Supplementary Information for "Total Synthesis and Structural Elucidation of *ent*-Micropyrone and (+)-Ascosalipyrone by Claire Gregg and Michael V. Perkins*

Supplementary Information for "Total Synthesis and Structural Elucidation of *ent*-Micropyrone and (+)-Ascosalipyrone

by Claire Gregg and Michael V. Perkins*

Contents:

- **1.** General experimental conditions and experimental procedures.
- Experimental details and data for compounds 13-15, 33, 11, 17, 34, 35, 36, 16, 37, 38, 39, 40, 23, 41, 42, 43, 44, 45, 46 and 29.
- 3. X-ray crystallographic data for compounds 22 and 23.
- Table 1. Comparison of the ¹H and ¹³C NMR data for micropyrone (1) and synthetic isomers 22 and 23.
- Table 2. Comparison of the ¹H and ¹³C NMR data for ascosalipyrone (2) and synthetic isomers 28 and 29.
- ¹H and ¹³C NMR spectra for compounds 14, 11, 18, 20, 22, 25-29, 16, 37, 39, 23, 41, 43 and 44.
- 7. 300 MHz ¹H NMR spectrum of authentic ascosalipyrone in CDCl₃.
- 8. 75.5 MHz ¹³C NMR spectrum of authentic ascosalipyrone in CDCl₃.

Supplementary Information for "Total Synthesis and Structural Elucidation of *ent*-Micropyrone and (+)-Ascosalipyrone by Claire Gregg and Michael V. Perkins*

General experimental

All reactions were carried out under an atmosphere of nitrogen (N_2) or argon (Ar) in oven-dried glassware. Most starting materials and reagents were purchased from the the Sigma-Aldrich Chemical Co. and were used as supplied, or dried and distilled using standard procedures.¹ Triethylamine (Et₃N) and pyridine were distilled from calcium hydride (CaH₂). Tetrahydrofuran (THF) and diethyl ether (Et₂O) were dried using sodium metal and then distilled, as required, from sodium-benzophenone under N₂. Dichloromethane (CH₂Cl₂) was distilled from calcium hydride under N₂ as required. Other solvents used for reactions, extractions and purification were distilled prior to use. *n*-Butyllithium was freshly standardised by titration against *N*-pivaloyl-otoluidine prior to use.² Sodium hydride (NaH) (60% dispersion in mineral oil) was washed with mixed hexanes and dried under N₂ before use.

Room temperature (rt) varied between 20-25 °C. Analytical thin layer chromatography (TLC) was conducted on aluminium-backed 0.2 mm thick silica gel 60 F_{254} plates (Merck) and the plates were visualised under a 254 nm UV lamp and/or by treatment with either anisaldehyde dip (*p*-anisaldehyde, 9.2 mL; H₂SO₄, 12.5 mL; CH₃CO₂H, 3.75 mL; EtOH, 338 mL) or potassium permanganate dip (KMnO₄, 3 g; K₂CO₃, 20 g; 5% NaOH, 5 mL; H₂O, 300 mL), followed by heating with a heat gun. Column chromatography was conducted using silica gel 60 (mesh size 0.040-0.063 mm) as the stationary phase and the analytical reagent solvents indicated. When purifying compounds with acid sensitivity, column chromatography was performed on buffered silica as indicated. Buffered silica was prepared by spinning 100 g of silica gel 60 (mesh size 0.040-0.063 mm) with 10 mL of pH 7 phosphate buffer on a rotary evaporator overnight at atmospheric pressure.

Supplementary Information for "Total Synthesis and Structural Elucidation of *ent*-Micropyrone and (+)-Ascosalipyrone by Claire Gregg and Michael V. Perkins*

Proton (¹H) and carbon (¹³C) NMR spectra were recorded on a Bruker Avance II spectrometer at 400 or 600 MHz for proton and 100 or 151 MHz for carbon nuclei, respectively. Chemical shifts were recorded as δ values in parts per million (ppm). Spectra were acquired either in deuterochloroform (CDCl₃) or deuteromethanol (CD₃OD) at ambient temperature. For ¹H NMR spectra recorded in CDCl₃, the peak due to residual CHCl₃ (δ 7.26) was used as the internal reference and for CD₃OD the peak due to residual CH₃OH (δ 3.31) was used as the internal reference. ¹H NMR spectral data are recorded as follows: chemical shift (δ), relative integral, multiplicity (defined as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, apt = apparent), coupling constant(s) J (Hz), assignment. For proton-decoupled ¹³C NMR spectra recorded in CDCl₃, the central peak (δ 77.16) of the CDCl₃ triplet was used as the internal reference and for CD₃OD the central peak (δ 49.00) of the CD₃OD septet was used as the internal reference and all data are given as chemical shift (δ). ¹H and ¹³C assignments were confirmed by conducting homonuclear (¹H-¹H) correlation spectroscopy (COSY), nuclear Overhauser effect (nOe) spectroscopy (NOESY) and heteronuclear $(^{1}H^{-13}C)$ correlation spectroscopy (HMQC) experiments. Optical rotations were recorded on a PolAAR 21 polarimeter, referenced to the sodium D line (589 nm) at 20 °C, using the spectroscopic grade solvent specified (CHCl₃ or CH₂Cl₂) and at the concentration (c, g/100 mL) indicated. Measurements were carried out in a cell with a 1 dm path length. Infrared (IR) spectra were recorded on either a Perkin-Elmer 1600 series FTIR, BIO-RAD FTS-40-A or Nicolet Avatar 370 DTGS Fourier Transform spectrophotometer, with the absorptions recorded in wavenumbers (n_{max}/cm^{-1}) . Liquid samples were analysed as thin films on NaCl discs. with solids made into a KBr disc. High resolution mass spectra were recorded on either a Bruker BioApex II 47e FTMS fitted with an Analytica ESI source or or an Agilent G1969A LC-TOF utilizing an Agilent 1100 Series LC.

(S)-2-methylbutanal (**13**). To a stirred solution of DMSO (3.92 mL; 55.2 mmol) in CH₂Cl₂ (150 mL) at -78 °C was added oxalyl chloride (13.8 mL; 27.6 mmol) dropwise and the resulting solution stirred at -78 °C for 30 min. A solution of (S)-2-methylbutanol (2.00 mL; 18.4 mmol) in CH₂Cl₂ (30 mL) was added dropwise

via cannula to the reaction mixture and the resulting solution was stirred at -78 °C for 45 min. Et₃N (15.4 mL; 110 mmol) was added dropwise and stirring was continued at -78 °C for 30 min before warming slowly to 0 °C for a further 30 min. The reaction was quenched by addition of sat. aq. NH₄Cl (300 mL) and the mixture was extracted with CH₂Cl₂ (3 x 150 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated in *vacuo*. Purification by column chromatography (100% CH₂Cl₂) gave aldehyde (**13**) (1.19 g; 75%) as a colourless oil. **R***f* = 0.56 (100% CH₂Cl₂); **[\alpha]²⁰**_D = +21.5 (c 1.54, CH₂Cl₂); ¹H NMR (400MHz, CDCl₃) δ 9.62 (1H, d, J = 2.0 Hz, CHO), 2.28 (1H, dddq, J = 14.0, 7.2, 6.8, 2.0 Hz, CH(CH₃)CHO), 1.75 (1H, ddq, J = 14.0, 7.6, 6.8 Hz, CH(CH₃)CH₄H_BCH₃), 1.44 (1H, ddq, J = 14.0, 7.6, 7.2 Hz, CH(CH₃)CH₄H_BCH₃), 0.95 (3H, dd, J = 7.6, 7.2 Hz, CH₂CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 205.5, 47.9, 23.6, 12.9, 11.4.

(4R)-Benzyl-3-((2R,3S,4S)-3-hydroxy-2,4-dimethylhex-

anoyl)oxazolidin-2-one (14). To a stirred solution of oxazolidine (*R*)-(**12**) (1.63 g; 7.00 mmol) in CH₂Cl₂ (14 mL) at 0 °C was added Bu₂BOTf (8.39 mL; 1M in CH₂Cl₂; 8.39 mmol) dropwise, giving a red solution. After 30 min Et₃N (1.27 mL; 9.09 mmol) was added and the resulting yellow solution was stirred for a further 30 min before cooling to -78 °C. Aldehyde (**13**) (1.19 g; 13.8 mmol) in CH₂Cl₂ (7 mL) was added dropwise *via* cannula and the reaction mixture stirred at -78 °C for 30 min and then at 0 °C for 4 h, at which time the reaction was quenched by addition of pH 7 buffer (16 mL) and MeOH (24 mL). A solution of 2:1 MeOH/H₂O₂ (24 mL) was then added and the resulting slurry was extracted with CH₂Cl₂ (3 x 50 mL), the combined organic extracts washed with sat. aq. NaHCO₃ (50 mL) and brine (50 mL), dried (Na₂SO₄) and concentrated in *vacuo*. Purification by column chromatography (5% Et₂O/CH₂Cl₂) gave aldol adduct (**14**) (960 mg; 66%, >98% ds) as a white solid (known compound³). **Rf** = 0.33

 $(5\% \text{ Et}_2\text{O}/\text{CH}_2\text{Cl}_2)$; mp. 69-70 °C; $[\alpha]^{20}$ _D = -40.0° (c 1.10, CHCl₃); ¹H NMR (400 MHZ, CDCl₃) δ 7.35-7.31 (2H, m, ArH), 7.29-7.25 (1H, m, ArH), 7.21-7.18 (2H, m, Ar*H*), 4.70 (1H, dddd, J = 9.6, 7.6, 3.6, 3.2, C*H*CH₂Ph), 4.23 (1H, dd, J = 9.2, 7.6 Hz, OCH_AH_BCHCH₂N), 4.18 (1H, dd, J = 9.2, 3.2 Hz, OCH_AH_BCHN), 3.95 (1H, dq, J = 7.2, 3.2 Hz, C(=0)CH(CH₃)), 3.62 (1H, ddd, J = 9.2, 3.2, 2.4 Hz, CHOH), 3.25 (1H, dd, J = 13.6, 3.6 Hz, CH_AH_BPh), 2.96 (1H, d, J = 3.6 Hz, OH), 2.79 (1H, dd, J = 13.2, 9.2 Hz, CH_A*H*_BPh), 1.79 (1H, ddq, J = 13.6, 7.6, 4.4 Hz, CH(OH)CH(CH₃)C*H*_AH_BCH₃), 1.52 (1H, $CH(OH)CH(CH_3)CH_2CH_3),$ 1.22 (3H, = m. d. I 6.8 Hz, $CH(OH)CH(CH_3)CH_2CH_3),$ 13.6. 1.18 (1H, ddq, 8.4, 7.2, CH(OH)CH(CH₃)CH_A*H*_BCH₃), 0.91 (3H, dd, J = 7.6, 7.2 Hz, CH₂CH₃), 0.86 (3H, d, J = 6.8 Hz, C(=O)CH(CH₃)CHOH); ¹³C NMR (100 MHZ, CDCl₃) δ 178.2, 153.0, 135.2, 129.5, 129.1, 127.5, 74.9, 66.3, 55.2, 39.6, 37.9, 37.1, 25.3, 14.8, 11.0, 9.7; **IR** (KBr, cm⁻¹) 3499, 3090, 3064, 3032, 2969, 2940, 2903, 2882, 2854, 1947, 1797, 1686, 1606, 1583, 1488, 1500, 1457, 1384, 1356, 1303, 1244, 1212, 1136, 1121, 1097, 1077, 928, 831, 764, 735, 700, 640, 601, 573, 504, 471.

