Electronic Supplementary Information(ESI)

CN - assisted oxidative cyclization of cyano cinnamates and styrene derivatives: a facile entry to 3-substituted chiral phthalides

R. Santhosh Reddy, I.N. Chaithanya Kiran and Arumugam Sudalai* Chemical Engineering and Process Development Division, National Chemical Laboratoty Pashan Road, Pune 411008, India, Fax: (+) 91-02025902675.

E-mail: <u>a.sudalai@ncl.res.in</u>

Table of Contents

Sr.No.	Description	Page No.
1	General information	2
2	Experimental section	2-22
3	Spectra	23-104

1. General Information

Solvents were purified and dried by standard procedures before use; petroleum ether of boiling range 60–80 °C was used. Melting points are uncorrected. Optical rotations were measured using sodium D line on a JASCO-181 digital polarimeter. Infrared spectra were recorded on Shimadzu FTIR-8400 spectrometer. ¹H NMR and ¹³C NMR were recorded on Bruker AV-200, AV-400 & AV-500 NMR spectrometers, respectively. Elemental analysis was carried on a Carlo Erba CHNS-O analyzer. HPLC was performed on Dionex P680 with variable wavelength detector using Chiracel OJ-H column from Diacel.

2. Experimental Section

2.1. A general experimental procedure for the preparation of cyano cinnamates and styrenics (4a-z):

Scheme 1: Synthesis of o-Cyano olefins 4 a-l & 4 m-v

2.1.1. General experimental procedure for the preparation of cyano cinnamates

(4 a -l):

To a stirred solution of 2-bromobenzaldehydes (50 mmol) in benzene (100 mL), Ph₃P=CHCO₂Et (55 mmol) was added. It was then refluxed for 4 h under N₂ atmosphere. After the completion of reaction, benzene was distilled out to give the crude product, which was purified by column chromatography [silica gel (230-400 mesh) and petrolium ether: Ethyl acetate (90:10) as eluent] to afford pure product 2-bromo-ethyl cinnamtes in 94% yield. Which was taken in dry DMF (20 mL) and CuCN (15.6 mmol) was added and refluxed under N₂ for 18 h (monitored by TLC). The reaction mixture then cooled to room temperature, then diluted with water (30 mL) and EtOAc (25 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (2 x 20 mL). The combined organic extracts were washed with brine and dried over anhyd. Na₂SO₄ and concentrated under reduced pressure to give crude products which was purified by column chromatography [silica gel (230-400 mesh) and petroleum ether: EtOAc (70:30) as an eluent] gave 2-cyano-ethyl cinnamate in 82% yield.

(E)-Ethyl 3-(2-cyanophenyl)acrylate (4a):

Yield: 88% (for two steps), colorless solid; mp 60 – 62 °C; **IR** (CHCl₃): 765, 784, 1031, 1184, 1318, 1447, 1480, 1594, 1640, 1712, 2225, 2938, 2983 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 1.36 (t, *J* = 7.3 Hz, 3H), 4.31 (q, *J* = 7.3 Hz, 2H), 6.60 (d, *J* = 16 Hz, 1H), 7.47 (td, *J* = 1.44, 7.55 Hz, 1H), 7.62 (td, *J* = 1.44, 7.55 Hz, 1H), 7.70-7.76 (m, 2H), 7.96 (d, *J* = 16 Hz, 1H); ¹³**C NMR** (CDCl₃): δ 14.1, 60.7, 112.5, 116.8, 122.9, 126.8, 129.9, 132.8, 133.3, 137.1, 139.1, 165.4; **Analysis**: C₁₂H₁₁NO₂ requires C 71.63, H 5.51, N 6.96 found C 71.59, H 5.56, N 6.93 %.

(E)-Ethyl 3-(2-cyano-5-methoxyphenyl)acrylate (4b):

Yield: 86% (for two steps), colorless solid; mp 130 – 132 °C; **IR** (CHCl₃): 728, 868, 1026, 1256, 1490, 1594, 1607, 1640, 1712, 2228, 2853, 2923 3023 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.36 (t, J = 7.08 Hz, 3H), 3.90 (s,3H), 4.29 (q, J = 7.08 Hz, 2H), 6.56 (d, J = 16 Hz, 1H), 6.97 (dd, J = 2.54, 8.73 Hz, 1H), 7.15 (d, J = 2.54 Hz, 1H), 7.63 (d, J = 8.79 Hz, 1H), 7.90 (d, J = 16 Hz, 1H) ; ¹³C NMR (CDCl₃): δ 14.2, 55.6, 60.8, 104.6, 112.1, 116.0, 117.3, 123.1, 135.0, 139.4, 162.7, 165.5; **Analysis**: C₁₃H₁₃NO₃ requires C 67.52, H 5.67, N 6.06 found C 67.49, H 5.61, N 6.01%.

(E)-Ethyl 3-(2-cyano-4,5-dimethoxyphenyl)acrylate (4c):

Yield: 87% (for two steps), colorless solid; mp 159 – 161 °C; IR (CHCl₃): 761, 848, 1094, 1149, 1204, 1326, 1462, 1571, 1594, 1709, 2222, 2984, 3018 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.36 (t, J = 7.36 Hz, 3H), 3.94 (s,3H), 3.97 (s, 3H), 4.29 (q, J = 7.36 Hz, 2H), 6.47 (d, J = 16.03 Hz, 1H), 7.07 (s, 1H), 7.11 (s, 1H), 7.89 (d, J = 16.03 Hz, 1H);
¹³C NMR (CDCl₃): δ 14.2, 55.9, 56.2, 60.7, 105.2, 108.2, 114.2, 117.1, 120.7, 131.5,

139.2, 150.5, 152.6, 165.8; **Analysis**: C₁₄H₁₅NO₄ requires C 64.36, H 5.79, N 5.36 found C 64.32, H 5.71, N 5.34 %.

