Supplementary Information

Redesign of enzyme for improving catalytic activity and enantioselectivity toward poor substrates: manipulation of the transition state

Tadashi Ema,* Yasuko Nakano, Daiki Yoshida, Shusuke Kamata and Takashi Sakai Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan

[A] Methods	S2
[B] Site-directed mutagenesis	-S2
[C] Synthesis of racemic alcohols	S2
[D] Determination of enantiomeric purities and absolute configurations	S 6
[E] Lipase-catalyzed kinetic resolution	·S7
[F] NMR spectra	S14

[A] Methods.

All the DNA manipulations and bacterial transformation were carried out according to the standard protocols¹ or manufacturers' instructions unless otherwise stated. The computational design, overexpression, refolding, purification, and immobilization of the recombinant lipases were done as reported previously.^{2,3} The method for the determination of kinetic constants has been reported.³ Racemic alcohols **1a–d** were synthesized as described previously,³ while **1n–q** were purchased.

[B] Site-directed mutagenesis.

The mutations were introduced by the overlap-extension PCR method as reported previously.^{2,3} The mutagenic oligonucleotides used as primers and the plasmids used as templates are shown in Table S1.

	1	8		
Mutant	Primer	Sequence	Template	
I287F	BC-I287F-1F	5'-CTACAAGTGGAACCAT <u>TTC</u> GACGAG-3'	pELIP	
	BC-I287F-2R	5'-CTCGTC <u>GAA</u> ATGGTTCCACTTGTAG-3'		
I287A	BC-I287A-1F	5'-CTACAAGTGGAACCAT <u>GCC</u> GACGAG-3'	pEI ID	
	BC-I287A-2R	I287A-2R 5'-CTCGTC <u>GGC</u> ATGGTTCCACTTGTAG-3'		
I287W	BC-I287W-1F	5'-CTACAAGTGGAACCAT <u>TGG</u> GACGAG-3'	nEL ID	
	BC-I287W-2R	5'-CTCGTC <u>CCA</u> ATGGTTCCACTTGTAG-3'	PELIF	
I287Y	BC-I287Y-1F	5'-GTGGAACCAT <u>TAC</u> GACGAG-3'	"EL ID	
	BC-I287Y-3R	5'-CTCGTC <u>GTA</u> ATGGTTCCACTTGTAG-3'	PELIP	
1200 4	BC-I290A-1F	5'-GACGAG <u>GCC</u> AACCAGTTGC-3'	pELIP	
1290A	BC-I290A-3R	5'-CAACTGGTT <u>GGC</u> CTCGTCG-3'		
I287F/I290A	BC-I290A-1F	5'-GACGAG <u>GCC</u> AACCAGTTGC-3'		
	BC-I290A-3R	5'-CAACTGGTT <u>GGC</u> CTCGTCG-3'	pelip(128/F)	
I287F/I290F	BC-I290F-1F	5'-CGACGAG <u>TTC</u> AACCAGTTGC-3'		
	BC-I290F-2R	5'-GCAACTGGTT <u>GAA</u> CTCGTCG-3'	pelip(1207F)	
I287F/I290A/	BC-Q292A-1F	5'-CAAC <u>GCG</u> TTGCTTGG-3'	pELIP(I287F/	
Q292A	BC-Q292A-3R	5'-AAGCAA <u>CGC</u> GTTGGCCTC-3'	I290A)	

 Table S1
 Primers and templates used for site-directed mutagenesis

[C] Synthesis of racemic alcohols.

2-Methoxymethoxy-1-phenylethanol (1e).⁴ To a solution of 2-methoxymethoxy-1-phenylethanone ⁵ (1.68 g, 9.32 mmol) in dry EtOH (20 mL) was added NaBH₄ (177 mg, 4.67 mmol) in an ice bath. The mixture was stirred at room temperature overnight. The solution was adjusted to pH 6. After EtOH had been removed under reduced pressure, brine (9 mL) was added. The solution was neutralized, and the product was extracted with EtOAc (15 mL × 3). The mixture was dried over MgSO₄, and concentrated. The product was purified by silica gel column chromatography (hexane/EtOAc (3:1)) to afford **1e** as a colorless oil (1.23 g, 72%): ¹H NMR (CDCl₃, 400 MHz) δ 3.04 (d, *J* = 2.6 Hz, 1H), 3.39 (s, 3H), 3.59 (dd, *J* = 8.7, 10.7 Hz, 1H), 3.79 (dd, *J* = 3.1, 10.6 Hz, 1H), 4.70 (d, *J* = 6.6 Hz, 1H), 4.72 (d, *J* = 6.6 Hz, 1H), 4.89–4.92 (m, 1H), 7.28–7.41 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 55.4, 72.9, 74.1, 96.8, 126.1, 127.7, 128.3, 140.3; IR (neat) 3433, 3063, 3032, 2932, 2889, 2824, 2781, 1605, 1493, 1454, 1404, 1327, 1211, 1034, 918, 829, 760, 702 cm⁻¹;