(4*R*)-4-Benzyl-3-{(2*R*,3*S*,4*S*)-3-[(*tert*-butyl)dimethylsilyloxy]-2,4dimethylhexanoyl}oxazolidin-2-one (15). To a stirred solution of alcohol (14) (1.93 g; 6.06 mmol) in CH₂Cl₂ (60 mL) at -78 °C was added 2,6-lutidine (1.41 mL; 12.1 mmol) followed by TBSOTf (2.09 mL; 9.09 mmol). The resulting solution was stirred at -78 °C for 7 h before warming to 0 °C for 10 min. The reaction was quenched by addition of 5% NaHCO₃ (60 mL) and the mixture was extracted with CH₂Cl₂ (3 x 50 mL), dried (Na₂SO₄) and concentrated in *vacuo*. Purification by column chromatography (50% X4/CH₂Cl₂) gave TBS-ether (15) (2.54 g; 97%) as a white solid (enantiomer known⁴). Rf = 0.34 (50%, X4/CH₂Cl₂); mp. 85-86 °C; [α]²⁰_D = -47.1 (c 1.11, CHCl₃); ¹H NMR (400 MHZ, CDCl₃) δ 7.35-7.31 (2H, m, ArH), 7.29-7.25 (1H, m, ArH), 7.23-7.20 (2H, m, ArH), 4.63 (1H, m, CHCH₂Ph), 4.17 (2H, d, J = 4.8Hz, OCH₂CHN), 3.98 (1H, m, CHOTBS), 3.96 (1H, dq, J = 6.6, 6.4 Hz, C(=O)CH(CH₃)CHOTBS), 3.27 (1H, dd, J = 13.2, 4.8 Hz, CH_AH_BPh), 2.75 (1H, dd, J = 13.2, 9.6 Hz, CH_AH_BPh), 1.52-1.43 (2H, m, CH(OTBS)CH(CH₃)CH_AH_BCH₃

and $CH(OTBS)CH(CH_3)CH_2CH_3),$ 1.23 (3H, d, I 6.4 Hz, = CH(OTBS)CH(CH₃)CH₂CH₃), 1.04-0.95 (1H, m, CH(OTBS)CH(CH₃)CH_AH_BCH₃), 0.93 (3H, d, J = 7.2 Hz, C(=0)CH(CH₃)CHOTBS), 0.92 (9H, s, OSiC(CH₃)₃), 0.87 (3H, dd, $J = 7.2, 6.8 \text{ Hz}, CH_2CH_3$, 0.07 (3H, s, OSi(CH₃)CH₃), 0.04 (3H, s, OSi(CH₃)CH₃); ¹³C NMR (100 MHZ, CDCl₃) δ 176.3, 153.0, 135.5, 129.6, 129.1, 127.5, 76.3, 66.1, 55.8, 41.2, 40.9, 37.8, 26.2, 25.0, 18.5, 15.4, 14.1, 12.5, -3.8, -4.1; **IR** (KBr, cm⁻¹) 3520, 2963, 2930, 2883, 2858, 1957, 1767, 1700, 1491, 1458, 1393, 1364, 1312, 1294, 1274, 1228, 1253, 1210, 1179, 1154, 1104, 1072, 1055, 1023, 994, 968, 933, 910, 884, 838, 805, 776, 766, 702, 671, 588, 507.

(2S,3S,4S)-3-[(tert-butyl)dimethylsilyloxy]-2,4-dimethylhexan-1-ol

(33). To a stirred solution of oxazolidinone (15) (2.52 g; 5.81 mmol) in Et₂O (116 mL) at -10 °C was added EtOH (814 µL; 13.9 mmol) and LiBH4 (13.9 mL; 1 M in THF; 13.9 mmol). The resulting solution was stirred at -10 °C for 4 h, then quenched with 1 M NaOH (100 mL) and stirring continued at 0 °C for 15 min. The mixture was then poured into brine (60 mL), extracted with Et₂O (4 x 100 mL), dried (Na₂SO₄) and concentrated in *vacuo*. Purification by column chromatography (5% Et_2O/CH_2Cl_2) gave alcohol (33) (1.09 g; 72%) as a colourless oil (enantiomer known⁴). **R***f* = 0.58 (5%, Et₂O/CH₂Cl₂); $[\alpha]^{20}D = +3.33$ (c 1.20, CHCl₃); ¹H NMR (600 MHZ, CDCl₃) δ 3.62 (1H, dd,] = 5.4, 2.4 Hz, CHOTBS), 3.56 (1H, dd, J = 9.6, 9.0 Hz, CH_AH_BOH), 3.45 (1H, dd, J = 9.6, 6.0 Hz, CH_A*H*_BOH), 1.92 (1H, s, OH), 1.87 (1H, m, CH(CH₃)CH₂OH), 1.57-1.50 (2H, m, CH(OTBS)CH(CH₃)CH₂CH₃) and CH(OTBS)CH(CH₃)CH_AH_BCH₃), 1.11-1.03 (1H, ddq, J = 14.4, 7.2, 3.0 Hz, CH(OTBS)CH(CH₃)CH_A H_B CH₃), 0.89 (9H, s, OSiC(CH₃)₃), 0.89 (3H, dd, J = 7.6, 7.2, Hz, CH_2CH_3), 0.88 (3H, d, J = 6.6 Hz, CH(OTBS)CH(CH₃)CH₂CH₃), 0.85 (3H, d, J = 7.2 Hz, CH(CH₃)CH₂OH), 0.06 ((3H, s, OSi(CH₃)CH₃), 0.05 (3H, s, OSi(CH₃)CH₃); ¹³C NMR (151 MHZ, CDCl₃) δ 76.8, 66.8, 39.4, 38.7, 26.2, 25.9, 18.5, 16.2, 12.2, 12.0, -3.9, -4.2; **IR** (film, cm⁻¹) 3341, 2959, 2931, 2858, 1467, 1383, 1254, 1100, 1036, 939, 898, 862, 835, 773, 672.

Supplementary Information for "Total Synthesis and Structural Elucidation of *ent*-Micropyrone and (+)-Ascosalipyrone by Claire Gregg and Michael V. Perkins*

(2R,3S,4S)-3-[(tert-butyl)dimethylsilyloxy]-2,4-dimethylhexanal

(11). To a stirred solution of DMSO (872 µL; 12.3 mmol) in CH₂Cl₂ (41 mL) at -78 ^oC was added oxalyl chloride (3.08 mL; 2M in CH₂Cl₂; 6.15 mmol) dropwise and the resulting solution stirred at -78 °C for 30 min. A solution of alcohol (30) (1.07 g; 4.10 mmol) in CH₂Cl₂ (10 mL) was added dropwise *via* cannula to the reaction mixture and the resulting solution was stirred at -78 °C for 45 min. Et₃N (3.43 mL; 24.6 mmol) was added dropwise and stirring was continued at -78 °C for 30 min before warming slowly to 0 °C for a further 30 min. The reaction was quenched by addition of sat. aq. NH₄Cl (80 mL) and the mixture was extracted with CH_2Cl_2 (3 x 50 mL). The combined organic extracted were dried (Na_2SO_4) and concentrated in *vacuo*. Purification by column chromatography (100%) CH₂Cl₂) gave aldehyde (**11**) (1.05 g; 99%) as a colourless oil (enantiomer known⁴). **Rf** = 0.66 (100%, CH₂Cl₂); $[\alpha]^{20}D$ = -37.4 (c 2.03, CH₂Cl₂); ¹H NMR (400 MHZ, CDCl₃) δ 9.72 (1H, d, J = 0.8 Hz, CHO), 4.00 (1H, dd, J = 5.6, 3.2 Hz, CHOTBS), 2.46 (1H, ddg, I = 7.2, 3.6, 1.2, CH(OTBS)CH(CH₃)CHO), 1.55 (1H, m, $CH(OTBS)CH(CH_3)CH_2CH_3)$, 1.45 (1H, ddg, J = 13.2, 7.2, 3.6 Hz, CH(OTBS)CH(CH₃)C $H_AH_BCH_3$), 1.12-1.02 (1H, m, CH(OTBS)CH(CH₃)C $H_AH_BCH_3$), 1.09 (3H, d, J = 6.8 Hz, CH(OTBS)CH(CH₃)CH₂CH₃), 0.88 (3H, d, J = 6.8 Hz, $CH(OTBS)CH(CH_3)CHO)$, 0.88 (3H, dd, J = 7.6, 7.2 Hz, CH_2CH_3), 0.86 (9H, s, OSiC(CH₃)₃), 0.05 (3H, s, OSi(CH₃)CH₃), -0.01 (3H, s, OSi(CH₃)CH₃); ¹³C NMR (100 MHZ, CDCl₃) & 205.5, 75.0, 50.1, 31.0, 26.0, 25.3, 18.4, 15.6, 11.9, 8.8, -4.1, -4.1.

