Supporting Information

Supporting Information

Ru-catalyzed β-selective and enantioselective addition of amines

to styrenes initiated by direct arene-exchange

Maiko Otsuka,^a Hiroya Yokoyama,^a Kohei Endo,^b and Takanori Shibata*

 ^a Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, 169-8555, Japan. E-mail: tshibata@waseda.jp; Fax: +81-3-5286-8098; Tel: +81-3-5286-8098
^b Waseda Institute for Advanced Study, Shinjuku, Tokyo, 169-8050, Japan

List of Contents

General	S2
Experimental procedure	S2
Compound data of the products	S2-S4
ESI-MS analyses of the intermediates	S5-S8
References	S8
¹ H NMR and ¹³ C NMR spectra for compounds 5 , 10 and 11	S9-S11

General

¹H and ¹³C NMR spectra were recorded with a JEOL AL-400 spectrometer at 400 MHz and 100 MHz respectively using CDCl₃ as a solvent. Chemical shift values for protons and carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to residual proton and carbon resources of CDCl₃ respectively (δ 7.26 and 77.0). ESI-MS spectra were measured with Accu TOF. High-resolution mass spectra (HRMS) were measured on a JEOL JMS-GCMateII with FAB (Fast Atomic Bombardment) method. IR spectra were recorded by a IR Horiba FT730 spectrometer. Preparative thin-layer chromatography (PTLC) was performed with silica gel-precoated glass plates (Merck 60 GF254) prepared in our laboratory. All reactions were carried out under an atmosphere of argon in oven-dried glassware with a magnetic stirring bar. All reagents were purchased from Wako, Kanto, Aldrich and TCI and used without further purification.

Experimental procedure

General procedure for the nucleophilic addition of piperidine to styrene (Table 1, entry 6).

The mixture of [Ru(benzene)Cl₂]₂ (5.0 mg, 0.010 mmol) and AgOTf (10.8 mg, 0.042 mmol) in acetone was transferred to a Schlenk tube by a syringe filter under an atmosphere of argon. After acetone was excluded in vacuo and the container was backfilled with argon, a 1,4-dioxane solution (0.12 mL) of DPPPent (12.3 mg, 0.028 mmol), styrene (91.5 μ L, 0.80 mmol) and piperidine (40 μ L, 0.40 mmol) was added. The reaction mixture was stirred at 100 °C for 72 h. Then, the solvent was removed in vacuo. The crude products were purified by thin-layer chromatography (hexane/AcOEt = 1/1) to give analytically pure 1 (78%).

<u>General procedure for enantioselective nucleophilic addition of piperidine to α -methylstyrene</u> (Table 3, entry 6).

The mixture of $[Ru(benzene)Cl_2]_2$ (5.0 mg, 0.010 mmol) and AgOTf (10.8 mg, 0.042 mmol) in acetone was transferred to a Schlenk tube by a syringe filter under an atmosphere of argon. After acetone was excluded in vacuo and the container was backfilled with argon, a 1,4-dioxane solution (0.12 mL) of (*S*)-xylyl-BINAP (20.6 mg, 0.028 mmol), α -methylstyrene (78.2 μ L, 0.60 mmol) and piperidine (40 μ L, 0.40 mmol) was added. The reaction mixture was stirred at 100 °C for 72 h. Then, the solvent was removed in vacuo. The crude products were purified by thin-layer chromatography (hexane/AcOEt = 1/1) to give analytically pure 4 (52%, 76% ee).

Compound data of the products Known compounds:

N-(2-Phenethyl)piperidine (1), ^{1}N -(2-phenethyl)morpholine (2), 1 1-phenyl-4-(2-phenylethyl)piperazine (3), ^{1}N -(2-phenethyl)tetrahydroisoquinoline (4). ^{1}N -1-(2-phenylpropyl)piperidine (8), 2 and N-1-(2-phenylpropyl)-morpholine (9). 1

¹H and ¹³C NMR spectra of these compounds were consistent with those in the literatures.

Supporting Information

N-[2-(4-Methylphenyl)ethyl]piperidine (5)

Yellow oil, ¹H NMR (CDCl₃, 400 MHz) δ 1.42-1.48 (m, 2H), 1.59-1.64 (m, 4H), 2.31 (s, 3H), 2.46 (br, 4H), 2.50-2.55 (m, 2H), 2.75-2.79 (m, 2H), 7.09 (br s, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ 20.9, 24.3, 25.9, 33.1, 54.5, 61.6, 128.6, 129.0, 135.4, 137.6; IR (neat) 2910, 2873, 1652, 1599, 1512, 1360, 1288, 1253, 1032, 831, 654 cm⁻¹; HRMS (FAB, positive) m/z Calcd. for: C₁₄H₂₂N 204.1752 ([M+1]⁺), Found: 204.1746 ([M+1]⁺).