HRMS (EI) calcd for $C_{10}H_{14}O_3$ 182.0943, found 182.0943 (M⁺).

1-Phenyl-5-hexen-1-ol (1f).⁶ To a mixture of Mg (260 mg, 10.7 mmol) in dry THF (3 mL) under Ar was added dropwise a solution of 5-bromo-1-pentene (1.1 mL, 9.5 mmol) and Br(CH₂)₂Br (a few drops) in dry THF (7 mL) over 30 min at room temperature. The mixture was stirred for 2 h. To the slurry was added dropwise a solution of benzaldehyde (0.91 mL, 9.0 mmol) in dry THF (5 mL) over 8 min in an ice bath, and the mixture was stirred at room temperature overnight. The reaction was quenched with saturated aqueous NH₄Cl, and the solution was adjusted to pH 4. The mixture was extracted with EtOAc (10 mL × 4), dried over MgSO₄, and concentrated. The product was purified by silica gel column chromatography (hexane/EtOAc (5:1)) to afford **1f** as a colorless oil (1.39 g, 88%): ¹H NMR (CDCl₃, 400 MHz) δ 1.36–1.42 (m, 1H), 1.50–1.57 (m, 1H), 1.70–1.83 (m, 3H), 2.05–2.11 (m, 2H), 4.66–4.71 (m, 1H), 4.93–5.02 (m, 2H), 5.73–5.83 (m, 1H), 7.28–7.35 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 25.0, 33.5, 38.4, 74.4, 114.6, 125.8, 127.5, 128.4, 138.5, 144.8; IR (neat) 3348, 3063, 3028, 2977, 2936, 2858, 1639, 1605, 1493, 1454, 1416, 1277, 1200, 995, 910, 760, 702 cm⁻¹; HRMS (EI) calcd for C₁₂H₁₆O 176.1201, found 176.1186 (M⁺).

5-Methoxymethoxy-1-phenyl-1-pentanol (1g). To a mixture of Mg (205 mg, 8.43 mmol) in dry THF (3 mL) under Ar was added dropwise a solution of 1-bromo-4-methoxymethoxybutane⁷ (1.54 g, 7.81 mmol) and Br(CH₂)₂Br (a few drops) in dry THF (7 mL) over 20 min at room temperature. The mixture was stirred for 2 h. To the slurry was added dropwise a solution of benzaldehyde (0.81 mL, 8.0 mmol) in dry THF (5 mL) over 10 min in an ice bath, and the mixture was stirred at room temperature for 3 h. The reaction was quenched with saturated aqueous NH₄Cl, and the solution was adjusted to pH 7. The mixture was extracted with EtOAc (15 mL × 4), dried over MgSO₄, and concentrated. The product was purified by silica gel column chromatography (CH₂Cl₂/THF (20:1)) to afford **1g** as a colorless oil (1.14 g, 65%): ¹H NMR (CDCl₃, 400 MHz) δ 1.35–1.43 (m, 1H), 1.48–1.57 (m, 1H), 1.60–1.67 (m, 2H), 1.70–1.86 (m, 3H), 3.34 (s, 3H), 3.51 (t, *J* = 6.5 Hz, 2H), 4.60 (s, 2H), 4.67–4.71 (m, 1H), 7.27–7.35 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 22.4, 29.4, 38.7, 55.0, 67.5, 74.3, 96.2, 125.8, 127.4, 128.3, 144.8; IR (neat) 3433, 3063, 3028, 2939, 2870, 1493, 1454, 1389, 1308, 1211, 1146, 1111, 1042, 918, 760, 702 cm⁻¹; HRMS (EI) calcd for C₁₃H₂₀O₃ 224.1412, found 224.1399 (M⁺).