Ethyl 2-methyl-3-oxo-pentanoate (17). Sodium hydride (772 mg; 32.2 mmol) was added to ethyl propionate (10.0 mL; 86.9 mmol) with stirring and the mixture was slowly heated to 70 °C. When all the hydride had dissolved the mixture was heated at 70 °C for a further 18 h, before cooling to 0 °C. A few drops

of EtOH were added to kill any remaining hydride and the reaction mixture was then poured into 1 M HCl (30 mL), extracted with Et₂O (3 x 50 mL) and washed with brine (50 mL). The organic phase was dried (Na₂SO₄) and concentrated in *vacuo* to give the crude β -ketoester as a yellow oil. Distillation under reduced pressure gave β -ketoester **17** (4.08 g; 30%) as a colourless oil. **bp.** 85-86 °C at 0.3 mmHg; ¹H NMR (600 MHZ, CDCl₃) δ 4.17 (1H, q, J = 7.2 Hz, CH₃CH_AH_BO), 4.16 (1H, q, J = 7.2 Hz, CH₃CH_AH_BO), 3.51 (1H, q, J = 7.2 Hz, C(=O)CH(CH₃)C=O), 2.60 (1H, dq, J = 18.0, 7.2, C(=O)CH_AH_BCH₃), 2.51 (1H, dq, J = 18.0, 7.2, C(=O)CH_AH_BCH₃), 1.32 (3H, d, J = 7.2 Hz, C(=O)CH(CH₃)C=O), 1.25 (3H, t, J = 7.2 Hz, CH₃CH₂O), 1.06 (3H, t, J = 7.2 Hz, C(=O)CH₂CH₃); ¹³C NMR (151 MHZ, CDCl₃) δ 206.7, 170.8, 61.4, 34.8, 14.2, 13.0, 7.8.

(4*S*)-Benzyl-3-((2*S*,3*R*,4*S*)-3-hydroxy-2,4-dimethylhex-anoyl)oxazolidin-2one (34).

The previous procedure used for the preparation of 14 was followed with oxazolidinone S-(12) (1.73 mg; 7.42 mmol), Bu₂BOTf (8.90 mL; 1 M in CH₂Cl₂; 8.90 mmol), Et₃N (1.35 mL; 9.65 mmol), aldehyde (13) (1.26 g; 14.6 mmol) and CH₂Cl₂ (15 mL). Purification by column chromatography (5% Et₂O/CH₂Cl₂) gave aldol adduct (**34**) (2.01 g; 85%, > 98% ds) as a white solid (known compound^{4,5}). $\mathbf{R}f = 0.29 \ (5\% \ \text{Et}_2\text{O}/\text{CH}_2\text{Cl}_2); \ \mathbf{mp.} \ 91-92 \ ^\circ\text{C}; \ [\alpha]^{20}\text{D} = +38.4 \ (c \ 1.25, \ \text{CHCl}_3); \ ^1\text{H}$ NMR (400MHz, CDCl₃) δ 7.35-7.31 (2H, m, ArH), 7.29-7.25 (1H, m, ArH), 7.21-7.18 (2H, m, ArH), 4.69 (1H, dddd, 9.6, 7.6, 3.6, 3.6, CHCH₂Ph), 4.22 (1H, dd, J = 9.2, 7.6 Hz, $OCH_AH_BCH_2N$), 4.18 (1H, dd, J = 8.8, 2.8 Hz, OCH_AH_BCHN), 3.98 (1H, dq, J = 6.8, 4.0 Hz, C(=0)CH(CH₃)CHOH), 3.69 (1H, ddd, J = 7.2, 4.0, 3.6 Hz, CHOH), 3.25 (1H, dd, J = 13.6, 3.6 Hz, CH_AH_BPh), 2.78 (1H, dd, J = 13.6, 9.6 Hz, CH_AH_BPh), 2.67 (1H, d, J = 4.4 Hz, OH), 1.56-1.41 (1H, m, CH(OH)CH(CH₃)CH_AH_BCH₃), 1.56-1.41 $(1H, m, CH(OH)CH(CH_3)CH_2CH_3), 1.26 (3H, d, J = 7.2)$ Hz, $CH(OH)CH(CH_3)CH_2CH_3),$ 1.20-1.08 (1H, ddq, = 8.8. 7.2. 5.2. I $CH(OH)CH(CH_3)CH_AH_BCH_3)$, 0.97 (3H, d, J = 6.4 Hz, C(=O)CH(CH_3)CHOH), 0.90 (3H, dd, J = 7.6, 7.2 Hz, CH₂CH₃); ¹³C NMR (100MHz, CDCl₃) δ 177.7, 153.0, 135.2,

Supplementary Information for "Total Synthesis and Structural Elucidation of *ent*-Micropyrone and (+)-Ascosalipyrone by Claire Gregg and Michael V. Perkins*

129.5, 129.1, 127.5, 75.1, 66.2, 55.2, 40.0, 37.8, 37.3, 25.7, 14.7, 11.3, 11.3; **IR** (KBr, cm⁻¹) 3525, 3066, 3028, 2964, 2934, 2878, 1779, 1692, 1603, 1490, 1457, 1383, 1353, 1288, 1241, 1201, 1140, 1111, 1076, 1049, 1015, 993, 971, 931, 918, 858, 837, 790, 764, 751, 724, 644, 624, 617, 574, 506.

(4R)-4-Benzyl-3-{(2*S*,3*R*,4*S*)-3-[(*tert*-butyl)dimethylsilyloxy]-2,4dimethylhexanoyl}oxazolidin-2-one (35).

The previous procedure used for the preparation of **15** was followed with alcohol (34) (1.99 g; 6.23 mmol), 2,6-lutidine (1.45 mL; 12.5 mmol), TBSOTf (2.15 mL; 9.35 mmol) and CH₂Cl₂ (62 mL). Purification by column chromatography (50% x4/CH₂Cl₂) gave TBS-ether (**35**) (2.46 g; 91%) as a white solid (known compound⁴). **R***f* = 0.38 (50%, X4/CH₂Cl₂); **mp.** 72-73 °C; $[\alpha]^{20}$ _D = +44.6 (c 1.17, CHCl₃); ¹H NMR (400MHz, CDCl₃) δ 7.35-7.31 (2H, m, ArH), 7.29-7.25 (1H, m, ArH), 7.23-7.20 (2H, m, ArH), 4.64 (1H, m, CHCH₂Ph), 4.18 (2H, m, OCH₂CHCH₂N), 4.00 (1H, dd, J = 7.6, 2.8 Hz, CHOTBS), 3.98 (1H, dq, J = 7.2, 6.8 Hz, C(=0)C*H*(CH₃)CHOTBS), 3.26 (1H, dd, J = 13.2, 4.8 Hz, C*H*_AH_BPh), 2.76 (1H, dd, J = 13.2, 9.6 Hz, CH_AH_BPh), 1.57-1.48 (1H, m, CH(OTBS)CH(CH₃)CH_AH_BCH₃), 1.41-1.34 (1H, m, CH(OTBS)CH(CH₃)CH₂CH₃), 1.24 (3H, d, J = 6.8 Hz, CH(OTBS)CH(CH₃)CH₂CH₃), 1.22-1.10 (1H, m, CH(OTBS)CH(CH₃)CH_A H_B CH₃), 0.92 (9H, s, OSiC(CH_3)₃), 0.89 (3H, dd, J = 7.6, 7.2 Hz, CH_2CH_3), 0.84 (3H, d, J = 6.8 Hz, C(=O)CH(CH₃)CHOTBS), 0.08 (3H, s, OSi(CH₃)CH₃), 0.07 (3H, s, OSi(CH₃)CH₃); ¹³C NMR (100MHz, CDCl₃) δ 176.4, 153.0, 135.4, 129.6, 129.1, 127.5, 76.1, 66.0, 55.6, 41.8, 40.8, 37.8, 26.6, 26.3, 18.6, 15.1, 14.2, 12.5, -3.6, -3.8; **IR** (KBr, cm⁻¹) 3519, 2963, 2858, 1767, 1700, 1493, 1458, 1394, 1363, 1332, 1290, 1252, 1211, 1179, 1129, 1072, 1024, 993, 970, 934, 881, 836, 812, 772, 702, 690, 673, 588, 545, 495.

Supplementary Information for "Total Synthesis and Structural Elucidation of *ent*-Micropyrone and (+)-Ascosalipyrone by Claire Gregg and Michael V. Perkins*

(2*R*,3*R*,4*S*)-3-[(*tert*-butyl)dimethylsilyloxy]-2,4-dimethylhexan-1-ol (36).

The previous procedure used for the preparation of **27** was followed with oxazolidinone (35) (2.43 g; 5.61 mmol), EtOH (786 μL; 13.5 mmol), LiBH₄ (13.5 mL; 1 M in THF; 13.5 mmol) and Et₂O (112 mL). Purification by column chromatography (5% Et₂O/CH₂Cl₂) gave alcohol (**36**) (956 mg; 66%) as a colourless oil (known compound⁴). **R***f* = 0.56 (5%, Et₂O/CH₂Cl₂); $[\alpha]^{20}$ _D = -3.64 (c 1.10, CHCl₃); ¹H NMR (600MHz, CDCl₃) δ 3.63 (1H, dd, J = 3.6, 3.6 Hz, CHOTBS), 3.63 (1H, m, CH_AH_BOH), 3.46 (1H, m, CH_AH_BOH), 2.25 (1H, s, OH), 1.93 (1H, dddg, J = 9.0, 8.4, 6.0, 3.0 Hz, CH(OTBS)CH(CH₃)CH₂OH), 1.54-1.48 (1H, m, $CH(OTBS)CH(CH_3)CH_2CH_3)$, 1.44 (1H, ddg, J = 13.2, 6.6, 4.2) Hz, $CH(OTBS)CH(CH_3)CH_AH_BCH_3)$, 1.15 (1H, ddq, J = 13.2, 8.4, 7.2 Hz, $CH(OTBS)CH(CH_3)CH_AH_BCH_3), 0.90 (3H, d, J = 6.6 Hz, CH(OTBS)CH(CH_3)CH_2CH_3),$ 0.89 (9H, s, OSiC(CH₃)₃), 0.87 (3H, dd, J = 7.8, 7.2 Hz, CH₂CH₃), 0.84 (3H, d, J = 7.2 Hz, CH(OTBS)CH(CH₃)CH₂OH), 0.07 (3H, s, OSi(CH₃)CH₃), 0.05 (3H, s, OSi(CH₃)CH₃); ¹³C NMR (151MHz, CDCl₃) δ 77.4, 66.6, 39.7, 38.1, 27.5, 26.2, 18.4, 15.5, 12.7, 12.4, -4.0, -4.1; **IR** (film, cm⁻¹) 3346, 2959, 2858, 1466, 1384, 1360, 1253, 1100, 1035, 939, 898, 836, 809, 773, 673.