(R)-N-1-(2-Phenylpropyl)piperidine

¹H and ¹³C NMR spectra of this compound was consistent with those in the literature.¹ $[\alpha]^{26}_{D} = -6.2$ (*c* 0.20, CHCl₃, 76% ee). Ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak OD-3×2:4.6 x 250mm, 254nm UV detector, rt, eluent: 0.5% isopropanol in hexane, flow rate: 0.2 mL/min, retention time: 38.7 min for minor isomer and 39.7 min for major isomer).

N-1-(2-Phenylpropyl)morpholine (*ent-*9)

¹H and ¹³C NMR spectra of this compound was consistent with those in the literature.¹ $[\alpha]^{26}_{D} = -12.4$ (*c* 0.36, CHCl₃, 61% ee). Ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak OD-3×2:4.6 x 250mm, 254nm UV detector, rt, eluent: 2% isopropanol in hexane, flow rate: 0.5 mL/min, retention time: 13.1 min for minor isomer and 13.8 min for major isomer).

ent-10

N-(2-phenylpropyl)tetrahydroisoquinoline (ent-10)

Yellow oil, ¹H NMR (CDCl₃, 400 MHz) δ 1.32 (d, J = 6.8 Hz, 3H), 2.62-2.70 (m, 3H), 2.76-2.81 (m, 1H), 2.86 (s, br, 2H), 3.02-3.11 (m, 1H), 3.59 (d, J = 15.0 Hz, 1H) 3.69 (d, J = 15.0 Hz, 1H),

6.99-7.01(m, 1H), 7.06-7.12 (m, 3H), 7.18-7.25 (m, 3H), 7.29-7.32 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 19.8, 29.0, 37.6, 51.0, 56.5, 65.9, 125.5, 126.0, 126.2, 126.6, 127.3, 128.4, 128.7, 134.6, 135.2, 146.3; IR (neat) 2894, 1681, 1269, 1288, 1053, 813, 684 cm⁻¹; HRMS (FAB, positive) m/z Calcd. for: $C_{18}H_{22}N$ 252.1752 ([M+1]⁺), Found: 252.1756 ([M+1]⁺). [α]²⁶_D = +7.54 (*c* 0.26, CHCl₃, 64% ee). Ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak OD-3×2:4.6 x 250mm, 254nm UV detector, rt, eluent: 0.5% isopropanol in hexane, flow rate: 0.2 mL/min, retention time: 66.6 min for minor isomer and 67.8 min for major isomer)

N-(2-Phenylpropyl)-4-piperidone ethylene ketal (ent-11)

Yellow oil, ¹H NMR (CDCl₃, 400 MHz) δ 1.27 (d, *J* = 7.2 Hz, 3H) 1.69-1.75 (m, 4H), 2.43-2.48 (m, 4H), 2.52-2.59 (m, 2H), 2.88-2.95 (m, 1H), 3.94 (s, 4H), 7.17-7.22 (m, 3H), 7.26-7.31 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 19.8, 34.8, 37.8, 51.6, 64.1, 65.6, 107.4, 126.1, 127.2, 128.3, 146.4; IR (neat) 2905, 2873, 1648, 1346, 1213, 1032, 731, 673, 564 cm⁻¹; HRMS (FAB, positive) m/z Calcd. for: C₁₆H₂₄NO₂ 262.1807 ([M+1]⁺), Found: 262.1806 ([M+1]⁺). [α]²⁶_D = -9.65 (*c* 0.26, CHCl₃, 75% ee). Ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak OD-3×2+OD: 4.6 x 250mm, 254nm UV detector, rt, eluent: 0.5% isopropanol in hexane, flow rate: 0.5 mL/min, retention time: 51.3 min for minor isomer and 52.1 min for major isomer)

ESI-MS chart of complex B ([M]⁺): [Ru((S)-xylyl-binap)(η^{6} - α -methylstyrene)(OTf)]⁺

Theoretical isotope pattern of complex B ([M]⁺): [Ru((S)-xylyl-binap)(η^{6} - α -methylstyrene)(OTf)]⁺

Theoretical isotope pattern of complex E ([M-TfOH]⁺): [Ru((*S*)-xylyl-binap)(η⁶-(1-methyl-2-piperidinoethyl)benzene)(OTf)]⁺

References

- 1. M. Utsunomiya and J. F. Hartwig, J. Am. Chem. Soc., 2004, 127, 5756.
- 2. P. Horrillo-Martinez, K. C. Hultzsch, A. Gil and V. Branchadell, *Eur. J. Org. Chem.* 2007, **20**, 331.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