1,6-Diphenyl-1-hexanol (1h). To a mixture of Mg (256 mg, 10.5 mmol) in dry THF (3 mL) under Ar was added dropwise a solution of (5-bromopentyl)benzene (1.9 mL, 10 mmol) and Br(CH₂)₂Br (a few drops) in dry THF (7 mL) over 30 min at room temperature. The mixture was stirred for 2 h. To the slurry was added dropwise a solution of benzaldehyde (0.92 mL, 9.1 mmol) in dry THF (5 mL) over 12 min in an ice bath, and the mixture was stirred at room temperature for 2.5 h. The reaction was quenched with saturated aqueous NH₄Cl, and the solution was adjusted to pH 4. The mixture was extracted with EtOAc (15 mL × 4), dried over MgSO₄, and concentrated. The product was purified by silica gel column chromatography (hexane/EtOAc/CH₂Cl₂ (20:1:5) to (10:1:5)) to afford **1h** as a colorless oil (1.24 g, 54%): ¹H NMR (CDCl₃, 400 MHz) δ 1.31–1.48 (m, 4H), 1.57–1.65 (m, 2H), 1.67–1.82 (m, 3H), 2.58 (t, *J* = 7.6 Hz, 2H), 4.64–4.68 (m, 1H), 7.14–7.18 (m, 3H) 7.25–7.37 (m, 7H); ¹³C NMR (CDCl₃, 100 MHz) δ 25.6, 29.1, 31.3, 35.8, 38.9, 74.5, 125.5, 125.8, 127.4, 128.2, 128.3, 128.4, 142.6, 144.8; IR (neat) 3352, 3063, 3028, 2932, 2855, 1948, 1605, 1493, 1454, 1312, 1200, 1030, 910, 748, 698 cm⁻¹; HRMS (EI) calcd for $C_{18}H_{22}O$ 254.1671, found 254.1680 (M⁺).

5-Methyl-1-phenyl-1-hexanol (1i).⁸ To a mixture of Mg (269 mg, 11.1 mmol) in dry THF (3 mL) under Ar was added dropwise a solution of 1-bromo-4-methylpentane (1.6 mL, 11 mmol) and Br(CH₂)₂Br (a few drops) in dry THF (7 mL) over 30 min at room temperature. The mixture was stirred for 2.5 h. To the slurry was added dropwise a solution of benzaldehyde (1.1 mL, 10 mmol) in dry THF (5 mL) over 15 min in an ice bath, and the mixture was stirred at room temperature for 3 h. The reaction was quenched with saturated aqueous NH₄Cl, and the solution was adjusted to pH 4. The mixture was extracted with EtOAc (20 mL × 3), dried over MgSO₄, and concentrated. The product was purified by silica gel column chromatography (hexane/EtOAc (7:1)) to afford **1i** as a colorless oil (1.06 g, 53%): ¹H NMR (CDCl₃, 400 MHz) δ 0.85 (d, *J* = 6.6 Hz, 6H), 1.16–1.22 (m, 2H), 1.24–1.31 (m, 1H), 1.39–1.47 (m, 1H), 1.49–1.54 (m, 1H), 1.64–1.82 (m, 3H), 4.66–4.69 (m, 1H), 7.27–7.35 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 22.5, 22.6, 23.6, 27.8, 38.8, 39.3, 74.6, 125.8, 127.4, 128.4, 144.9; IR (neat) 3348, 3028, 2870, 1605, 1493, 1454, 1385, 1366, 1200, 1126, 1045, 760, 702, 552 cm⁻¹; HRMS (EI) calcd for C₁₃H₂₀O 192.1514, found 192.1513 (M⁺).

