-Butyl-2-(pyridin-3-yl)-9H-pyrimido[4,5-*b*]indole (3j)

LCMS of 9-Butyl-2-(pyridin-3-yl)-9H-pyrimido[4,5-b]indole (3j)

OPERATOR

CHN Analysis of 9-Butyl-2-(pyridin-3-yl)-9H-pyrimido[4,5-b]indole (3j)

¹H NMR of 9-ethyl-2-phenyl-9*H*-pyrimido[4,5-*b*]indole (3k)

¹³C NMR of 9-ethyl-2-phenyl-9*H*-pyrimido[4,5-*b*]indole (3k)

LCMS of 9-ethyl-2-phenyl-9*H*-pyrimido[4,5-*b*]indole (3k)

CHN Analysis of 9-ethyl-2-phenyl-9*H*-pyrimido[4,5-*b*]indole (3k)

¹H NMR of 9-ethyl-2-(pyridin-3-yl)-9*H*-pyrimido[4,5-*b*]indole (31)

¹³C NMR of 9-ethyl-2-(pyridin-3-yl)-9*H*-pyrimido[4,5-*b*]indole (3l)

LCMS of 9-ethyl-2-(pyridin-3-yl)-9*H*-pyrimido[4,5-*b*]indole (3l)

CHN Analysis of 9-ethyl-2-(pyridin-3-yl)-9*H*-pyrimido[4,5-*b*]indole (3l)

¹H NMR of 9-ethyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3m)

¹³C NMR of 9-ethyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3m)

LCMS of 9-ethyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3m)

OPERATOR

CHN Analysis of 9-ethyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3m)

¹³C NMR of 9-benzyl-2-(thiophen-2-yl)-9*H*-pyrimido[4,5-*b*]indole (3n)

LCMS of 9-benzyl-2-(thiophen-2-yl)-9H-pyrimido[4,5-b]indole (3n)

OPERATOR

CHN Analysis of 9-benzyl-2-(thiophen-2-yl)-9H-pyrimido[4,5-b]indole (3n)

¹H NMR of 5-butyl-2-methyl-5*H*-pyrimido[5,4-*b*]indole (30)

¹³C NMR of 5-butyl-2-methyl-5*H*-pyrimido[5,4-*b*]indole (30)

LCMS of 5-butyl-2-methyl-5*H*-pyrimido[5,4-*b*]indole (30)

S205

CHN Analysis of 5-butyl-2-methyl-5*H*-pyrimido[5,4-*b*]indole (30)

¹³C NMR of 5-butyl-2-phenyl-5*H*-pyrimido[5,4-*b*]indole (3p)

DEPT of 5-butyl-2-phenyl-5*H***-pyrimido**[**5**,**4***-b*]**indole**(**3p**)

LCMS of 5-butyl-2-phenyl-5*H*-pyrimido[5,4-*b*]indole(3p)

S210

CHN Analysis of 5-butyl-2-phenyl-5*H*-pyrimido[5,4-*b*]indole(3p)

¹H NMR of 5-ethyl-2-phenyl-5*H*-pyrimido[5,4-*b*]indole (3q)

¹³C NMR of 5-ethyl-2-phenyl-5*H*-pyrimido[5,4-*b*]indole (3q)

DEPT of 5-ethyl-2-phenyl-5*H*-pyrimido[5,4-*b*]indole (3q)

LCMS of 5-ethyl-2-phenyl-5*H*-pyrimido[5,4-*b*]indole (3q)

CHN Analysis of 5-ethyl-2-phenyl-5*H*-pyrimido[5,4-*b*]indole (3q)

¹H NMR of 5-ethyl-2-(thiophen-2-yl)-5*H*-pyrimido[5,4-*b*]indole (3r)

¹³C NMR of 5-ethyl-2-(thiophen-2-yl)-5*H*-pyrimido[5,4-*b*]indole (3r)

LCMS of 5-ethyl-2-(thiophen-2-yl)-5*H*-pyrimido[5,4-*b*]indole (3r)

CHN Analysis of 5-ethyl-2-(thiophen-2-yl)-5*H*-pyrimido[5,4-*b*]indole (3r)

¹H NMR of 5-butyl-2-(pyridin-3-yl)-5*H*-pyrimido[5,4-*b*]indole (3s)

¹³C NMR of 5-butyl-2-(pyridin-3-yl)-5*H*-pyrimido[5,4-*b*]indole (3s)

LCMS of 5-butyl-2-(pyridin-3-yl)-5*H*-pyrimido[5,4-*b*]indole (3s)

CHN Analysis of 5-butyl-2-(pyridin-3-yl)-5*H*-pyrimido[5,4-*b*]indole (3s)

¹H NMR of 5-butyl-2-(thiophen-2-yl)-5*H*-pyrimido[5,4-*b*]indole (3t)

¹³C NMR of 5-butyl-2-(thiophen-2-yl)-5*H*-pyrimido[5,4-*b*]indole (3t)

CHN Analysis of 5-butyl-2-(thiophen-2-yl)-5*H*-pyrimido[5,4-*b*]indole (3t)

¹H NMR of (9-ethyl-3-nitro-2-phenyl-2,9-dihydro-1*H*-pyrido[2,3-b]indol-1-

¹³C NMR of (9-ethyl-3-nitro-2-phenyl-2,9-dihydro-1*H*-pyrido[2,3-b]indol-1-

DEPT of (9-ethyl-3-nitro-2-phenyl-2,9-dihydro-1*H*-pyrido[2,3-b]indol-1-

LCMS of (9-ethyl-3-nitro-2-phenyl-2,9-dihydro-1*H*-pyrido[2,3-b]indol-1-

OPERATOR

CHN Analysis of (9-ethyl-3-nitro-2-phenyl-2,9-dihydro-1*H*-pyrido[2,3-b]indol-

1-yl)(phenyl)methanone (4a)