(2*S*,3*R*,4*S*)-3-[(*tert*-butyl)dimethylsilyloxy]-2,4-dimethylhexanal (16).

The previous procedure used for the preparation of **11** was followed with alcohol (**36**) (519 mg; 1.99 mmol), DMSO (424 μ L; 5.98 mmol), oxalyl chloride (1.49 mL; 2M in CH₂Cl₂; 2.99 mmol), Et₃N (1.67 mL; 9.60 mmol) and CH₂Cl₂ (20 mL). Purification by column chromatography (100% CH₂Cl₂) gave aldehyde (**16**) (514 mg; 99%) as a colourless oil (known compound⁴). **R***f* = 0.80 (100%, CH₂Cl₂); **[** α **]**²⁰ $_{D}$ = +49.1 (c 1.63, CH₂Cl₂); ¹**H NMR** (600MHz, CDCl₃) δ 9.79 (1H, d, J = 0.6 Hz, CHO), 3.97 (1H, dd, J = 4.8, 4.2 Hz, CHOTBS), 2.49 (1H, ddq, J = 7.2, 4.8, 1.2 Hz, CH(OTBS)CH(CH₃)CHO), 1.51-1.44 (1H, m, CH(OTBS)CH(CH₃)CH₂CH₃), 1.45 (1H, ddq, J = 13.2, 7.2, 4.2 Hz, CH(OTBS)CH(CH₃)CH₂CH₃), 1.13 (1H, ddq, J = 13.2,

9.0, 7.8 Hz, CH(OTBS)CH(CH₃)CH_AH_BCH₃), 1.05 (3H, d, J = 7.2 Hz, CH(OTBS)CH(CH₃)CH₂CH₃), 0.87 (3H, dd, J = 7.8, 7.2 Hz, CH₂CH₃), 0.87 (9H, s, OSiC(CH₃)₃), 0.82 (3H, d, J = 6.6 Hz, CH(OTBS)CH(CH₃)CHO), 0.05 (3H, s, OSi(CH₃)CH₃), 0.01 (3H, s, OSi(CH₃)CH₃); ¹³C NMR (151MHz, CDCl₃) δ 205.5, 75.3, 50.9, 39.1, 26.6, 26.0, 18.3, 14.5, 12.2, 9.4, -4.0, -4.2.

Ethyl (6*R*,7*R*,8*S*)-7-[(*tert*-butyl)dimethylsilyloxy]-5-hydroxy-2,4,6,8tetramethyl-3-oxodecanoate (37).

The previous procedure for the preparation of **18** was used with β -ketoester (**17**) (358 mg; 2.26 mmol), NaH (94.9 mg; 3.96 mmol), *n*-BuLi (1.41 mL; 1.6 M in hexanes; 2.26 mmol), aldehyde (**16**) (293 mg; 1.13 mmol) and THF (11 mL). The crude product was filtered through a plug of buffered silica (100% CH₂Cl₂) to give a complex mixture of isomers of alcohol (**37**) (463 mg; 98%) as a clear oil.

¹H NMR (600MHz, CDCl₃) δ 4.16-4.10 (2H, m, CH₃CH₂O), 4.04 (0.25H, m, CHOTBS), 3.91-3.85 (0.75H, m, CHOTBS), 3.80-3.77 (0.25H, CHOH), 3.78, 3.73, 3.67, 3.63, $(4 \ge 0.25H, q, l = 7.2 Hz, CH_3CH_2OC(=0)CH(CH_3)C=0)$, 3.59 (0.25H, dd, J = 4.2, 3.6 Hz, CHOH), 3.56 (0.25H, dd, J = 4.2, 3.6 Hz, CHOH), 3.54 (0.25H, dd, J = 4.2, 3.6 Hz, CHOH), 2.97, 2.95, 2.81, 2.79 (4 x 0.25H, dq, J = 7.2, 6.6 Hz, C(=0)CH(CH₃)CHOH), 1.71-1.65 (0.25H, m, C(OH)CH(CH₃)CHOTBS), 1.60-1.37 $(2.75H, m, C(OH)CH(CH_3)CHOTBS, CH(CH_3)CH_2CH_3 and CH(CH_3)CH_AH_BCH_3),$ 1.30-1.27 (3H, m, CH₃CH₂OC(=0)CH(CH₃)C(=0)), 1.24-1.20 (3H, m, CH₃CH₂O), 1.16 (1H, d, J = 6.6 Hz, C(=0)CH(CH_3)CHOH), 1.08-0.99 (3.25H, m, $C(=0)CH(CH_3)CHOH$ and $CH(CH_3)CH_AH_BCH_3)$, 0.94 (0.75H, d, J = 6.6 Hz, $CH(OTBS)CH(CH_3)CH_2CH_3),$ 0.91-0.78 (15.5H, $CH(OTBS)CH(CH_3)CH_2CH_3$, OSiC(CH_3)₃, CH(OH)CH(CH_3)CHOTBS) and CH(CH_3)CH₂CH₃), 0.76 (0.75H, d, J = 7.2 Hz, $CH(OH)CH(CH_3)CHOTBS),$ 0.73 (0.75H, d, J = 7.2 Hz, CH(OH)CH(CH₃)CHOTBS), 0.07-0.02 (6H, m, OSi(CH₃)₂), (OH not assigned); ¹³C NMR (151MHz, CDCl₃) δ 211.5, 211.3, 211.2, 210.0, 209.5, 206.6, 205.5, 170.9, 170.8, 170.5, 170.4, 170.20, 170.17, 104.7, 85.4, 83.3, 79.20, 79.18, 78.9, 78.4, 78.0, 77.0, 75.54, 75.47, 75.3, 74.9, 74.6, 72.4, 71.6, 61.5, 61.50, 61.46, 61.40,

61.36, 61.35, 54.1, 53.6, 53.5, 52.7, 51.8, 51.7, 50.9, 50.7, 50.4, 50.0, 49.8, 49.7, 49.2, 49.1, 48.98, 48.96, 48.0, 47.9, 47.5, 47.4, 44.1, 44.0, 40.3, 40.2, 40.1, 39.9, 39.8, 39.6, 39.3, 38.9, 38.60, 38.58, 38.52, 38.2, 37.9, 37.8, 37.5, 37.4, 37.1, 36.5, 34.7, 34.4, 33.7, 32.0, 30.4, 29.8, 27.3, 26.23, 26.19, 26.16, 26.14, 26.10, 26.0, 25.93, 25.90, 25.83, 25.80, 25.76, 25.72, 25.50, 25.45, 25.3, 23.3, 22.31, 22.30, 18.51, 18.49, 18.43, 18.40, 18.37, 18.31, 18.29, 15.9, 15.82, 15.81, 15.76, 15.0, 14.9, 14.71, 14.65, 14.14, 14.13, 13.9, 13.6, 13.23, 13.20, 13.19, 13.04, 13.01, 12.94, 12.89, 12.69, 12.68, 12.66, 12.61, 12.58, 12.3, 12.23, 12.15, 12.09, 12.07, 12.00, 11.7, 11.6, 11.2, 9.6, 9.5, 9.3, 8.00, 7.96, 7.75, 7.71, 7.5, 7.4, -3.4, -3.7, -3.9, -4.0, -4.13, -4.15, -4.17, -4.19, -4.20, -4.29, -4.33; **IR** (film, cm⁻¹) 3479, 2959, 2858, 1727, 1462, 1381, 1254, 1058, 1025, 836, 811, 774, 675.

Ethyl (*6S*,7*R*,8*S*)-7-[(*tert*-butyl)dimethylsilyloxy]-2,4,6,8-tetramethyl-3,5-dioxodecanoate (38).

The previous procedure for the preparation of **19** was used with alcohol (**37**) (762 mg; 1.83 mmol), DMP (1.16 g; 2.74 mmol), CH₂Cl₂ (18 mL) and CH₂Cl₂ (sat., 12 x 1.72 mL). The crude residue was filtered through buffered silica (100% CH₂Cl₂) to afford tricarbonyl (38) (758 mg; 100%) as a clear oil. ¹H NMR (600MHz, CDCl₃) δ 4.20-4.10 (2.25H, m, CH_3CH_2O and C(=0)CH(CH₃)C(=0)CH(CH₃)CHOTBS), 4.09, 4.04, 4.03 (3 x 0.25H, q,] = 7.2 Hz, C(=0)CH(CH₃)C(=0)CH(CH₃)CHOTBS), 3.93 (0.25 H, dd, J = 6.0, 2.4 Hz, CHOTBS), 3.92 (0.25 H, dd, J = 6.6, 2.4 Hz, CHOTBS), 3.86 (0.25 H, dd, J = 7.2, 2.4 Hz, CHOTBS), 3.83 (0.25 H, dd, J = 7.2 2.4 Hz, CHOTBS), 3.27 (0.25H, q, J = 7.2 Hz, $CH_{3}CH_{2}OC(=O)CH(CH_{3})C(=O)),$ 3.72 (0.25H, I 7.2 q, = Hz, $CH_3CH_2OC(=O)CH(CH_3)C(=O)),$ 3.64 (0.25H, q, J 7.2 Hz, = $CH_3CH_2OC(=O)CH(CH_3)C(=O)),$ (0.25H, 7.2 3.62 J Hz, q, = $CH_3CH_2OC(=O)CH(CH_3)C(=O)),$ (0.5H, 7.2, 6.6 2.91 dq, I = Hz. C(=0)C*H*(CH₃)CHOTBS), 2.86 (0.25H, dq, J = 7.2, 6.6 Hz, C(=0)C*H*(CH₃)CHOTBS), 2.82 (0.25H, dq, J = 7.2, 7.2 Hz, C(=0)CH(CH₃)CHOTBS), 1.55-1.36 (1H, m, CH(OTBS)CH(CH₃)CH₂CH₃), 1.34-1.27 (4.5H, CH₃CH₂OC(=O)CH(CH₃)C(=O) and

