Transformations of diphenylphosphinothioic acid...

SUPPORTING INFORMATION

Transformations of diphenylphosphinothioic acid tertiary amides mediated by the directed ortho metallation

Hajar el Hajjouji,^a Eva Belmonte,^a Jesús García-López, ^a Ignacio Fernández,^a María José Iglesias,^a Laura Roces,^{b,c} Santiago García-Granda,^b Anas El Laghdach,^d and Fernando López Ortiz,*^a

^a Área de Química Orgánica, Universidad de Almería, Carretera de Sacramento, 04120, Almería. Spain.

^b Departamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería 8, 33006, Spain. ^c Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo, Spain.

^dDépartement de Chimie, Faculté des Sciences, Université Abdelmalek Essaâdi, BP. 2121, MhannechII, 93002 Tétouan, Maroc.

Contents

Figure S1. ¹ H NMR spectrum (300.13 MHz) of 7	S4
Figure S2. ³¹ P NMR spectrum (121.47 MHz) of 7	S5
Figure S3. A) ¹³ C NMR spectrum (75.47 MHz) of 7. B) Expansion of A)	S6
Figure S4. ¹ H NMR spectrum (300.13 MHz) of 23	S7
Figure S5. ³¹ P NMR spectrum (121.47 MHz) of 23	S8
Figure S6. ¹³ C NMR spectrum (75.47 MHz) of 23	S9
Figure S7. ¹ H NMR spectrum (300.13 MHz) of 24	S10
Figure S8. ³¹ P NMR spectrum (121.47 MHz) of 24	S11
Figure S9. ¹³ C NMR spectrum (75.47 MHz) of 24	S12
Figure S10. ¹ H NMR spectrum (300.13 MHz) of 26	S13
Figure S11. ³¹ P NMR spectrum (121.47 MHz) of 26	S14
Figure S12. ¹³ C NMR spectrum (75.47 MHz) of 26	S15
Figure S13. ¹ H NMR spectrum (300.13 MHz) of 9	S16
Figure S14. ³¹ P NMR spectrum (121.47 MHz) of 9	S17
Figure S15. ¹³ C NMR spectrum (75.47 MHz) of 9	S18
Figure S16. ¹ H NMR spectrum (300.13 MHz) of 10	S19
Figure S17. ³¹ P NMR spectrum (121.47 MHz) of 10	S20
Figure S18. ¹³ C NMR spectrum (75.47 MHz) of 10	S21
Figure S19. ¹ H NMR spectrum (300.13 MHz) of 11	S22
Figure S20. ³¹ P NMR spectrum (121.47 MHz) of 11	S23
Figure S21. ¹³ C NMR spectrum (75.47 MHz) of 11	S24
Figure S22. ¹ H NMR spectrum (300.13 MHz) of 12	S25
Figure S23. ³¹ P NMR spectrum (121.47 MHz) of 12	S25
Figure S24. ¹³ C NMR spectrum (75.47 MHz) of 12	S27
Figure S25. ¹ H NMR spectrum (300.13 MHz) of 13	S28