(E)-Ethyl 3-(2-cyano-3,4-dimethoxyphenyl)acrylate (4d):

Yield: 88% (for two steps), colorless solid; mp 145 – 147 °C; **IR** (CHCl₃): 758, 894, 1078, 1138, 1208, 1318, 1326, 1462, 1571, 1594, 1608, 1710, 2222, 2984, 3018 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 1.35 (t, *J* = 7.05 Hz, 3H), 3.93 (s,3H), 4.03 (s, 3H), 4.27 (q, *J* = 7.05 Hz, 2H), 6.48 (d, *J* = 16 Hz, 1H), 7.10 (d, *J* = 8.65 Hz, 1H), 7.40 (d, *J* = 8.65 Hz, 1H), 7.83 (d, *J* = 16 Hz, 1H) ; ¹³**C NMR** (CDCl₃): δ 14.3, 56.1, 60.6, 61.6, 107.9, 114.1, 116.4, 120.7, 122.9, 129.7, 139.2, 152.1, 153.5, 165.9; **Analysis**: C₁₄H₁₅NO₄ requires C 64.36, H 5.79, N 5.36 found C 64.34, H 5.71, N 5.32 %.

(E)-Ethyl 3-(2-cyano-3,5-dimethoxyphenyl)acrylate (4e):

Yield: 87% (for two steps), colorless solid; mp 119 – 122 °C; **IR** (CHCl₃): 734, 876, 1069, 1128, 1208, 1326, 1326, 1478, 1568, 1594, 1608, 1712, 2228, 2958, 3082 cm⁻¹; ¹H

NMR (200 MHz, CDCl₃): δ 1.36 (t, J = 7.15 Hz, 3H), 3.89 (s,3H), 3.93 (s, 3H), 4.29 (q, J = 7.15 Hz, 2H), 6.47 (d, J = 2.13 Hz, 1H), 6.55 (d, J = 16 Hz, 1H), 6.73 (d, J = 2.13 Hz, 1H), 7.86 (d, J = 16 Hz, 1H) ; ¹³C NMR (CDCl₃): δ 14.3, 55.7, 56.1, 60.8, 94.9, 96.1 99.4, 103.4, 114.8, 123.3, 139.6, 140.1, 163.4, 163.9, 165.6; Analysis: C₁₄H₁₅NO₄ requires C 64.36, H 5.79, N 5.36 found C 64.32, H 5.71, N 5.34 %.

(E)-Ethyl 3-(2-cyano-3,4,5-trimethoxyphenyl)acrylate (4f):

Yield: 88% (for two steps), colorless solid; mp 150 – 152 °C; **IR** (CHCl₃): 669, 703, 749, 940, 1260, 1311, 1573, 1607, 1640, 1708, 2210, 2979, 3016 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.36 (t, *J* = 7.15 Hz, 3H), 3.90 (s,3H), 3.96 (s, 3H), 4.06 (s, 3H), 4.28 (q, *J* = 7.15 Hz, 2H), 6.50 (d, *J* = 16 Hz, 1H), 6.91 (s, 1H), 7.84 (d, *J* = 16 Hz, 1H); ¹³C NMR (CDCl₃): δ 14.3, 55.8, 60.3, 109.1, 115.4, 117.0, 118.5, 126.2, 142.5, 148.5, 151.1, 161.2; **Analysis**: C₁₅H₁₇NO₅ requires C 61.85, H 5.88, N 4.81 found C 61.82, H 5.79, N 4.75%.

5-((E)-2-(Ethoxycarbonyl)vinyl)-4-cyano-2-methoxyphenyl 4-

methylbenzenesulfonate (4g):

Yield: 87% (for two steps), colorless solid; mp 150 – 151 °C; **IR** (CHCl₃): 742, 865, 1030, 1128, 1232, 1318, 1329, 1478, 1571, 1594, 1608, 1708, 2225, 2982, 3025 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 1.35 (t, J = 6.90 Hz, 3H), 2.48 (s,3H), 3.73 (s, 3H), 4.30 (q, J = 6.90 Hz, 2H), 6.54 (d, J = 16 Hz, 1H), 7.09 (s, 1H), 7.35 (d, J = 8.5 Hz, 2H), 7.39 (s, 1H), 7.77 (d, J = 8.5 Hz, 2H), 7.91 (d, J = 16 Hz, 1H); ¹³C NMR (CDCl₃): δ 14.2, 21.7, 56.0, 61.0, 104.5, 110.3, 116.0, 123.8, 128.3, 129.7, 132.6, 137.9, 138.4, 139.1, 145.8, 155.6, 165.2; **Analysis**: C₂₀H₁₉NO₆S requires C 59.84, H 4.77, N 3.49 found C 59.78, H 4.69, N 3.42%.

(E)-Ethyl 3-(5-(benzyloxy)-2-cyano-4-methoxyphenyl)acrylate (4h):

Yield: 86% (for two steps), colorless solid; mp 146 – 148 °C; **IR** (CHCl₃): 738, 825, 1031, 1098, 1234, 1334, 1380, 1467, 1568, 1575, 1608, 1710, 2228, 2982, 3034 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 1.35 (t, J = 7.23 Hz, 3H), 3.93 (s,3H), 4.28 (q, J = 7.33 Hz, 2H), 5.20 (s, 2H), 6.34 (d, J = 15.48 Hz, 1H), 7.08 (s, 2H), 7.34-7.43 (m, 5H), 7.84 (d, J = 15.48 Hz, 1H); ¹³C NMR (CDCl₃): δ 14.3, 56.2, 60.8, 71.0, 105.5, 110.5, 114.7, 117.2, 120.9, 127.3, 128.8, 131.5, 135.4, 139.3, 151.1, 151.8, 165.9; **Analysis**: C₂₀H₁₉NO₄ requires C 71.20, H 5.68, N 4.15 found C 71.14, H 5.61, N 4.09%.