 $C(=0)CH(CH_3)C(=0)CH(CH_3)CHOTBS),$ 1.26-1.16 (5.5H, $C(=0)CH(CH_3)C(=0)CH(CH_3)CHOTBS, CH_3CH_2O$ and $CH(CH_3)CH_AH_BCH_3)$, 1.13 $(0.75H, d, J = 6.6Hz, CH(OTBS)CH(CH_3)CH_2CH_3), 1.12-1.00$ (1H, m, $CH(CH_3)CH_AH_BCH_3$, 1.06 (0.75H, d, J = 6.6Hz, $CH(OTBS)CH(CH_3)CH_2CH_3$), 1.05 $(0.75H, d, J = 7.2 Hz, CH(OTBS)CH(CH_3)CH_2CH_3)$ 1.04 (0.75H, d, J = 7.2Hz, J)CH(OTBS)CH(CH₃)CH₂CH₃), 0.89-0.80 (12.75H, m, CH(CH₃)CH₂CH₃, OSiC(CH₃)₃ and $C(=O)CH(CH_3)CHOTBS$, 0.79 (0.75H, d, J = 7.2 Hz, $C(=O)CH(CH_3)CHOTBS$), 0.78 (0.75H, d, J = 6.6 Hz, C(=0)CH(CH₃)CHOTBS), 0.75 (0.75H, d, J = 6.6 Hz, C(=0)CH(CH₃)CHOTBS), 0.06- -0.01 (6H, s, OSi(CH₃)₂); ¹³C NMR (151MHz, CDCl₃) δ 210.9, 210.6, 209.32, 209.26, 203.40, 203.36, 202.3, 202.2, 194.7, 194.5, 193.3, 192.6, 171.0, 170.7, 170.08, 170.05, 76.6, 76.50, 76.47, 75.8, 75.5, 74.9, 61.68, 61.64, 61.58, 61.33, 61.31, 61.28, 59.8, 59.33, 59.27, 57.9, 52.7, 52.4, 51.6, 51.2, 50.9, 50.4, 49.9, 49.8, 49.5, 49.1, 46.3, 46.1, 44.1, 43.6, 42.1, 41.9, 40.9, 40.4, 40.22, 40.19, 40.11, 40.06, 40.00, 37.9, 37.5, 37.2, 35.9, 34.7, 34.5, 33.8, 32.0, 29.79, 29.75, 29.5, 27.22, 27.19, 27.11, 27.03, 27.01, 26.24, 26.22, 26.19, 26.17, 25.52, 25.46, 25.35, 23.3, 22.8, 22.3, 19.4, 18.59, 18.54, 18.53, 18.51, 18.50, 17.8, 16.0, 16.0, 14.92, 14.88, 14.84, 14.6, 14.21, 14.17, 14.15, 14.12, 14.11, 13.98, 13.95, 13.86, 13.83, 13.80, 13.7, 13.62, 13.57, 13.37, 13.31, 13.13, 13.11, 13.05, 12.9, 12.8, 12.6, 12.34, 12.31, 12.29, 12.28, 7.77, 7.72, 7.5, -3.66, -3.68, -3.70, -3.73, -3.87 -3.89, -3.91; **IR** (film, cm⁻¹) 3467, 2931, 2857, 1734, 1611, 1460, 1378, 1303, 1254, 1192, 1113, 1063, 1030, 1005, 938, 861, 836, 809, 775, 674.

13

Supplementary Information for "Total Synthesis and Structural Elucidation of *ent*-Micropyrone and (+)-Ascosalipyrone by Claire Gregg and Michael V. Perkins*

6-[(1*S*,2*R*,3*S*)-2-[(*tert*-butyl)dimethylsilyloxy]-1,3-dimethylpentyl]-4hydroxy-3,5-dimethyl-2H-pyran-2-one (39).

The previous procedure for the preparation of **20** was used with tricarbonyl (38) (361 mg; 872 µmol), DBU (65 µL; 436 µmol) and benzene (9 mL). The residue was triturated with hexanes to give α -pyrone (39) (173 mg; 54%) as white needles. **R***f* = 0.29 (10% Et₂0/CH₂Cl₂); **mp.** 196-198 °C; $[\alpha]^{20}$ _D = +140.9 (c 0.66, MeOH); ¹**H NMR** (600MHz, CDCl₃) δ 7.65 (1H, br s, OH), 3.91 (1H, dd, J = 9.0, 1.2 Hz, CHOTBS), 2.96 (1H, dq, J = 9.0, 6.6Hz, C(-O-)CH(CH₃)CHOTBS), 1.99 (3H, s, $C(=0)C(CH_3)=COH)$, 1.99 (3H, s, $C(OH)C(CH_3)=C(-O-)$), 1.44-1.37 (1H, m, CH(OTBS)CH(CH₃)CH_AH_BCH₃), 1.23-1.17 (1H, m, CH(OTBS)CH(CH₃)CH₂CH₃), 1.21 (3H, d, J = 6.6 Hz, CH(OTBS)CH(CH₃)CH₂CH₃), 1.13-1.05 (1H, m, CH(OTBS)CH(CH₃)CH_A*H*_BCH₃), 0.90 (9H, s, OSiC(CH₃)₃), 0.81 (3H, dd, J = 7.8, 7.2 Hz, CH_2CH_3), 0.73 (3H, d, J = 6.6 Hz, $CH(OTBS)CH(CH_3)CH_2CH_3$), 0.07 (3H, s, OSi(CH₃)CH₃), 0.05 (3H, s, OSi(CH₃)CH₃); ¹³C NMR (151Mz, CDCl₃) δ 166.1, 165.0, 161.3, 106.6, 98.2, 77.3, 39.8, 39.1, 26.9, 26.3, 18.6, 17.2, 13.5, 12.6, 10.0, 8.8, -3.5, -3.5; **IR** (KBr, cm⁻¹) 2960, 2933, 2883, 2859, 1680, 1657, 1574, 1537, 1462, 1405, 1381, 1360, 1344, 1256, 1215, 1177, 1153, 1125, 1064, 1082, 1039, 959, 936, 853, 837, 807, 777, 758, 695, 671, 621, 515, 473.

6-[(1*S*,2*R*,3*S*)-2-hydroxy-1,3-dimethylpentyl]-4-hydroxy-3,5-dimethyl-2Hpyran-2-one (40).

The previous procedure for the preparation of **21** was used with TBS-ether (**39**) (255 mg; 692 μ mol), 40% aq. HF (1.10 mL) and 1:1 CH₃CN/CH₂Cl₂ (36 mL). The product with triturated with acetone to give alcohol (**40**) (175 mg; 99%) as a white foam. **R***f* = 0.43 (100%, EtOAc); [α]²⁰_D = +98.0 (c 1.25, MeOH); ¹H NMR

(600MHz, CD₃OD) δ 5.05 (1H, br s, C(CH₃)=C(OH)CH=C(-O-)), 3.78 (1H, dd, J = 9.6, 2.4 Hz, CHOH), 3.02 (1H, dq, J = 9.6, 7.2 Hz, C(-O-)CH(CH₃)CHOH), 2.00 (3H, s, C(=O)C(CH₃)=COH), 1.91 (3H, s, C(OH)C(CH₃)=C(-O-)), 1.41 (1H, ddq, J = 13.8, 7.2, 6.0 Hz, CH(OH)CH(CH₃)CH₂H_BCH₃), 1.29 (3H, d, J = 7.2 Hz, CH(OH)CH(CH₃)CH₂CH₃), 1.29-1.20 (1H, m, CH(OH)CH(CH₃)CH₂CH₃), 1.11 (1H, ddq, J = 13.8, 7.2, 1.8 Hz, CH(OH)CH(CH₃)CH_AH_BCH₃), 0.85 (3H, dd, J = 7.8, 7.2 Hz, CH₂CH₃), 0.80 (3H, d, J = 7.2 Hz, C(-O-)CH(CH₃)CHOH), ¹³C NMR (151Mz, CD₃OD) δ 168.3, 168.0, 161.7, 109.3, 98.8, 76.1, 39.7, 39.0, 28.3, 16.4, 13.1, 12.3, 10.1, 8.8; IR (KBr, cm⁻¹) 3333, 2966, 2932, 2878, 1671, 1568, 1458, 1410, 1380, 1230, 1145, 1086, 1032, 994, 956, 872, 760, 737, 704.

6-[(1*R*,3*S*)-1,3-dimethyl-2-oxopentyl]-4-hydroxy-3,5-dimethyl-2H-pyran-2one (23).