Transformations of diphenylphosphinothioic acid	F. López Ortiz <i>et al.</i>
Figure S26. ³¹ P NMR spectrum (121.47 MHz) of 13	S29
Figure S27. ¹³ C NMR spectrum (75.47 MHz) of 13	\$30
Figure S28. ¹ H NMR spectrum (300.13 MHz) of the crude reaction mixture of 14.	
Figure S29. ³¹ P NMR spectrum (121.47 MHz) of the crude reaction mixture of 14.	
Figure S30. ¹³ C NMR spectrum (75.47 MHz) of the crude reaction mixture of 14	\$33
Figure S31. ¹ H NMR spectrum (300.13 MHz) of 15	S34
Figure S32. ³¹ P NMR spectrum (121.47 MHz) of 15	\$35
Figure S33. ¹³ C NMR spectrum (75.47 MHz) of 15	S36
Figure S34. ¹ H NMR spectrum (300.13 MHz) of 16	S37
Figure S35. ³¹ P NMR spectrum (121.47 MHz) of 16	S38
Figure S36. ¹³ C NMR spectrum (75.47 MHz) of 16	S39
Figure S37. ¹ H NMR spectrum (300.13 MHz) of 17	
Figure S38. ³¹ P NMR spectrum (121.47 MHz) of 17	S41
Figure S39. ¹³ C NMR spectrum (75.47 MHz) of 17	
Figure S40. ¹ H NMR spectrum (300.13 MHz) of 18	
Figure S41. ³¹ P NMR spectrum (121.47 MHz) of 18	
Figure S42. ¹³ C NMR spectrum (75.47 MHz) of 18	
Figure S43. ¹ H NMR spectrum (300.13 MHz) of 19	S46
Figure S44. ³¹ P NMR spectrum (121.47 MHz) of 19	
Figure S45. ¹³ C NMR spectrum (75.47 MHz) of 19	S48
Figure S46. ¹ H NMR spectrum (300.13 MHz) of 20	S49
Figure S47. ³¹ P NMR spectrum (121.47 MHz) of 20	S50
Figure S48. ¹³ C NMR spectrum (75.47 MHz) of 20	S51
Figure S49. ¹ H NMR spectrum (300.13 MHz) of 21	S52
Figure S50. ³¹ P NMR spectrum (121.47 MHz) of 21	S53
Figure S51. ¹³ C NMR spectrum (75.47 MHz) of 21	S54
Figure S52. ¹ H NMR spectrum (300.13 MHz) of 27	\$55
Figure S53. ³¹ P NMR spectrum (121.47 MHz) of 27	S56
Figure S54. ¹³ C NMR spectrum (75.47 MHz) of 27	S57
Figure S55. A) ¹ H NMR spectrum (300.13 MHz) of 29	S58
Figure S56. ³¹ P NMR spectrum (121.47 MHz) of 29	S59
Figure S57. ¹³ C NMR spectrum (75.47 MHz) of 29	
Figure S58. ¹ H NMR spectrum (300.13 MHz) of 31	S61
Figure S59. ³¹ P NMR spectrum (121.47 MHz) of 31	
Figure S60. ¹³ C NMR spectrum (75.47 MHz) of 31	
Figure S61. A) ¹ H NMR spectrum (300.13 MHz) of 32	S64

Transformations of diphenylphosphinothioic acid	F. López Ortiz <i>et al.</i>
Figure S62. ³¹ P NMR spectrum (121.47 MHz) of 32	S65
Figure S63. ¹³ C NMR spectrum (75.47 MHz) of 32	S66
Figure S64. A) ¹ H NMR spectrum (300.13 MHz) of 33	S67
Figure S65. ³¹ P NMR spectrum (121.47 MHz) of 33	S68
Figure S66. ¹³ C NMR spectrum (75.47 MHz) of 33	S69
Figure S67. ¹ H NMR spectrum (300.13 MHz) of 35	S70
Figure S68. ³¹ P NMR spectrum (121.47 MHz) of 35	
Figure S69. ¹³ C NMR spectrum (75.47 MHz) of 35	
Figure S70. X-ray crystal structure of 9	S73
Table S1. Crystal data and structure refinement for 9	S74
Figure S71. X-ray crystal structure of 12	S75
Table S2. Crystal data and structure refinement for 12.	

S4

Transformations of diphenylphosphinothioic acid...

F. López Ortiz *et al.*

63.6451

Figure S2. ³¹P NMR spectrum (121.47 MHz) of 7 in CDCl₃.

Figure S3. A) ¹³C NMR spectrum (75.47 MHz) of 7 in CDCl₃. B) Expansion of A).

Figure S4. ¹H NMR spectrum (300.13 MHz) of 23 in CDCl₃.

Transformations of diphenylphosphinothioic acid...

F. López Ortiz *et al.*

Figure S5. ³¹P NMR spectrum (121.47 MHz) of 23 in CDCl₃.

Figure S7. ¹H NMR spectrum (300.13 MHz) of 24 in CDCl₃.

Transformations of diphenylphosphinothioic acid...

Figure S8. ³¹P NMR spectrum (121.47 MHz) of 24 in CDCl₃.

Transformations of diphenylphosphinothioic acid...

F. López Ortiz *et al.*

Figure S10. ¹H NMR spectrum (300.13 MHz) of 26 in CDCl₃.

Figure S11. ³¹P NMR spectrum (121.47 MHz) of 26 in CDCl₃.

Figure S12. ¹³C NMR spectrum (75.47 MHz) of 26 in CDCl₃.

Transformations of diphenylphosphinothioic acid...