S233

¹H NMR of (9-ethyl-3-nitro-2-phenyl-2,9-dihydro-1*H*-pyrido[2,3-*b*]indol-1-

¹³C NMR of (9-ethyl-3-nitro-2-phenyl-2,9-dihydro-1*H*-pyrido[2,3-*b*]indol-1-

DEPT of (9-ethyl-3-nitro-2-phenyl-2,9-dihydro-1*H*-pyrido[2,3-*b*]indol-1-

LCMS of (9-Ethyl-3-nitro-2-phenyl-2,9-dihydro-1*H*-pyrido[2,3-*b*]indol-1-

CHN Analysis of (9-Ethyl-3-nitro-2-phenyl-2,9-dihydro-1*H*-pyrido[2,3-

b]indol-1-yl)(thiophen-2-yl)methanone (4b)

Computational Outputs

For optimized Keto form geometry:

Atomic Number	Co X	o-ordinates Y	s Z
6	1.580309	0.404257	-0.174170
6	1.135106	-0.936472	-0.008198
6	2.082680	-1.965577	0.100368
6	3.439201	-1.640837	0.047311
6	3.860219	-0.307220	-0.111848
6	2.936054	0.735316	-0.223939
6	-0.652397	0.447981	-0.156599
6	-0.307984	-0.895853	0.003261
1	1.757118	-2.993220	0.222828
1	4.183113	-2.428789	0.131349
1	4.922327	-0.079566	-0.146757
1	3.271784	1.761541	-0.340489
7	0.460217	1.241836	-0.274267
6	0.490568	2.697440	-0.416097
1	1.368820	2.945184	-1.019123
1	-0.377932	3.001474	-1.010715
6	0.526828	3.442670	0.922128
1	1.410663	3.160294	1.503391

1	0.565134	4.522708	0.740796
1	-0.362624	3.228156	1.524726
6	-1.334281	-1.903363	0.135153
1	-2.169205	1.858666	-0.303866
6	-2.693258	-1.366545	0.082978
6	-2.977197	-0.038520	-0.074047
7	-1.946120	0.877726	-0.194134
8	-1.099611	-3.128775	0.282599
6	-4.365663	0.533549	-0.130365
1	-4.519625	1.278971	0.660087
1	-4.551827	1.025975	-1.093316
1	-5.107237	-0.257822	-0.002911
1	-3.513412	-2.071253	0.176395

For optimized Enol form geometry:

Atomic	Co-ordinates		
Number	X	Y	Z
6	1.551417	0.396505	-0.174771
6	1.091332	-0.943544	-0.010437
6	2.032492	-1.979435	0.093029
6	3.393835	-1.677168	0.035074
6	3.827678	-0.349179	-0.126464
6	2.915270	0.702297	-0.232117

S240

6	-0.698975	0.505649	-0.155629
6	-0.354807	-0.867088	0.001384
1	1.728933	-3.016369	0.217957
1	4.124962	-2.476606	0.116149
1	4.892175	-0.134383	-0.167988
1	3.261685	1.724316	-0.352227
7	0.460426	1.253062	-0.266158
6	0.512487	2.705215	-0.412385
1	1.318083	2.944116	-1.115150
1	-0.429371	3.008886	-0.875161
6	0.715045	3.439981	0.916760
1	1.651714	3.141550	1.400026
1	0.750951	4.521363	0.740312
1	-0.110624	3.231280	1.605376
6	-1.427516	-1.757094	0.119615
1	-0.349563	-3.352709	0.286281
6	-2.728523	-1.241979	0.076779
6	-2.936764	0.135886	-0.083294
7	-1.926300	1.022340	-0.199250
8	-1.286977	-3.103499	0.275083
6	-4.333347	0.703975	-0.134182
1	-4.479040	1.437063	0.668412

1	-4.499983	1.227104	-1.083649
1	-5.091222	-0.078079	-0.031517
1	-3.569510	-1.921483	0.168197

For optimized Transition state geometry:

Atomic	Co-ordinates		
Number	X	Y	Z
6	1.549569	0.373936	-0.193892
6	1.087344	-0.962198	-0.099379
6	2.002266	-2.017158	-0.059138
6	3.361595	-1.726349	-0.126084
6	3.805737	-0.398800	-0.235272
6	2.911581	0.668655	-0.270372
6	-0.697441	0.507366	-0.112897
6	-0.360555	-0.895431	-0.082859
1	1.655816	-3.040924	0.023648
1	4.087268	-2.531731	-0.093329
1	4.870325	-0.196218	-0.288881
1	3.271633	1.688112	-0.347468
7	0.459102	1.243620	-0.198286
6	0.519677	2.702655	-0.284448
1	1.295591	2.963257	-1.008189
1	-0.433370	3.032881	-0.697066

6	0.781928	3.372001	1.064429
1	1.728691	3.043763	1.499408
1	0.827153	4.456773	0.936948
1	-0.016973	3.146358	1.774299
6	-1.408970	-1.823423	0.396240
1	-1.426126	-1.267975	-1.102371
6	-2.676040	-1.274580	-0.156557
6	-2.911750	0.120602	-0.195056
7	-1.921090	1.021424	-0.120896
8	-1.254335	-2.920414	0.907428
6	-4.309216	0.650635	-0.363101
1	-4.982940	-0.107722	-0.764663
1	-4.708729	0.967924	0.606199
1	-4.316672	1.521678	-1.020516
1	-3.517408	-1.955641	-0.232844