(E)-Ethyl 3-(2-cyano-5-fluorophenyl)acrylate (4i):

Yield: 85% (for two steps), colorless solid; mp 72 – 74 °C; **IR** (CHCl₃): 756, 828, 866, 981, 1030, 1186, 1226, 1276, 1325, 1370, 1480, 1574, 1603, 1640, 1693, 2984, 3012 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 1.36 (t, J = 7.27 Hz, 3H), 4.31 (q, J = 7.27 Hz, 2H), 6.58 (d, J = 15.9 Hz, 1H), 7.19 ((td, J = 2.8, 8.4 Hz, 1H), 7.41 ((dd, J = 2.61, 9.16 Hz, 1H), 7.74 (dd, J = 5.4, 8.47 Hz, 1H), 7.91 (d, J = 15.9 Hz, 1H); ¹³C **NMR** (CDCl₃): δ 14.1, 60.9, 108.8, 133.9 (d, J = 23.68 Hz), 116.0, 117.6 (d, J = 23.68 Hz), 124.2, 135.7 (d, J = 9.8 Hz), 140.2 (d, J = 8.8 Hz), 164.5 (d, J = 257.73 Hz), 164.9; **Analysis**: C₁₂H₁₀FNO₂ requires C 65.75, H 4.60, N 6.39 found C 65.68, H 4.56, N 6.36%.

(E)-Ethyl 3-(2-cyano-5-nitrophenyl)acrylate (4j):

Yield: 87% (for two steps), colorless solid; mp 105 – 107 °C; **IR** (CHCl₃): 739, 830, 968, 1032, 1106, 1346, 1540, 1708, 2233, 2980, 3087 cm⁻¹; ¹**H NMR** (500 MHz, CDCl₃): δ 1.38 (t, *J* = 7.04 Hz, 3H), 4.33 (q, *J* = 7.04 Hz, 2H), 6.78 (d, *J* = 15.87 Hz, 1H), 7.95 (d, *J* = 2.03 Hz, 1H), 7.98 (d, *J* = 15.87 Hz, 1H), 8.33 (dd, *J* = 2.03, 8.48 Hz, 1H) 8.59 (d, *J* = 2.03 Hz, 1H); ¹³**C NMR** (CDCl₃): δ 14.2, 61.3, 115.2, 117.8, 121.7, 124.1, 125.9, 134.7, 136.9, 139.5, 150.2, 164.8; **Analysis**: C₁₂H₁₀N2O₄ requires C 58.54, H 4.09, N 11.38 found C 58.48, H 4.02, N 11.31%.

(E)-Ethyl 3-(5-cyanobenzo[d][1,3]dioxol-6-yl)acrylate (4k):

Yield: 86%(for two steps), white solid; mp 148 – 149 °C; **IR** (CHCl₃): 728, 878, 1042, 1134, 1256, 1366, 1382, 1478, 1568, 1594, 1608, 1712, 2218, 2958, 3082 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.35 (t, *J* = 7.06 Hz, 3H), 4.28 (q, *J* = 7.06 Hz, 2H), 6.12 (s, 2H), 6.41 (d, *J* = 15.88 Hz, 1H), 7.05 (s, 1H), 7.13 (s, 1H), 7.90 (d, *J* = 15.88 Hz, 1H) ; ¹³C NMR (CDCl₃): δ 14.3, 60.8, 102.8, 105.9, 106.8, 111.8, 116.9, 121.4, 133.9, 138.9, 149.2, 151.9, 165.7; **Analysis**: C₁₃H₁₁NO₄ requires C 63.67, H 4.52, N 5.71 found C 63.59, H 4.48, N 5.65 %.

(E)-Ethyl 3-(1-cyanonaphthalen-2-yl)acrylate (4l):

Yield: 88% (for two steps), colorless solid; mp 118 – 119 °C; **IR** (CHCl₃): 784, 865, 989, 1030, 1106, 1210, 1275, 1291, 1319, 1368, 1573, 1607, 1712, 2218, 2978, 3084 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 1.35 (t, *J* = 7.03 Hz, 3H), 4.32 (q, *J* = 7.03 Hz, 2H), 6.68 (d,

J = 16 Hz, 1H), 7.59-7.78 (m, 3H), 7.90 (d, J = 7.70 Hz, 1H), 8.04 (d, J = 8.78 Hz, 1H), 8.19 (d, J = 16 Hz, 1H), 8.28 (d, J = 8.78 Hz, 1H) ; ¹³C NMR (CDCl₃): δ 14.2, 60.8, 110.8, 115.5, 122.1, 123.5, 125.8, 128.3, 129.1, 132.5, 132.9, 137.0, 139.5, 165.5; Analysis: C₁₆H₁₃NO₂ requires C 76.48, H 5.21, N 5.57 found C 76.42, H 5.19, N 5.52 %.

2.1.2. General experimental procedure for the preparation of cyano styrenes (4m-v):

To a stirred solution of methyltriphenylphosphonium iodide (1.05 eq) in THF was added *n*-butyllithium in hexane (1.05 eq), the solution was stirred for 30 min at 0 °C and 2bromo benzaldehydes (1.0 eq) in THF was added dropwise via syringe at the same temperature and the reaction mixture was allowed to stir for 90 min at room temperature (monitored by TLC). The reaction mixture then cooled to 0 °C, then diluted with sat.NH₄Cl (25mL) and EtOAc (25 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (2 x 20 mL). The combined organic extracts were washed with brine and dried over anhyd. Na₂SO₄ and concentrated under reduced pressure to give crude products which was purified by column chromatography [silica gel (230-400 mesh) and petroleum ether: EtOAc (90:10) as an eluent] gave 2-bromostyrenes in 86% yield. Which was taken in dry DMF (20 mL) and CuCN (15.6 mmol) was added and refluxed under N₂ for 18 h (monitored by TLC). The reaction mixture then cooled to room temperature, then diluted with water (30 mL) and EtOAc (25 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (2 x 20 mL). The combined organic extracts were washed with brine and dried over anhyd. Na₂SO₄ and concentrated under reduced pressure to give crude products which was purified by column chromatography [silica gel (230-400 mesh) and petroleum ether: EtOAc (70:30) as an eluent] gave 2-cyano-ethyl cinnamates in 86% yield.

