Solvent Effects on Chelate Cooperativity: Comparative Analysis of Intramolecular H-bonding Interactions in Toluene, 1,1,2,2-Tetrachloroethane and Cyclohexanone

Elena Chekmeneva, Christopher A. Hunter,* Maria Cristina Misuraca and Simon M. Turega

5 Partially Bound States Analysis

One H-bond. For complexes that can make a single intramolecular H-bond, the observed association constant is given by the sum of the equilibrium constants for the fully bound and partially bound states (Equation S1).

$$K_{obs} = K_0 (1 + \sigma_1 K_1 E M_1)$$
(S1)

where K_0 is intermolecular association constant for formation of the zinc-nitrogen interaction, K_1 is the intermolecular association ¹⁰ constant for formation of the H-bonding interaction, EM_1 is the effective molarity for the intramolecular interaction, and σ_1 is a statistical factor that describes the degeneracy of the fully bound state. In the complexes discussed here, the porphyrins all have four identical H-bond donor sites, so $\sigma_1 = 4$.

So, the parameter f required for the determination of EM using the double mutant cycle analysis is given by Equation S2.

$$f = 1 + \sigma_1 K_1 E M_1 \tag{S2}$$

¹⁵ The population of the fully bound state, P_b, is given by

$$P_b = \frac{\sigma_1 K_1 E M_1}{1 + \sigma_1 K_1 E M_1} \tag{S3}$$

and the population of the partially bound state, P_f, where the intramolecular H-bond is not made is given by

$$P_f = \frac{1}{1 + \sigma_1 K_1 E M_1} \tag{S4}$$

Two H-bonds. For complexes that can make two identical intramolecular H-bonds, the observed association constant is given by ²⁰ the sum of the equilibrium constants for the fully bound and two partially bound states (Equation S5).

$$f = 1 + \sigma_1 K_1 E M_1 + \sigma_{11} (K_1 E M_1)^2$$
(85)

We assume that the effective molarity for the formation of the first H-bond is not affected by the formation of the second H-bond, so that $K_1 E M_1$ is a constant (Equation S6).

$$K_{1}EM_{1} = \frac{-\sigma_{1} + \sqrt{\sigma_{1}^{2} - 4\sigma_{11}(1 - e^{-\Delta\Delta G^{\circ}/RT})}}{2\sigma_{11}}$$
(S6)

²⁵ Assumptions about the statistical factors are required in order to deduce values of $K_1 E M_1$. For the partially bound, singly Hbonded complex, $\sigma_1 = 8$. For the fully bound, doubly H-bonded complex, there are two degenerate states in which two H-bonds are made with phenol groups on trans-related meso positions on the porphyrin, and four degenerate states in which two H-bonds are made with phenol groups on cis-related meso positions. Models suggest that all states are equally accessible, so $\sigma_{11} = 6$, but this value may be as low as 2, if the cis states are inaccessible.

30

Table S1 Statistical factors for	complexes formed	with ligands L2a-L6a
----------------------------------	------------------	----------------------

	Ligand					
	L2a	L3a	L4a	L5a	L6a	
σ_{l}	4	8	4	4	8	
σ_{11}		12			12	

Statistically-corrected equilibrium constants for formation of intramolecular H-bonds

Table S2 K EM values for formation of an intramolecular phosphonate diester-phenol H-bond.^a

				Ligand		
ц.		L2a	L3a	L4a	L5a	L6a
Γ.	P1a	0.9	b	b	1.2	b
<u>l</u> d	P2a	b	b	b	0.4	0.2
Po	P3a	1.1	b	b	b	b
	P4a	b	b	b	b	b
Porphyri	P1a P2a P3a P4a	0.9 b 1.1 b	b b b b	b b b b	1.2 0.4 b	0.2 b

^a Errors are $\pm 50\%$.

4

10

^b These complexes do not make detectable H-bonds.

H-bond occupancy

 Table S3 Occupancy of the H-bonded state for phosphonate diester-phenol H-bonds (%).

				Ligand		
Ë.		L2a	L3a	L4a	L5a	L6a
гу	P1a	78			82	
d	P2a				59	40
\mathbf{P}_{0}	P3a	81				
	P4a					