The previous procedure for the preparation of **22** was used with alcohol (**40**) (168 mg; 659 µmol), Jones reagent (1.15 mL) and acetone (17 mL). The crude product was triturated with hexanes to remove impurities, giving 6 - [(1R, 3S) - 1, 3 - 1]dimethyl-2-oxopentyl]-4-hydroxy-3,5-dimethyl-2H-pyran-2-one (23) (104 mg; 63%) as colourless plates. **Rf** = 0.52 (100% EtOAc); **mp.** 168-170 °C; $[\alpha]^{20}$ _D = -4.67 (c 1.07, MeOH); ¹**H NMR** (600MHz, CDCl₃) δ 8.74 (1H, br s, OH), 3.90 (1H, q, J = 7.2 Hz, $C(-0)CH(CH_3)C=0$, 2.54 (1H, ddg, J = 13.8, 7.2, 6.6 Hz, $C(=O)CH(CH_3)CH_2CH_3)$ 2.02 $(3H, s, C(=0)C(CH_3)=COH), 1.99$ (3H, S, 13.8, $C(OH)C(CH_3)=C(-O_{-})),$ 1.65 (1H, ddq, J = 7.8, 7.2 Hz. $C(=0)CH(CH_3)CH_AH_BCH_3)$, 1.39 (3H, d, J = 7.2 Hz, $C(=0)CH(CH_3)CH_2CH_3)$, 1.20 $(1H, ddq, I = 13.8, 7.2, 6.0 Hz, C(=0)CH(CH_3)CH_AH_BCH_3), 1.02 (3H, d, I = 7.2 Hz)$ $C(-O)CH(CH_3)C=O)$, 0.76 (3H, dd, J = 7.8, 7.2 Hz, CH_2CH_3); ¹³C NMR (151Mz, CDCl₃) & 210.6, 166.0, 165.2, 155.7, 109.4, 99.4, 47.5, 45.6, 25.9, 17.6, 13.6, 11.9, 10.1, 8.8; **IR** (KBr, cm⁻¹) 3188, 2934, 2964, 2876, 1727, 1680, 1636, 1575, 1455, 1428, 1379, 1340, 1250, 1207, 1174, 1128, 1078, 1041, 1001, 969, 870, 850, 751,

Supplementary Information for "Total Synthesis and Structural Elucidation of *ent*-Micropyrone and (+)-Ascosalipyrone by Claire Gregg and Michael V. Perkins*

713, 670, 642, 581, 479; **HRESIMS** calculated for C₁₄H₂₀O₄Na⁺: 275.1254; found: 274.1266.

Ethyl (6*R*,7*R*,8*S*)-7-[(*tert*-butyl)dimethylsilyloxy]-5-hydroxy-2,6,8-trimethyl-3-oxodecanoate (41).

The previous procedure for the preparation of **18** was used with β -ketoester (24) (242 µL; 1.71 mmol), NaH (72.0 mg; 3.00 mmol), *n*-BuLi (1.07 mL; 1.6 M in hexanes; 1.71 mmol), aldehvde (16) (222 mg; 857 µmol) and THF (8.6 mL). The crude product was filtered through a plug of buffered silica (100% CH₂Cl₂) to give a complex mixture of isomers of alcohol (41) (341 mg; 99%) as a yellow oil. ¹**H NMR** (600MHz, CDCl₃) δ 4.17-4.12 (2H, m, CH₃CH₂O), 4.10-4.06 (0.5H, m, CHOTBS), 3.97-3.94 (0.5H, m, CHOTBS), 3.79 (0.5H, ddd, J = 4.2, 4.2, 3.0 Hz, CHOH), 3.62 (0.5H, dd, J = 4.8, 3.6 Hz, CHOH), 3.57, 3.55, 3.51, 3.50 (4 x 0.25H, q, J = 7.2 Hz, $CH_3CH_2OC(=0)CH(CH_3)C=0$, 2.75-2.70 (1H, m, C(=0)CH_AH_BCHOH), 2.65-2.58 (0.5H, m, C(=0)C H_AH_BCHOH), 2.57 (0.25H, dd, J = 16.8, 8.4 Hz, C(=0)CH_AH_BCHOH), 2.53 (0.25H, dd, J = 16.8, 9.0 Hz, C(=0)CH_AH_BCHOH), 1.73- $CH(OH)CH(CH_3)CHOTBS),$ 1.66 (0.5H, m, 1.62-1.57 (0.5H, m, $CH(OH)CH(CH_3)CHOTBS),$ 1.55-1.37 (2H, m, $CH(CH_3)CH_2CH_3$ and $CH(CH_3)CH_AH_BCH_3$, 1.31 (1.5H, d, J = 7.2 Hz, $CH_3CH_2OC(=O)CH(CH_3)C=O$), 1.29 $(1.5H, d, J = 7.2 Hz, CH_3CH_2OC(=0)CH(CH_3)C=0), 1.23 (1H, t, J = 7.2 Hz, CH_3CH_2O),$ 1.23 (2H, t, I = 7.2 Hz, CH_3CH_2O), 1.11-1.04 (1H, m, $CH(CH_3)CH_AH_BCH_3$), 0.89 $(0.75H, d, J = 6.6 Hz, C(=0)CH(CH_3)CHOTBS), 0.88 (1.5H, d, J = 7.2 Hz, C(=0)CH(CH_3)CHOTBS)$ $C(=O)CH(CH_3)CHOTBS),$ 0.87-0.82 (12.75H, m, $C(=0)CH(CH_3)CHOTBS,$ $OSiC(CH_3)_3$ and $CH(CH_3)CH_2CH_3)$ 0.80 (1.5H, d, I = 6.6 Hz, $CH(OH)CH(CH_3)CHOTBS), 0.75 (0.75H, d, J = 6.6 Hz, CH(OH)CH(CH_3)CHOTBS),$ $0.75 (0.75H, d, J = 6.6 Hz, CH(OH)CH(CH_3)CHOTBS), 0.06 (1H, s, OSi(CH_3)_2), 0.05$ $(1H, s, OSi(CH_3)_2), 0.03$ $(2H, s, OSi(CH_3)_2), -0.02$ $(2H, s, OSi(CH_3)_2),$ (OH not assigned); ¹³C NMR (151MHz, CDCl₃) & 206.93, 206.85, 206.81, 206.7, 170.5, 170.44, 170.37, 170.28, 77.5, 77.4, 76.6, 70.2, 70.0, 69.6, 69.3, 61.53, 61.51, 61.47, 61.43, 53.8, 53.47, 53.44, 51.7, 46.9, 46.8, 46.50, 46.47, 42.0, 41.8, 40.8, 40.7,

Supplementary Information for "Total Synthesis and Structural Elucidation of *ent*-Micropyrone and (+)-Ascosalipyrone by Claire Gregg and Michael V. Perkins*

39.62, 39.57, 38.40, 38.36, 37.7, 34.6, 31.6, 31.0, 29.8, 27.2, 27.1, 26.3, 26.22, 26.18, 26.14, 26.12, 26.10, 23.33, 23.30, 22.3, 18.5, 18.4, 15.65, 15.64, 14.56, 14.51, 14.1, 12.7, 12.60, 12.59, 12.5, 12.12, 12.07, 12.04, 10.3, 10.2, -3.5, -3.99, -4.02, -4.09, -4.13; **IR** (film, cm⁻¹) 3494, 2929, 1726, 1463, 1379, 1253, 1189, 1058, 939, 835, 810, 774, 734, 673.

Ethyl (6*S*,7*R*,8*S*)-7-[(*tert*-butyl)dimethylsilyloxy]-2,6,8-trimethyl-3,5dioxodecanoate (42).

The previous procedure for the preparation of **19** was used with alcohol (**41**) (524 mg; 1.30 mmol), DMP (827 mg; 1.95 mmol), CH₂Cl₂ (13 mL) and CH₂Cl₂ (sat., 12 x 2.17 mL). The crude residue was filtered through buffered silica $(100\% \text{ CH}_2\text{Cl}_2)$ to afford tricarbonyl (42) (473 mg; 91%) as a yellow oil. (enol tautomer) ¹H NMR (600MHz, CDCl₃) δ 5.58 (0.5H, s, C(OH)=CHC=O), 5.57 (0.5H, s, C(=0)=CHCOH), 4.18-4.12 (2H, m, CH_3CH_2O), 3.79 (1H, dd, J = 6.0, 3.0 Hz, CHOTBS), 3.36 (2 x 0.5H, q, J = 7.2 Hz, $CH_3CH_2OC(=0)CH(CH_3)C=0$), 2.49-2.43 (1H, m, C(=O)CH(CH₃)CHOTBS), 1.46-1.37 (1H, m, CH(OTBS)CH(CH₃)CH₂CH₃), 1.36 (2 x 1.5H, d, J = 7.2 Hz, $CH_3CH_2OC(=O)CH(CH_3)C=O$), 1.27-1.20 (1H, m, $CH(CH_3)CH_AH_BCH_3$, 1.23 (3H, t, J = 7.2 Hz, CH_3CH_2O), 1.16-1.06 (1H, m, $CH(CH_3)CH_AH_BCH_3$, 1.12 (3H, d, J = 7.2 Hz, $CH(CH_3)CH_2CH_3$), 0.90-0.81 (15H, m, OSiC(CH_3)₃, C(=O)CH(CH_3)CHOTBS and CH(CH_3)CH₂CH₃), 0.02 (3H, s, $OSi(CH_3)CH_3$, -0.02 (3H, s, $OSi(CH_3)CH_3$), (enol OH not assigned); ¹³C NMR (151MHz, CDCl₃) δ 194.74, 194.65, 193.4, 193.3, 170.9, 98.5, 98.2, 76.83, 76.80, 61.4, 53.5, 49.8, 49.7, 45.8, 39.7, 26.2, 18.5, 14.3, 14.23, 14.18, 14.16, 14.08, 14.03, 13.97, 13.86, 12.2, -3.74, -3.75, -3.94, -4.95; **IR** (film, cm⁻¹) 2927, 1738, 1608, 1463, 1378, 1254, 1061, 939, 837, 774, 735, 672.

6-[(1*S*,2*R*,3*S*)-2-[(*tert*-butyl)dimethylsilyloxy]-1,3-dimethylpentyl]-4hydroxy-3-methyl-2H-pyran-2-one (43) and 6-[(1*R*,2*R*,3*S*)-2-[(*tert*butyl)dimethylsilyloxy]-1,3-dimethylpentyl]-4-hydroxy-3-methyl-2Hpyran-2-one (44).