2-Vinylbenzonitrile (4m):

Yield: 86% (for two steps), Gum; **IR** (CHCl₃): 752, 839, 962, 1014, 1072, 1118, 1202, 1308, 1347, 1368, 1444, 1573, 1607, 1625, 1675, 2215, 2889, 2923, 3012 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): 5.54 (d, J = 10.64 Hz, 1H), 5.95 (d, J = 17.83 Hz, 1H), 7.08 (dd, J = 10.64, 17.83 Hz, 1H), 7.34 (td, J = 1.28, 7.59 Hz, 1H), 7.51-7.70 (m, 3H) ; ¹³C NMR (CDCl₃): δ 111.0, 117.4, 118.7, 125.2, 127.8, 132.5, 132.7, 140.4; **Analysis**: C₉H₇N requires C 83.69, H 5.46, N 10.84 found C 83.62, H 5.41, N 10.78 %.

4-Methoxy-2-vinylbenzonitrile (4n):

Yield: 84% (for two steps), Gum, **IR** (CHCl₃): 752, 839, 1030, 1083, 1119, 1256, 1308, 1347, 1368, 1456, 1573, 1607, 1625, 1668, 2208, 2923, 3081 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): 3.88 (s, 3H), 5.53 (d, *J* = 11.10 Hz, 1H), 5.92 (d, *J* = 17.76 Hz, 1H), 6.85 (dd, *J* = 2.30, 8.54 Hz, 1H), 7.03 (dd, *J* = 11.10, 17.76 Hz, 1H), 7.11 (s, 1H), 7.55 (d, *J* = 8.54 Hz, 1H); ¹³**C NMR** (CDCl₃): δ 55.4, 103.2, 110.4, 114.1, 117.9, 118.7, 132.9, 134.4,

142.5, 162.7; **Analysis**: C₁₀H₉NO requires C 75.45, H 5.70, N 8.80 found C 75.41, H 5.67, N 8.73 %.

4,5-Dimethoxy-2-vinylbenzonitrile (4o):

Yield: 88% (for two steps), colorless solid; mp 106 – 107 °C;**IR** (CHCl₃): 752, 839, 936, 1031, 1086, 1119, 1256, 1308, 1378, 1389, 1456, 1575, 1612, 1628, 1656, 2210, 2923, 3052 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): 3.91 (s, 3H), 3.97 (s, 3H), 5.45 (d, *J* = 11.08 Hz, 1H), 5.80 (d, *J* = 17.28 Hz, 1H), 6.94-7.08 (m, 3H); ¹³C NMR (CDCl₃): δ 55.7, 55.9, 102.7, 106.9, 113.5, 116.5, 117.7, 132.5, 134.9, 148.7, 152.5; **Analysis**: C₁₁H₁₁NO₂ requires C 69.83, H 5.86, N 7.40 found C 69.75, H 5.75, N 7.39 %.

2,3-Dimethoxy-6-vinylbenzonitrile (4p):

Yield: 86% (for two steps), colorless solid; mp 108 – 110 °C; IR (CHCl₃): 748, 840, 936, 1028, 1086, 1119, 1256, 1308, 1378, 1389, 1456, 1575, 1612, 1628, 1656, 2202, 2981, 3029 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): 3.88 (s, 3H), 3.90 (s, 3H), 5.53 (d, *J* = 10.99 Hz, 1H), 5.90 (d, *J* = 17.31 Hz, 1H), 6.37 (d, *J* = 2.20 Hz, 1H), 6.69 (d, *J* = 2.20 Hz, 1H), 7.01 (dd, *J* = 10.99, 17.31 Hz, 1H); ¹³C NMR (CDCl₃): δ 56.1, 61.5, 106.7, 114.7, 116.7,

120.8, 132.4, 133.4, 151.5, 151.7; **Analysis**: C₁₁H₁₁NO₂ requires C 69.83, H 5.86, N 7.40 found C 69.73, H 5.78, N 7.39 %.

2,4-Dimethoxy-6-vinylbenzonitrile (4q):

Yield: 83% (for two steps), colorless solid; mp 76 – 79 °C; **IR** (CHCl₃): 724, 867, 968, 1030, 1086, 1119, 1259, 1308, 1386, 1389, 1456, 1578, 1612, 1636, 1656, 2212, 2985, 3029 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): 3.90 (s, 3H), 4.00 (s, 3H), 5.40 (d, *J* = 10.83 Hz, 1H), 5.79 (d, *J* = 17.68 Hz, 1H), 6.94 (dd, *J* = 10.83, 17.68 Hz, 1H), 7.07 (d, *J* = 8.55 Hz, 1H); ¹³C NMR (CDCl₃): δ 55.5, 55.9, 93.6, 97.5, 101.7, 115.5, 118.9, 133.1, 143.4, 163.0, 163.8; **Analysis**: C₁₁H₁₁NO₂ requires C 69.83, H 5.86, N 7.40 found C 69.79, H 5.78, N 7.39 %.

2,3,4-Trimethoxy-6-vinylbenzonitrile (4r):

Yield: 87% (for two steps), white solid; mp 102 – 103 °C; **IR** (CHCl₃): 771, 867, 1051, 1105, 1204, 1238, 1257, 1580, 1609, 1753, 2228, 2979, 3013 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): 3.86 (s, 3H), 3.95 (s, 3H), 4.04 (s, 3H), 5.48 (d, *J* = 11.28 Hz, 1H), 5.83 (d, *J* = 17.32 Hz, 1H), 6.85 (s, 1H), 6.97 (dd, *J* = 11.28, 17.32 Hz, 1H); ¹³C NMR (CDCl₃): δ

55.9, 60.8, 61.5, 98.7, 103.4, 114.8, 117.8, 132.6, 137.2, 141.1, 155.4, 157.2; **Analysis**: C₁₂H₁₃NO₃ requires C 65.74, H 5.98, N 6.39 found C 65.72, H 5.91, N 6.37 %.