1-(4-Trifluoromethylphenyl)-1-hexanol (1j).⁹ To a mixture of Mg (243 mg, 10.0 mmol) in dry THF (3 mL) under Ar was added dropwise a solution of 1-bromopentane (1.2 mL, 9.7 mmol) and Br(CH₂)₂Br (a few drops) in dry THF (7 mL) over 20 min at room temperature. The mixture was stirred for 2.5 h. To the slurry was added dropwise a solution of 4-trifluoromethylbenzaldehyde (1.3 mL, 9.7 mmol) in dry THF (5 mL) over 10 min in an ice bath, and the mixture was stirred at room temperature for 5 h. The reaction was quenched with saturated aqueous NH₄Cl, and the solution was adjusted to pH 4. The mixture was extracted with EtOAc (15 mL × 3), dried over MgSO₄, and concentrated. The product was purified by silica gel column chromatography (hexane/EtOAc (5:1)) to afford **1j** as a colorless oil (1.22 g, 51%): ¹H NMR (CDCl₃, 400 MHz) δ 0.86–0.89 (m, 3H), 1.29–1.46 (m, 6H), 1.65–1.80 (m, 2H), 1.89 (d, *J* = 3.4 Hz, 1H), 4.73–4.77 (m, 1H), 7.46 (d, *J* = 8.1 Hz, 2H), 7.60 (d, *J* = 8.1 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 13.9, 22.5, 25.3, 31.6, 39.1, 74.0, 124.2 (q, *J*_{CF} = 270.2 Hz), 125.3 (q, *J*_{CF} = 3.8 Hz), 126.1, 129.5 (q, *J*_{CF} = 34.1 Hz), 148.8; ¹⁹F NMR (CDCl₃, 376 MHz) δ –63.6 (s, 3F); IR (neat) 3341, 2959, 2932, 2862, 1921, 1682, 1620, 1466, 1420, 1327, 1126, 1069, 1018, 840 cm⁻¹; HRMS (EI) calcd for C₁₃H₁₇F₃O 246.1231, found 246.1227 (M⁺).

1-(4-Methoxylphenyl)-1-hexanol (**1k**).¹⁰ To a mixture of Mg (294 mg, 12.1 mmol) in dry THF (3 mL) under Ar was added dropwise a solution of 1-bromopentane (1.5 mL, 12 mmol) and Br(CH₂)₂Br (a few drops) in dry THF (7 mL) over 20 min at room temperature. The mixture was stirred for 2 h. To the slurry was added dropwise a solution of 4-methoxybenzaldehyde (1.3 mL, 11 mmol) in dry THF (5 mL) over 10 min in an ice bath, and the mixture was stirred at room temperature overnight. The reaction was quenched with saturated aqueous NH₄Cl, and the solution was adjusted to pH 4. The mixture was extracted with EtOAc (15 mL × 3), dried over MgSO₄, and concentrated. The product was purified by silica gel column chromatography (hexane/EtOAc (5:1)) to afford **1k** as a colorless oil (1.88 g, 85%): ¹H NMR (CDCl₃, 400 MHz) δ 0.87 (t, *J* = 7.0 Hz, 3H), 1.28–1.42 (m, 6H), 1.66–1.70 (m, 1H), 1.72 (d, *J* = 3.2 Hz, 1H), 1.75–1.84 (m, 1H), 3.81 (s, 3H), 4.59–4.63 (m, 1H), 6.86–6.90 (m, 2H), 7.25–7.29 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.0,

22.5, 25.5, 31.7, 38.9, 55.2, 74.2, 113.7, 127.1, 137.1, 158.9; IR (neat) 3368, 2997, 2955, 2932, 2858, 1612, 1585, 1512, 1462, 1300, 1250, 1177, 1115, 1038, 926, 833, 733 cm⁻¹; HRMS (EI) calcd for $C_{13}H_{20}O_2$ 208.1463, found 208.1452 (M⁺).

1-(3-Methoxymethoxyphenyl)-1-hexanol (11).¹¹ To a mixture of Mg (258 mg, 10.6 mmol) in dry THF (3 mL) under Ar was added dropwise a solution of 1-bromopentane (1.3 mL, 11 mmol) and Br(CH₂)₂Br (a few drops) in dry THF (7 mL) over 20 min at room temperature. The mixture was stirred for 2.5 h. To the slurry was added dropwise a solution of 3-methoxymethoxybenzaldehyde (1.51 g, 9.09 mmol) in dry THF (5 mL) over 10 min in an ice bath, and the mixture was stirred at room temperature for 4 h. The reaction was quenched with saturated aqueous NH₄Cl, and the solution was adjusted to pH 7. The mixture was extracted with EtOAc (15 mL × 4), dried over MgSO₄, and concentrated. The product was purified by silica gel column chromatography (hexane/EtOAc (3:1)) to afford **11** as a colorless oil (1.50 g, 70%): ¹H NMR (CDCl₃, 400 MHz) δ 0.86–0.89 (m, 3H), 1.29–1.47 (m, 6H), 1.66–1.81 (m, 3H), 3.48 (s, 3H), 4.62–4.66 (m, 1H), 5.18 (s, 2H), 6.94–7.03 (m, 3H), 7.24–7.28 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.0, 22.5, 25.4, 31.6, 38.9, 55.9, 74.3, 94.3, 113.8, 115.0, 119.4, 129.3, 146.8, 157.2; IR (neat) 3410, 2955, 2932, 2858, 1589, 1485, 1454, 1246, 1153, 1080, 1018, 926, 791, 702 cm⁻¹; HRMS (EI) calcd for C₁₄H₂₂O₃ 238.1569, found 238.1556 (M⁺).