Figure S13. ¹H NMR spectrum (300.13 MHz) of **9** in CDCl₃.

Transformations of diphenylphosphinothioic acid...

Transformations of diphenylphosphinothioic acid...

F. López Ortiz *et al.*

Figure S16. ¹H NMR spectrum (300.13 MHz) of 10 in CDCl₃.

Transformations of diphenylphosphinothioic acid...

F. López Ortiz *et al.*

Figure S17. ³¹P NMR spectrum (121.47 MHz) of 10 in CDCl₃.

Transformations of diphenylphosphinothioic acid...

Figure S18. ¹³C NMR spectrum (75.47 MHz) of 10 in CDCl₃.

Transformations of diphenylphosphinothioic acid...

Transformations of diphenylphosphinothioic acid...

F. López Ortiz *et al.*

Figure S21. ¹³C NMR spectrum (75.47 MHz) of 11 in CDCl₃.

Figure S22. ¹H NMR spectrum (300.13 MHz) of 12 in CDCl₃.

Figure S23. ³¹P NMR spectrum (121.47 MHz) of 11 in CDCl₃.

Figure S24. ¹³C NMR spectrum (75.47 MHz) of 12 in CDCl₃.

S28

Figure S27. 13 C NMR spectrum (75.47 MHz) of 13 in CDCl₃.

Figure S28. ¹H NMR spectrum (300.13 MHz) of the crude reaction affording **14** in CDCl₃.

Transformations of diphenylphosphinothioic acid...

Figure S30. ¹³C NMR spectrum (75.47 MHz) of the crude reaction affording 14 in CDCl₃.

Transformations of diphenylphosphinothioic acid...

Transformations of diphenylphosphinothioic acid...

Transformations of diphenylphosphinothioic acid...

Figure S36. ¹³C NMR spectrum (75.47 MHz) of 16 in CDCl₃.

Figure S37. ¹H NMR spectrum (300.13 MHz) of **17** in CDCl₃.

Transformations of diphenylphosphinothioic acid...

F. López Ortiz *et al.*

Figure S38. ³¹P NMR spectrum (121.47 MHz) of 17 in CDCl₃.

Transformations of diphenylphosphinothioic acid...

F. López Ortiz *et al.*

S42

Figure S40. ¹H NMR spectrum (300.13 MHz) of 18 in CDCl₃.

Transformations of diphenylphosphinothioic acid...

Transformations of diphenylphosphinothioic acid...

Figure S42. ¹³C NMR spectrum (75.47 MHz) of 18 in CDCl₃.

Transformations of diphenylphosphinothioic acid...

Figure S43. ¹H NMR spectrum (300.13 MHz) of **19** in CDCl₃.

Transformations of diphenylphosphinothioic acid...

F. López Ortiz *et al.*

Figure S44. ³¹P NMR spectrum (121.47 MHz) of 19 in CDCl₃.

Transformations of diphenylphosphinothioic acid...

Figure S46. ¹H NMR spectrum (300.13 MHz) of 20 in CDCl₃.

Transformations of diphenylphosphinothioic acid...

Figure S49. ¹H NMR spectrum (300.13 MHz) of 21 in CDCl₃.

Transformations of diphenylphosphinothioic acid... F. López Ortiz *et al.* 135.7143 135.6017 .3288 .1315 .9595 .1522 .0389 .9989 .8854 .7139 4307 1231 0831 0436 5367 4545 25. 24. 8,8,8, 128. 128. 128. 27. цI цЦ 0.0276 0.0399 0.0276 0.041 0.0276 0.041 0.0276 0.02 48.9867 48.9232 5596 5463 L s-Ś S

ppm

ppm

Figure S52. ¹H NMR spectrum (300.13 MHz) of 27 in CDCl₃.

Transformations of diphenylphosphinothioic acid...

Figure S54. ¹³C NMR spectrum (75.47 MHz) of 27 in CDCl₃.

S58

Transformations of diphenylphosphinothioic acid...

Figure S56. ³¹P NMR spectrum (121.47 MHz) of 29 in CDCl₃.

Transformations of diphenylphosphinothioic acid...

Figure S57. ¹³C NMR spectrum (75.47 MHz) of **29** in CDCl₃.

Transformations of diphenylphosphinothioic acid...

Transformations of diphenylphosphinothioic acid...