4-Cyano-2-methoxy-5-vinylphenyl 4-methylbenzenesulfonate (4s):

Yield: 82% (for two steps), colorless solid; mp 149 – 150 °C; **IR** (CHCl₃): 746, 845, 938, 1034, 1086, 1119, 1256, 1308, 1378, 1389, 1456, 1575, 1612, 1628, 1656, 2220, 2978, 3075 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): 2.48 (s, 3H), 3.74 (s, 3H), 5.57 (d, *J* = 10.95 Hz, 1H), 5.86 (d, *J* = 17.62 Hz, 1H), 6.93-7.08 (m, 2H), 7.28 (s, 1H), 7.35 (d, *J* = 8.01 Hz, 2H), 7.77 (d, *J* = 8.24 Hz, 2H); ¹³C NMR (CDCl₃): δ 21.7, 55.8, 102.9, 108.9, 116.6, 119.7, 127.7, 128.5, 129.6, 132.3, 132.7, 137.7, 141.4, 145.6, 155.5; **Analysis**: C₁₇H₁₅NO₄S requires C 61.99, H 4.59, N 4.25 found C 61.89, H 4.53, N 4.23%.

4-(Benzyloxy)-5-methoxy-2-vinylbenzonitrile (4t):

Yield: 84% (for two steps), colorless solid; mp 111 – 113 °C; **IR** (CHCl₃): 747, 858, 934, 1028, 1065, 1119, 1232, 1308, 1394, 1389, 1456, 1574, 1612, 1631, 1656, 2220, 2988, 3086 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): 3.90 (s, 3H), 5.21 (s, 2H), 5.39 (d, *J* = 11.15 Hz, 1H), 5.66 (d, *J* = 17.45 Hz, 1H), 6.89-7.04 (m, 2H), 7.10 (s, 1H), 7.32-7.47 (m, 5H); ¹³**C NMR** (CDCl₃): δ 56.0, 70.8, 103.1, 109.2, 114.0, 116.6, 117.8, 127.2, 128.2, 128.6,

132.6, 134.9, 135.7, 149.3, 151.8; **Analysis**: C₁₇H₁₅NO₂ requires C 76.96, H 5.70, N 5.28 found C 76.91, H 5.67, N 5.27 %.

4-Fluoro-2-vinylbenzonitrile (4u):

Yield: 86% (for two steps), colorless solid; mp 105 – 107 °C; **IR** (CHCl₃): 752, 839, 962, 1014, 1072, 1118, 1202, 1308, 1347, 1368, 1444, 1573, 1607, 1625, 1675, 2853, 2923, 3012 cm⁻¹; ¹**H NMR** (500 MHz, CDCl₃): 5.62 (d, *J* = 11.00 Hz, 1H), 5.96 (d, *J* = 17.30 Hz, 1H), 7.02-7.08 (m, 2H), 7.34 (dd, *J* = 2.29, 9.49 Hz, 1H), 7.64 (dd, *J* = 5.56, 8.51 Hz, 1H); ¹³C NMR (CDCl₃): δ 107.6, 112.6 (d, *J* = 23.70 Hz), 115.8 (d, *J* = 23.70 Hz), 116.8, 120.2, 132.2, 143.8 (d, *J* = 9.51 Hz), 165.1 (d, *J* = 243.84 Hz); **Analysis**: C₉H₆FN requires C 73.46, H 4.11, N 9.52 found C 73.44, H 4.08, N 9.49 %.

6-Vinylbenzo[d][1,3]dioxole-5-carbonitrile (4v):

Yield: 88% (for two steps), colorless solid; mp 88 – 91 °C; **IR** (CHCl₃): 756, 868, 930, 1038, 1162, 1263, 1359, 1486, 1505, 1604, 1615, 2219, 2916, 3018 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): 5.44 (d, *J* = 11.10 Hz, 1H), 5.77 (d, *J* = 17.36 Hz, 1H), 6.07 (s, 2H), 6.95-7.04 (m, 2H), 7.09 (s, 1H); ¹³**C NMR** (CDCl₃): δ 102.3, 104.0, 104.8, 110.9, 117.2,

117.7, 132.5, 137.5, 147.4, 151.8; **Analysis**: C₁₀H₇NO₂ requires C 69.36, H 4.07, N 8.09 found C 69.34, H 4.02, N 7.99 %.

2-((E)-Pent-1-enyl)benzonitrile (4w):

Yield: 87% (for two steps), colorless solid; mp 126 – 128 °C; **IR** (CHCl₃): 756, 857, 974, 1037, 1095, 1184, 1202, 1216, 1251, 1275, 1291, 1319, 1347, 1368, 1393, 1444, 1477, 1573, 1607, 1640, 1716, 2984, 3023, 3415 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): 0.98 (t, J = 7.31 Hz, 3H), 1.45-1.63 (m, 2H), 2.22-2.33 (m, 2H), 6.43 (dt, J = 15.36, 6.89 Hz, 1H), 6.74 (d, J = 15.36 Hz, 1H), 7.25 (dd, J = 15.36, 1.45 Hz, 1H), 7.45-7.62 (m, 3H); ¹³C NMR (CDCl₃): δ 13.7, 22.2, 35.2, 110.5, 117.9, 125.2, 126.0, 126.8, 132.5, 132.7, 136.4, 141.1; **Analysis**: C₁₂H₁₃N requires C 84.17, H 7.65, N 8.18 found C 84.14, H 7.61, N 8.15.