The previous procedure for the preparation of **20** was used with tricarbonyl (42) (381 mg; 952 µmol), DBU (71 µL; 476 µmol) and benzene (9.5 mL). The residue was triturated with hexanes to give a 73:27 mixture of α -pyrones (43) and (44) (93.1 mg; 28%) as yellow needles. Rf = 0.29 (10% Et_2O/CH_2Cl_2); mp. 166-168 °C; [α]²⁰_D = -47.1 (c 0.79, MeOH); ¹H NMR (600MHz, CDCl₃) major **isomer:** δ 7.93 (1H, br s, OH), 5.99 (1H, s, CH(OH)CH=C(-O-)), 3.84 (1H, dd, J = 6.0, 3.6 Hz, CHOTBS), 2.68 (1H, dq, I = 7.2, 6.6 Hz, C(-O-)CH(CH₃)CHOTBS), 1.96 (3H, s, C(=O)C(CH₃)=COH), 1.50-1.42 (1H, m, CH(CH₃)CH_AH_BCH₃), 1.40-1.34 (1H, $CH(OTBS)CH(CH_3)CH_2CH_3),$ 1.20 (3H, d, J = m, 6.6 Hz, CH(OTBS)CH(CH₃)CH₂CH₃), 1.19-1.10 (1H, m, CH(CH₃)CH_AH_BCH₃), 0.87 (9H, s, $OSiC(CH_3)_3$, 0.85 (3H, t,] = 7.2 Hz, CH_2CH_3), 0.81 (3H, d,] = 6.6 Hz, C(-0-)CH(CH₃)CHOTBS), 0.02 (3H, s, OSi(CH₃)CH₃), -0.08 (3H, s, OSi(CH₃)CH₃); minor **isomer:** δ 7.93 (1H, br s, OH), 6.01 (1H, s, CH(OH)CH=C(-O-), 3.87 (1H, dd, J = 7.8, 2.4 Hz, CHOTBS), 2.71-2.66 (1H, m, C(-O-)CH(CH₃)CHOTBS), 1.96 (3H, s, C(=0)C(CH₃)=COH), 1.50-1.42 (1H, m, CH(CH₃)CH_AH_BCH₃), 1.40-1.34 (1H, m, $CH(OTBS)CH(CH_3)CH_2CH_3)$, 1.25 (3H, d, J = 7.2 Hz, $CH(OTBS)CH(CH_3)CH_2CH_3)$, 1.19-1.10 (1H, m, CH(CH₃)CH_AH_BCH₃), 1.14 (3H, d, J = 7.2 Hz, C(-O-)CH(CH₃)CHOTBS), 0.86 (3H, t, J = 7.2 Hz, CH₂CH₃) 0.82 (9H, s, OSiC(CH₃)₃), 0.01 (3H, s, OSi(CH₃)CH₃), -0.25 (3H, s, OSi(CH₃)CH₃); ¹³C NMR (151Mz, CDCl₃) major isomer: δ 166.1, 165.1, 100.1, 98.8, 76.8, 42.3, 39.7, 31.1, 26.5, 26.2, 18.5, 14.7, 14.3, 12.3, 8.3, -3.6, -4.1; **minor isomer:** δ 167.1, 166.0, 101.8, 99.0, 76.4, 43.9, 38.0, 29.9, 27.2, 26.2, 18.4, 15.6, 13.0, 12.5, 8.3, -3.8, -4.7; **IR** (KBr, cm⁻¹) 3155, 2963, 2931, 2889, 2858, 2702, 1655, 1590, 1457, 1408, 1369, 1294, 1255, 1155, 1124, 1065, 1043, 1021, 969, 937, 884, 861, 835, 774, 753, 675, 642, 536.

Supplementary Information for "Total Synthesis and Structural Elucidation of *ent*-Micropyrone and (+)-Ascosalipyrone by Claire Gregg and Michael V. Perkins*

6-[(1*S*,2*R*,3*S*)-2-hydroxy-1,3-dimethylpentyl]-4-hydroxy-3-methyl-2Hpyran-2-one (45) and 6-[(1*R*,2*R*,3*S*)-2-hydroxy-1,3-dimethylpentyl]-4hydroxy-3-methyl-2H-pyran-2-one (46).

The previous procedure for the preparation of **21** was used with TBS-ether (**43**) (91.8 mg; 259 µmol), 40% aq. HF (1.10 mL) and 1:1 CH₃CN/CH₂Cl₂ (13 mL). The product with triturated with acetone to give alcohol (45) (as a mixture with its C7 epimer **46**) (54.8 mg; 88%) as a white powder. **R***f* = 0.51 (100%, EtOAc); **mp**. 159-161 °C; $[\alpha]^{20}_{D}$ = +7.41 (c 2.30, MeOH); ¹H NMR (600MHz, CD₃OD) major isomer: δ 6.08 (1H, s, C(OH)CH=C(-O-)), 5.22 (1H, br s, C(CH₃)=C(OH)CH=C(-O-)), 3.65 (1H, dd, J = 7.8, 3.6 Hz, CHOH), 2.71 (1H, dq, J = 7.8, 7.2 Hz, C(-O-)CH(CH₃)CHOH), 1.85 (3H, s, C(=0)C(CH₃)=COH), 1.50-1.40 (1H, m, CH(OH)CH(CH₃)CH_AH_BCH₃), 1.34-1.28 (1H, m, CH(OH)CH(CH₃)CH₂CH₃), 1.28 $(1H, s, CHOH), 1.27 (3H, d, J = 6.6 Hz, CH(OH)CH(CH_3)CH_2CH_3), 1.26-1.20 (1H, m, M)$ $CH(OH)CH(CH_3)CH_AH_BCH_3)$, 0.89 (3H, d, J = 6.6 Hz, C(-O-)CH(CH_3)CHOH), 0.88 (3H, dd, J = 7.8, 7.2 Hz, CH₂CH₃); **minor isomer:** δ 6.06 (1H, s, C(OH)CH=C(-O-)), 5.22 (1H, br s, C(CH₃)=C(OH)CH=C(-O-)), 3.70 (1H, dd, I = 9.0, 5.4 Hz, CHOH), 2.68 (1H, dq, J = 9.6, 7.2 Hz, C(-O-)CH(CH₃)CHOH), 1.85 (3H, s, $C(=0)C(CH_3)=COH),$ 1.55 (1H, ddq, 13.8, Ι = 6.6, 3.0 Hz, CH(OH)CH(CH₃)CH_AH_BCH₃), 1.34-1.28 (1H, m, CH(OH)CH(CH₃)CH₂CH₃), 1.26-1.20 (1H, m, CH(OH)CH(CH₃)CH_A H_B CH₃), 1.15 (3H, d, J = 7.2 Hz, CH(OH)CH(CH₃)CH₂CH₃), 0.94 (3H, dd, J = 7.8, 7.2 Hz, CH₂CH₃) 0.87 (3H, d, J = 6.6 Hz, C(-O-)CH(CH₃)CHOH); ¹³C NMR (151Mz, CDCl₃) major isomer: δ 168.9, 167.8, 166.9, 101.3, 99.1, 76.2, 43.0, 38.9, 27.7, 14.9, 13.5, 11.9, 8.3; minor isomer: δ 169.3, 168.0, 167.1, 102.0, 99.1, 75.6, 43.8, 37.6, 28.0, 15.9, 12.3, 12.2, 8.3: IR (KBr, cm⁻¹) 3143, 2969, 2926, 2878, 2710, 1679, 1656, 1591, 1463, 1416, 1380, 1234, 1179, 1144, 1122, 1101, 1077, 1047, 980, 958, 935, 833, 818, 748, 717, 696, 636, 578, 534, 501.

Supplementary Information for "Total Synthesis and Structural Elucidation of *ent*-Micropyrone and (+)-Ascosalipyrone by Claire Gregg and Michael V. Perkins*

6-[(1*R*,3*S*)-1,3-dimethyl-2-oxopentyl]-4-hydroxy-3-methyl-2H-pyran-2-one (29).

The previous procedure for the preparation of **25** was used with alcohol (**45**) (45.9 mg; 191 umol), Jones reagent (330 uL) and acetone (5 mL). The crude product was triturated with hexanes to remove impurities, giving 6-[(1R,3S)-1,3dimethyl-2-oxopentyl]-4-hydroxy-3-methyl-2H-pyran-2-one (29) (23.3 mg; 51%) as a yellow powder. **R***f* = 0.57 (100% EtOAc); **mp.** 113-115 °C; $[\alpha]^{20}$ _D = -48.9 (c 1.17, MeOH); ¹H NMR (600MHz, CDCl₃) major isomer: δ 9.70 (1H, br s, C(=0)C(CH₃)=COH), 6.22 (1H, s, C(OH)CH=C(-O-)), 3.82 (1H, q, J = 7.2 Hz, C(-O- $CH(CH_3)C=0$, 2.69 (1H, ddq, J = 13.8, 7.2, 6.6 Hz, $C(=0)CH(CH_3)CH_2CH_3$), 1.95 $(3H, s, C(=0)C(CH_3)=COH), 1.68$ (1H, ddq, J = 13.8, 7.2, 7.2 Hz, $C(=0)CH(CH_3)CH_AH_BCH_3)$, 1.37 (3H, d, J = 7.2 Hz, $C(=0)CH(CH_3)CH_2CH_3)$, 1.35 (1H, ddq, J = 13.8, 7.2, 6.6 Hz, C(=O)CH(CH₃)CH_AH_BCH₃), 1.08 (3H, d, J = 6.6 Hz, C(-O-)CH(CH₃)C=O), 0.81 (3H, dd, J = 7.8, 7.2 Hz, CH₂CH₃); **minor isomer:** δ 9.70 (1H. br s, C(=O)C(CH₃)=CO*H*), 6.20 (1H, s, C(OH)C*H*=C(-O-)), 3.78 (1H, q, J = 7.2 Hz, C(-O-)CH(CH₃)C=O), 2.73-2.67 (1H, m, C(=O)CH(CH₃)CH₂CH₃), 1.95 (3H, s, C(=0)C(CH₃)=COH), 1.70-1.59 (1H, m, C(=0)CH(CH₃)CH_AH_BCH₃), 1.43-1.35 (1H, m, C(=0)CH(CH₃)CH_A H_B CH₃), 1.35 (3H, d, J = 7.2 Hz, C(=0)CH(CH₃)CH₂CH₃), 1.06 (3H, d, J = 6.6 Hz, C(-O-)CH(CH₃)C=O), 0.86 (3H, dd, J = 7.8, 7.2 Hz, CH₂CH₃); ¹³C **NMR** (151Mz, CDCl₃) **major isomer:** δ 211.5, 167.8, 166.4, 160.6, 101.8, 99.9, 49.1, 47.0, 25.8, 16.5, 14.6, 11.7, 8.3; **minor isomer:** δ 211.6, 167.8, 166.4, 160.8, 101.7, 99.9, 49.5, 47.1, 26.2, 16.0, 14.4, 11.7, 8.3; **IR** (KBr, cm⁻¹) 3410, 3106, 2971, 2934, 2879, 2664, 1713, 1665, 1634, 1578, 1561, 1457, 1272, 1242, 1179, 1141, 1097, 1056, 1035, 995, 950, 936, 869, 757, 616, 565, 531; HRESIMS calculated for C₁₃H₁₈O₄Na⁺: 261.1097; found: 261.1114.