Figure S60. ¹³C NMR spectrum (75.47 MHz) of 31 in CD₂Cl₂.

Transformations of diphenylphosphinothioic acid...

Figure S62. ³¹P NMR spectrum (121.47 MHz) of 32 in CD_2Cl_2

Transformations of diphenylphosphinothioic acid...

Figure S63. ¹³C NMR spectrum (75.47 MHz) of 32 in CD₂Cl₂.

Figure S64. A) ¹H NMR spectrum (300.13 MHz) of **33** in CDCl₃. B) Expansion of the aromatic region of A).

Transformations of diphenylphosphinothioic acid...

Figure S65. ³¹P NMR spectrum (121.47 MHz) of **33** in CDCl₃.

Transformations of diphenylphosphinothioic acid...

Figure S66. A) ¹³C NMR spectrum (75.47 MHz) of **33** in CDCl₃. B) Expansion of A).

Transformations of diphenylphosphinothioic acid...

F. López Ortiz *et al.*

Figure S68. ³¹P NMR spectrum (121.47 MHz) of 35 in CDCl₃.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Transformations of diphenylphosphinothioic acid...

Figure S70. X-ray crystal structure of **9** (thermal ellipsoids shown at 50% probability) including atomic numbering.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Transformations of diphenylphosphinothioic acid...

Table S1. Crystal data and structure refinement for 9.

Empirical formula	C21 H32 N P S Sn	
Formula weight	480.20	
Temperature	100(2) K	
Wavelength	1.54184 Å	
Crystal system	P21/c	
Space group	monoclinic	
Unit cell dimensions	a = 10.6237(1) Å	<i>α</i> = 90°.
	b = 16.3773(2) Å	$\beta = 125.406(1)^{\circ}.$
	c = 15.8989(2) Å	$\gamma = 90^{\circ}.$
Volume	2254.65(4) Å ³	
Z	4	
Density (calculated)	1.415 Mg/m ³	
Absorption coefficient	10.562 mm ⁻¹	
F(000)	984	
Crystal size	0.27 x 0.14 x 0.13 mm ³	
Theta range for data collection	4.35 to 68.55°.	
Index ranges	-12<=h<=12, -18<=k<=19, -19<=l<=18	
Reflections collected	14406	
Independent reflections	4097 [R(int) = 0.0327]	
Completeness to theta = 67.50°	99.6 %	
Absorption correction	Empirical	
Max. and min. transmission	1.000 and 0.5559	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4097 / 0 / 226	
Goodness-of-fit on F ²	1.045	
Final R indices [I>2sigma(I)]	R1 = 0.0272, $wR2 = 0.0686$	
R indices (all data)	R1 = 0.0301, $wR2 = 0.0708$	
Largest diff. peak and hole	0.439 and -0.931 e.Å ⁻³	

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Transformations of diphenylphosphinothioic acid...

Figure S71. X-ray crystal structure of **12** (thermal ellipsoids shown at 50% probability) including atomic numbering.

Transformations of diphenylphosphinothioic acid...

Table S2. Crystal data and structure refinement for compound 12.

Empirical formula	C30 H33 N P2 S		
Formula weight	501.57		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 13.6300(5) Å	α= 90°.	
	b = 10.2681(3) Å	$\beta = 119.548(2)^{\circ}.$	
	c = 22.3237(6) Å	$\gamma = 90^{\circ}.$	
Volume	2717.96(15) Å ³		
Z	4		
Density (calculated)	1.226 Mg/m ³		
Absorption coefficient	0.256 mm ⁻¹		
F(000)	1064		
Crystal size	1.41 x 0.429 x 0.339 mm ³		
Theta range for data collection	1.72 to 24.42°.		
Index ranges	-15<=h<=15, -11<=k<=11, -25<=l<=22		
Reflections collected	13903		
Independent reflections	4468 [R(int) = 0.0906]		
Completeness to theta = 24.42°	99.9 %		
Absorption correction	Refined		
Max. and min. transmission	1.0473 and 0.6756		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4468 / 0 / 311		
Goodness-of-fit on F ²	1.027		
Final R indices [I>2sigma(I)]	R1 = 0.0423, $wR2 = 0.1080$		
R indices (all data)	R1 = 0.0443, $wR2 = 0.1095$		
Largest diff. peak and hole	0.620 and -0.377 e.Å ⁻³		