4,5-Dimethoxy-2-((E)-3-*tert*-butyldimethylsillyloxyprop-1-enyl)benzonitrile (4x):

Yield: 85% (for two steps), Gum; IR (CHCl₃): 748, 876, 932, 1032, 1098, 1276, 1339, 1486, 1505, 1604, 1615, 2220, 2989, 3054 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): 0.12 (s, 6H), 0.94 (s, 9H), 3.88 (s, 3H), 3.94 (s, 3H), 4.39 (dd, J = 1.75, 4.73 Hz, 2H), 6.27-6.39 (m, 1H), 6.89 (d, J = 15.54 Hz, 1H), 6.98 (s, 1H), 7.00 (s, 1H); ¹³C NMR (CDCl₃): δ -

5.3, 18.3, 25.9, 55.8, 55.9, 63.3, 102.6, 107.4, 113.7, 117.9, 124.9, 132.4, 134.8, 148.4, 152.5; Analysis: C₁₈H₂₇NO₃Si requires C 64.83, H 8.16, N 4.20 found C 64.79, H 8.09, N 4.13%.

4,5-Dimethoxy-2-styrylbenzonitrile (4y):

Yield: 83% (for two steps), colorless solid; mp 158 – 159 °C; **IR** (CHCl₃): 696, 761, 1149, 1204, 1326, 1462, 1571, 1594, 2215, 2984, 3023 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): 3.91 (s, 3H), 4.01 (s, 3H), 7.01-7.17 (m, 3H), 7.26-7.42 (m, 4H), 7.54 (d, *J* = 6.91 Hz, 2H); ¹³**C NMR** (CDCl₃): δ 55.9, 102.9, 106.8, 113.6, 118.0, 123.8, 126.7, 128.7, 128.6, 131.2, 134.9, 136.1, 148.5, 152.6; **Analysis**: C₁₇H₁₅NO₂ requires C 76.96, H 5.70, N 5.28 found C 76.89, H 5.57, N 5.19 %.

2,3,4-Trimethoxy-6-((E)-oct-1-enyl)benzonitrile (4z):

Yield: 86% (for two steps), colorless solid; mp 172 – 174 °C; **IR** (CHCl₃): 694, 755, 878, 969, 989, 1097, 1216, 1271, 1452, 1464, 1513, 1600, 2220, 2970, 3025, 3059 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): 0.87-0.93 (m, 3H), 1.26-1.46 (m, 8H), 2.21-2.31 (m, 2H), 3.85 (s, 3H), 3.94 (s, 3H), 4.03 (s, 3H), 6.23-6.36 (m, 1H), 6.63 (d, *J* = 15.66 Hz, 1H), 6.78 (s,

1H); ¹³C NMR (CDCl₃): δ 14.1, 22.6, 28.9, 29.0, 31.6, 33.1, 56.0, 61.1, 61.6, 98.3, 103.3,
115.4, 125.8, 135.9, 138.1, 140.5, 155.6, 157.2; Analysis: C₁₈H₂₅NO₃ requires C 71.26,
H 8.31, N 4.62 found C 71.22, H 8.28, N 4.58%.

(E)-Ethyl 3-(3-cyanophenyl)acrylate (6):

Yield: 93%; colorless solid; mp 62 – 65 °C; **IR** (CHCl₃): 710, 765, 977, 1032, 1185, 1278, 1318, 1447, 1480, 1640, 1712, 2225, 2938, 2983 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 1.35 (d, *J* = 7.06 Hz, 3H), 4.28 (d, *J* = 7.06 Hz, 2H), 6.48 (d, *J* = 16.11 Hz, 1H), 7.48-7.80 (m, 5H); ¹³**C NMR** (CDCl₃): δ 14.1, 60.5, 113.2, 117.8, 120.8, 129.6, 131.1, 131.6, 132.8, 135.5, 141.5, 165.7; Analysis: C₁₂H₁₁NO₂ requires C 71.63, H 5.51, N 6.96 found C 71.59, H 5.45, N 6.85%.

(E)-Ethyl 3-(4-cyanophenyl)acrylate (7):

Yield: 93%; colorless solid; mp 68 – 70 °C; **IR** (CHCl₃): 730, 795, 955, 1065, 1194, 1268, 1375, 1445, 1495, 1652, 1721, 2226, 2983 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.35 (d, *J* = 7.15 Hz, 3H), 4.28 (d, *J* = 7.15 Hz, 2H), 6.51 (d, *J* = 15.85 Hz, 1H), 7.59-7.71 (m, 5H); ¹³C NMR (CDCl₃): δ 14.1, 60.6, 113.2, 117.9, 121.6, 128.2, 132.4, 138.5, 141.8, 165.7; **Analysis**: C₁₂H₁₁NO₂ requires C 71.63, H 5.51, N 6.96 found C 71.58, H 5.48, N 6.88%. (2S,3R)-Ethyl 3-(3-cyanophenyl)-2,3-dihydroxypropanoate (8):

Yield: 93%; Gum; $[\alpha]_{25}^{D}$ -36.06 (*c* 1.20, CHCl₃); **IR** (CHCl₃): 680, 725, 954, 1057, 1118, 1214, 1291, 1734, 2229, 2985, 3443 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 1.30 (d, *J* = 7.16 Hz, 3H), 3.26 (d, *J* = 7.51 Hz, 1H), 3.43 (d, *J* = 5.89 Hz, 1H), 4.24-4.34 (m, 3H), 5.02 (dd, *J* = 2.38, 7.51 Hz, 1H), 7.49 (d, *J* = 7.52 Hz, 1H), 7.57-7.67 (m, 2H), 7.72 (s, 1H); ¹³**C NMR** (CDCl₃): δ 14.1, 62.3, 73.5, 74.5, 112.2, 118.6, 129.0, 130.2, 130.9, 131.3, 141.9, 172.3; Analysis: C₁₂H₁₃NO₄ requires C 61.27, H 5.57, N 5.95 found C 61.26, H 5.54, N 5.89.