Supplementary Information for "Total Synthesis and Structural Elucidation of *ent*-Micropyrone and (+)-Ascosalipyrone by Claire Gregg and Michael V. Perkins*

References:

- (1) Perrin, D. D., Armarego, W. L. F. *Purification of Laboratory Chemicals*; 3 ed.; Pergamon Press: Oxford, 1988.
- (2) Suffert, J. J. Org. Chem. 1989, 54, 509.
- (3) Rychnovsky, S. D.; Richardson, T. I.; Rogers, B. N. *J. Org. Chem.* **1997**, *62*, 2925.
- (4) Kinoshita, K.; Khosla, C.; Cane, D. E. *Helv. Chim. Acta* **2003**, *86*, 3889.
- (5) Dias, L. C.; Meira, P. R. R. J. Org. Chem. 2005, 70, 4762.

Table 1 X-ray cry	ystallographic	data for com	pounds 22	and 23
-------------------	----------------	--------------	-----------	--------

Compound reference	Compound 22	Compound 23
Chemical formula	$C_{14}H_{20}O_4$	$C_{14}H_{20}O_4$
Formula Mass	252.30	252.30
Crystal system	Orthorhombic	Orthorhombic
a/Å	8.8972(2)	8.1642(3)
b/Å	12.2375(3)	12.0184(5)
$c/\text{\AA}$	12.7413(3)	14.2772(5)
$\alpha/^{\circ}$	90.00	90.00
$\beta/^{\circ}$	90.00	90.00
$\gamma/^{\circ}$	90.00	90.00
Unit cell volume/Å ³	1387.27(6)	1400.89(9)
Temperature/K	150(2)	150(2)
Space group	P212121	P212121
No. of formula units per unit cell, Z	4	4
No. of reflections measured	13678	10454
No. of independent reflections	3664	3600
R _{int}	0.0272	0.0219
Final R_I values $(I > 2\sigma(I))$	0.0451	0.0374
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1149	0.0907
Final R_1 values (all data)	0.0640	0.0487
Final $wR(F^2)$ values (all data)	0.1196	0.0935

Supplementary Information for "Total Synthesis and Structural Elucidation of *ent*-Micropyrone and (+)-Ascosalipyrone by Claire Gregg and Michael V. Perkins*

Table 1. Comparison of the ¹H and ¹³C NMR data for micropyrone (1) and synthetic isomers 22 and 23.

C no.	micropyrone ^a		isomer 22 ^b			isomer 23 ^b		
	δH (m, <i>J</i> [Hz]) ^c	δC°	δH (m, <i>J</i> [Hz]) ^c	δC^{c}	$\Delta \delta^d$	δH (m, <i>J</i> [Hz]) ^c	δC°	$\Delta\delta^{d}$
1		166.2		166.3	-0.1		166.2	0.0
2		99.5		99.4	0.1		99.3	0.2
3		155.7		155.7	0.0		155.5	0.2
4		109.5		109.5	0.0		109.5	0.0
5		165.6		165.6	0.0		165.5	0.1
6	3.84 (q, 6.9)	48.2	3.83 (q, 7.2)	48.2	0.0	3.9 (q, 7.2)	47.2	1.0
7		210.5		210.7	-0.2		210.5	0.0
8	2.58 (m)	45.3	2.58 (qdd, 7.2, 6.6, 6.6)	45.3	0.0	2.54 (qdd, 7.2, 7.2, 6.6)	45.5	-0.2
9a	1.60 (m)	26.9	1.59 (dqd, 13.8, 7.2, 6.6)	26.9	0.0	1.65 (dqd, 13.8, 7.2, 7.2)	25.7	1.2
9b	1.34 (m)		1.34 (m)			1.28 (dqd, 13.8, 7.2, 6.6)		
10	0.81 (t, 6.7)	11.5	0.81 (t, 7.2)	11.6	-0.1	0.75 (t, 7.2)	11.7	-0.2
11	1.36 (d, 6.7)	16.1	1.36 (d, 7.2)	16.1	0.0	1.39 (d, 7.2)	17.4	-1.3
12	0.99 (d, 6.7)	13.3	0.98 (d, 7.2)	13.4	-0.1	1.02 (d, 7.2)	13.4	-0.1
13	2.02 (s)	8.7	2.02 (s)	8.7	0.0	2.02 (s)	8.7	0.0
14	2.00 (s)	9.9	1.99 (s)	9.9	0.0	1.99 (s)	10.0	-0.1
OH	-		8.84 (br s)			8.74 (br s)		
a	Chemical shifts and coupling constants (400 MHz) as reported in Appendino, G., Ottino, M., Marquez, N., Bianchi, F., Giana, A., Ballero. M., Sterner, O., Fiebich, B. L., Munoz, E. J. Nat. Prod. 2007, 70, 608-612.							
b	Bruker 600 MHz	Bruker 600 MHz NMR Spectrometer (CDCl ₃). Assignments assisted by ¹ H- ¹³ C HMBC, ¹ H- ¹³ C HMQC, ¹ H- ¹ H COSY, ¹ H- ¹ H TOCSY.						
c	Chemical shifts in ppm referenced to CHCl ₃ at 7.26 ppm and to CDCl ₃ at 77.00 ppm (for comparison the natural product).							

d. This is the difference in the ¹³C chemical shift of the isomer and that reported for the natural product.

_

Supplementary Information for "Total Synthesis and Structural Elucidation of *ent*-Micropyrone and (+)-Ascosalipyrone by Claire Gregg and Michael V. Perkins*

Table 2. Comparison of the ¹H and ¹³C NMR data for ascosalipyrone (2) and synthetic isomers 28 and 29.

			$\begin{array}{c} 12 & 11 \\ 0 & 1 & 0 & 5 & 6 \\ 13 & 2 & 3 & \\ 0 & H & 28 \end{array}$	0,1	$0 \xrightarrow{12}{6} \xrightarrow{1}{7}$	1 8 ⁹ 10			
C no	ascosalipyrone ^a		isomer 28 ^b		isomer 29 ^b				
C IIO.	δH (m, <i>J</i> [Hz]) ^c	δC^{c}	$\delta H (m, J[Hz])^{c}$	δC^{c}	$\Delta\delta^d$	$\delta H (m, J[Hz])^{c}$	δC^{c}	$\Delta \delta^d$	
1		167.6		167.6	0.0		167.6	0.0	
2		99.8		99.7	0.1		99.7	0.1	
3		166.2		166.3	-0.1		166.3	-0.1	
4	6.21 (s)	101.6	6.25 (s)	101.6	0.0	6.22 (s)	101.7	-0.1	
5		160.7		160.7	0.0		160.5	0.2	
6	3.77 (q, 7.0)	49.3	3.80 (q, 7.2)	49.2	0.1	3.82 (q, 7.2)	49.0	0.3	
7		211.5		211.5	0.0		211.4	0.2	
8	2.68 (m)	47.1	2.70 (dqd, 7.5, 7.2, 6.6)	47.0	0.1	2.69 (dqd, 7.2, 7.2, 6.6)	46.9	0.2	
9a	1.69 (m)	26.1	1.67 (dqd, 13.8, 7.5, 6.6)	26.0	0.1	1.68 (dqd, 13.8, 7.5, 7.2)	25.6	0.5	
9b	1.38 (m)		1.38 (m)			1.35 (dqd, 13.8, 7.5, 6.6)			
10	0.82 (t, 7.3)	11.6	0.85 (t, 7.5)	11.6	0.0	0.81 (t, 7.5)	11.5	0.1	
11	1.38 (d, 7.2)	15.9	1.36 (d, 7.2)	15.9	0.1	1.37 (d, 7.2)	16.3	-0.4	
12	1.05 (d, 7.0)	14.4	1.05 (d, 6.6)	14.3	0.1	1.07 (d, 6.6)	14.4	0.0	
13	1.94 (s)	8.2	1.94 (s)	8.2	0.0	1.94 (s)	8.2	0.0	
ОН	9.7 (br s)		9.91 (br s)			9.69 (br s)			
a	Chemical shifts and coupling constants (300 MHz) as reported in Osterhage, C., Kaminsky, R., König, G. M., Wright, A. D. J. Org. Chem. 2000, 65, 6412-6417.								
b	Bruker 600 MH	Bruker 600 MHz NMR Spectrometer (CDCl ₃). Assignments assisted by ¹ H- ¹³ C HMBC, ¹ H- ¹³ C HMQC, ¹ H- ¹ H COSY, ¹ H- ¹ H TOCSY.							
с	Chemical shifts	Chemical shifts in ppm referenced to CHCl ₃ at 7.26 ppm and to CDCl ₃ at 77.00 ppm (for comparison the natural product).							
		13~ .							

d. The difference in the ¹³C chemical shift of the isomer and that reported for the natural product.

Supplementary Information for "Total Synthesis and Structural Elucidation of ent-Micropyrone and (+)-Ascosalipyrone by Claire Gregg and Michael V. Perkins*

37

Supplementary Information for "Total Synthesis and Structural Elucidation of ent-Micropyrone and (+)-Ascosalipyrone by Claire Gregg and Michael V. Perkins*

45

300 MHz ¹H NMR spectrum of authentic ascosalipyrone in CDCl₃ (Osterhage, C., Kaminsky, R., Konig, G. M., Wright, A. D. *J. Org. Chem.* **2000**, *65*, 6412-6417).

75.5 MHz ¹³C NMR spectrum of authentic ascosalipyrone in CDCl₃ (Osterhage, C., Kaminsky, R., Konig, G. M., Wright, A. D. J. Org. Chem. **2000**, *65*, 6412-6417.)