(2S,3R)-Ethyl 3-(4-cyanophenyl)-2,3-dihydroxypropanoate (9):

Yield: 93%; colorless solid; mp 102 – 103 °C; $[\alpha]^{D}_{25}$ -36.42 (*c* 1.10, CHCl₃); **IR** (CHCl₃): 685, 765, 1017, 1050, 1105, 1204, 1257, 1752, 2228, 2978, 3332 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 1.31 (d, *J* = 7.06 Hz, 3H), 3.03 (d, *J* = 7.63 Hz, 1H), 3.27 (d, *J* = 5.36 Hz, 1H), 4.24-4.35 (m, 3H), 5.05 (dd, *J* = 2.38, 7.51 Hz, 1H), 7.49 (d, *J* = 7.52 Hz, 1H), 7.57-7.67 (m, 2H), 7.72 (s, 1H); ¹³C **NMR** (CDCl₃+CD₃OD): δ 12.9, 60.6, 73.2,

74.2, 110.0, 117.9, 126.7, 131.0, 146.2, 171.4; **Analysis**: C₁₂H₁₃NO₄ requires C 61.27, H 5.57, N 5.95 found C 61.23, H 5.52, N 5.84%.

Benzyl(1R,2S)-2-(ethoxycarbonyl)-1-(2-cyanophenyl)-2-hydroxyethylcarbamate(10):

Sodium hydroxide (60 mg, 1.5 mmol) was dissolved in water (4 mL), and 0.5 mL of this NaOH solution was transferred to a small vial containing K₂OsO₂(OH)₄ (0.020 mmol for 4 mol %) for later use. To the remainder of the NaOH solution were added the carbamate (1.55 mmol) and *n*-PrOH (2 mL). The mixture was stirred for 2-3 min and placed in a water bath before *tert*-butylhypochlorite16 (175 μ L, 1.52 mmol) was slowly added with vigorous stirring. Then, the resulting solution was sequentially treated with a solution of (DHQD)₂PHAL (0.025 mmol for 5 mol %) in *n*-PrOH (1 mL), the o-cyano ethylcinnamate (0.50 mmol), the previously prepared solution of K₂OsO₂(OH)₄, and *n*-PrOH (1 mL). The reaction mixture was monitored by TLC to establish completion, quenched by the addition of saturated aqueous sodium sulfite (4 mL) while being cooled in an ice-water bath, and stirred for an additional 30 min. The separated aqueous phase was extracted with EtOAc (3 X 5 mL), and the combined organic extracts were washed with water (3 mL) followed by brine (5 mL), dried over Na₂SO₄, and concentrated under reduced pressure to give crude products which was purified by column chromatography

[silica gel (230-400 mesh) and petroleum ether: EtOAc (60:40) as an eluent] gave product **10** in 64% yield with dr 6:1.

Gum; $[\alpha]_{25}^{D}$ -36.06 (*c* 1.10, CHCl₃); **IR** (CHCl₃): 756, 857, 974, 1037, 1095, 1184, 1202, 1275, 1291, 1319, 1347, 1368, 1393, 1477, 1573, 1607, 1640, 1716, 2219, 2984, 3023, 3415 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.28 (t, *J* = 7.16 Hz, 3H), 3.34 (d, *J* = 7.51 Hz, 1H), 4.29 (q, *J* = 7.16 Hz, 2H), 4.50 (s, 1H), 5.06 (dd, *J* = 2.38, 7.51 Hz, 1H), 5.62 (d, *J* = 8.9 Hz, 1H), 5.85 (d, *J* = 8.9 Hz, 1H), 7.32-7.36 (m, 5H), 7.39-7.56 (m, 3H), 7.66-7.77 (m, 1H); ¹³C NMR (CDCl₃): δ 14.2, 55.3, 60.3, 62.8, 72.5, 111.1, 117.0, 122.0, 128.4, 132.8, 133.2, 142.9, 145.8, 155.3, 172.0; **Analysis**: C₁₂H₁₃NO₄ requires C 61.27, H 5.57, N 5.95 found C 61.26, H 5.54, N 5.89.

Ethyl 2-(1,3-dihydro-1-iminoisobenzofuran-3-yl)-2-hydroxyacetate (11a):

IR (CHCl₃): 687, 728, 975, 1050, 1320, 1385, 1468, 1498, 1678, 1758, 2874, 2958, 3413cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.29 (t, J = 6.85 Hz, 3H), 4.29 (d, J = 6.85 Hz, 2H), 4.73 (d, J = 2.33 Hz, 1H), 6.10 (s, 1H), 7.59 (t, J = 6.60 Hz, 2H), 7.75 (t, J = 6.60 Hz, 1H), 7.92 (d, J = 8.48 Hz, 1H); ¹³C NMR (CDCl₃): δ 12.4, 60.9, 69.4, 88.2, 121.5, 123.8, 128.2, 128.9, 134.1, 144.4, 167.8, 169.6; ESI-MS: m/z 235.01[M+Na]⁺.

2, 4-Dimethoxy-6-styrylbenzonitrile (12):

Yield: 79%; colorless solid; mp 147 – 148 °C; **IR** (CHCl₃): 694, 831, 953, 1045, 1073, 1150, 1203, 1326, 1460, 1570, 1595, 2216 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 3.90 (s, 6H), 6.34 (d, *J* = 2.3 Hz, 1H), 6.80 (d, *J* = 2.3 Hz, 1H), 7.20 (d, *J* = 16.4 Hz, 1H), 7.26-7.30 (m, 1H), 7.32-7.38 (m, 3H), 7.55 (d, *J* = 7.38 Hz, 2H); ¹³C NMR (CDCl₃): δ 55.6, 56.0, 94.1, 97.4, 101.4, 115.7, 124.4, 127.2, 128.8, 133.5, 136.1, 143.4, 163.2, 163.9; **Analysis**: C₁₇H₁₅NO₂ requires C 76.96, H 5.70, N 5.28 found C 76.92, H 5.68, N 5.24%.

2,4-Dimethoxy-6-((E)-prop-1-enyl)-benzonitrile (14):

Yield: 72%; Gum; **IR** (CHCl₃): 720, 857, 9662, 1036, 1092, 1129, 1260, 1318, 1381, 1386, 1450, 1576, 1616, 1629, 1647, 2216, 2982, 3030 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 1.95 (d, J = 6.4 Hz, 3H), 3.86 (s, 3H), 3.89 (s, 3H), 6.29-6.30 (m, 1H), 6.39-6.46 (m, 1H), 6.60 (d, J = 1.8 Hz, 1H), 6.69 (d, J = 15.5 Hz, 1H); ¹³**C NMR** (CDCl₃): δ 18.7, 55.5, 55.9, 96.8, 101.5, 106.4, 115.7, 126.6, 127.6, 131.4, 144.1, 163.1, 163.8; **Analysis**: C₁₂H₁₃NO₂ requires C 70.92, H 6.45, N 6.89 found C 70.89, H 6.40, N 6.85%.

¹H and ¹³C NMR spectra of 4a

¹H and ¹³C NMR spectra of 4b

¹H and ¹³C NMR spectra of 4c

¹H and ¹³C NMR spectra of 4e

¹H and ¹³C NMR spectra of 4f

¹H and ¹³C NMR spectra of 4g

¹H and ¹³C NMR spectra of 4h

¹H and ¹³C NMR spectra of 4j

¹H and ¹³C NMR spectra of 4k

¹H and ¹³C NMR spectra of 4l

¹H and ¹³C NMR spectra of 4m

¹H and ¹³C NMR spectra of 4n

¹H and ¹³C NMR spectra of 4p

¹H and ¹³C NMR spectra of 4r

¹H and ¹³C NMR spectra of 4v

¹H and ¹³C NMR spectra of 4x

¹H and ¹³C NMR spectra of 4y

¹H and ¹³C NMR spectra of 4z

COSY spectra of 5a

NOESY spectra of 5a

HSQCGP spectra of 5a

¹H and ¹³C NMR spectra of 5b

¹H and ¹³C NMR spectra of 5c

¹H and ¹³C NMR spectra of 5d

¹H and ¹³C NMR spectra of 5e

¹H and ¹³C NMR spectra of 5f

¹H and ¹³C NMR spectra of 5g

¹H and ¹³C NMR spectra of 5h

¹H and ¹³C NMR spectra of 5i

¹H and ¹³C NMR spectra of 5j

¹H and ¹³C NMR spectra of 5l

¹H and ¹³C NMR spectra of 5m

¹H and ¹³C NMR spectra of 5n

¹H and ¹³C NMR spectra of 50

¹H and ¹³C NMR spectra of 5p

¹H and ¹³C NMR spectra of 5q

¹H and ¹³C NMR spectra of 5r

¹H and ¹³C NMR spectra of 5s

¹H and ¹³C NMR spectra of 5t

¹H and ¹³C NMR spectra of 5u

¹H and ¹³C NMR spectra of 5v

¹H and ¹³C NMR spectra of 5w

¹H and ¹³C NMR spectra of 5z

¹H and ¹³C NMR spectra of 6

¹H and ¹³C NMR spectra of 7

¹H and ¹³C NMR spectra of 8

¹H and ¹³C NMR spectra of 9

¹H and ¹³C NMR spectra of 10

¹H and ¹³C NMR spectra of 11a

IR spectra of 11b and 5w

Mass spectrum of 11b

¹H and ¹³C NMR spectra of 13a

¹H and ¹³C NMR spectra of 13b

¹H and ¹³C NMR spectra of 14

¹H and ¹³C NMR spectra of 16

¹H and ¹³C NMR spectra of 2a

¹H and ¹³C NMR spectra of 3

No	Ret. Time min	Height μ AU	Area μ AU* min	Rel. Area %	Amount	Туре
1	12.16	28495.075	14410.126	99.65	n. a.	BMB
2	13.80	189.662	50.523	0.35	n. a.	BMB

HPLC chromatogram of 5a

HPLC chromatogram of 5b

2

25.10	+0005.555	404501.220	JJ.50	n. a.
27.60	2265.930	3105.222	0.64	n. a.

BMB

HPLC chromatogram of 5c

Ret. Time	Height	Area	Rel. Area	Amount	Туре
min	μAU	μ AU* min	%		
23.90	48072.355	484390.220	99.44	n. a.	BMB
27.87	2273.930	3113.222	0.56	n. a.	BMB
	Ret. Time min 23.90 27.87	Ret. Time Height min μ AU 23.90 48072.355 27.87 2273.930	Ret. Time Height Area min μ AU μ AU* min 23.90 48072.355 484390.220 27.87 2273.930 3113.222	Ref. Time Height Area Ref. Area min µ AU µ AU* min % 23.90 48072.355 484390.220 99.44 27.87 2273.930 3113.222 0.56	Ref. TimeHeightAreaRef. AreaAmountmin μ AU μ AU* min%23.9048072.355484390.22099.44n. a.27.872273.9303113.2220.56n. a.

HPLC chromatogram of 5d

No	Ret. Time	Height	Area	Rel. Area	Amount	Туре
	min	μAU	μ AU* min	%		
1	18.37	1436573.591	1817973.860	99.60	n. a.	BMB
2	21.74	106560.833	7299.549	0.40	n. a.	BMB

HPLC chromatogram of 5e

No	Ret. Time min	Height μ AU	Area μ AU* min	Rel. Area %	Amount	Туре
1	8.03	65330.509	26133.285	99.36	n. a.	BMB
2	9.24	895.500	168.309	0.64	n. a.	BMB

HPLC chromatogram of 5m

HPLC chromatogram of 50

HPLC chromatogram of 5p

No	Ret. Time min	Height μ AU	Area μ AU* min	Rel. Area %	Amount	Туре
1	18.27	40895.238	30456.124	99.36	n. a.	BMB
2	20.40	2196.930	195.138	0.64	n. a.	BMB

HPLC chromatogram of 5q