1-(2-Naphthyl)-1-hexanol (1m).¹⁰ To a mixture of Mg (244 mg, 10.0 mmol) in dry THF (3 mL) under Ar was added dropwise a solution of 1-bromopentane (1.2 mL, 9.7 mmol) and Br(CH₂)₂Br (a few drops) in dry THF (7 mL) over 25 min at room temperature. The mixture was stirred for 2.5 h. To the slurry was added dropwise a solution of 2-naphthaldehyde (1.40 g, 8.96 mmol) in dry THF (5 mL) over 10 min in an ice bath, and the mixture was stirred at room temperature for 4 h. The reaction was quenched with saturated aqueous NH₄Cl, and the solution was adjusted to pH 4. The mixture was extracted with EtOAc (15 mL × 4), dried over MgSO₄, and concentrated. The product was purified by silica gel column chromatography (hexane/EtOAc (4:1)) to afford **1m** as a white solid (1.65 g, 82%): mp 57–58 °C; ¹H NMR (CDCl₃, 400 MHz) δ 0.85–0.89 (m, 3H), 1.27–1.35 (m, 5H), 1.40–1.49 (m, 1H), 1.76–1.92 (m, 3H), 4.82–4.86 (m, 1H), 7.44–7.50 (m, 3H), 7.78–7.85 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.0, 22.6, 25.5, 31.7, 38.9, 74.8, 124.1, 124.6, 125.7, 126.1, 127.6, 127.9, 128.2, 132.9, 133.2, 142.2; IR (KBr) 3271, 3055, 3020, 2955, 2928, 2855, 1601, 1466, 1369, 1315, 1173, 1103, 1034, 895, 860, 826, 748 cm⁻¹; Anal. Calcd for C₁₆H₂₀O: C, 84.16; H, 8.83. Found: C, 84.40; H, 8.97; HRMS (EI) calcd for C₁₆H₂₀O 228.1514, found 228.1514 (M⁺).

[D] Determination of enantiomeric purities and absolute configurations.

The enantiomeric purities of **1a–f**, **1h–p**, and **2e–p** were determined by HPLC using chiral columns (Daicel Chemical Industries), and those of 2a-d and 1g were determined after conversion to the corresponding alcohols and acetate, respectively. Those of 1q and 2q were determined by chiral GC. HPLC for 1a: Chiralcel OB-H, hexane/i-PrOH = 9:1, 0.5 mL/min, 254 nm, (S) 10.6 min, (R) 12.2 min. HPLC for **1b**: Chiralcel OD-H, hexane/*i*-PrOH = 98:2, 0.5 mL/min, 254 nm, (R) 29.3 min, (S) 35.3 min. HPLC for 1c: Chiralcel OB-H, hexane/i-PrOH = 9:1, 0.5 mL/min, 254 nm, (S) 12.2 min, (R) 14.3 min. HPLC for 1d: Chiralcel OB-H, hexane/*i*-PrOH = 98:2, 0.5 mL/min, 254 nm, (S) 15.1 min, (R) 29.9 min. HPLC for 1e: Chiralpak IC, hexane/i-PrOH = 9:1, 0.5 mL/min, 254 nm, (R) 17.6 min, (S) 22.8 min. HPLC for 2e: Chiralpak IC, hexane/i-PrOH = 20:1, 0.5 mL/min, 254 nm, (S) 19.7 min, (R) 21.7 min. HPLC for 1f: Chiralpak IC, hexane/i-PrOH = 100:1, 0.5 mL/min, 254 nm, (R) 29.7 min, (S) 31.3 min. HPLC for 2f: Chiralpak IC, hexane/*i*-PrOH = 100:1, 0.5 mL/min, 254 nm, (R) 13.8 min, (S) 17.2 min. HPLC for 2g: Chiralpak IA, hexane/i-PrOH = 200:1, 0.5 mL/min, 254 nm, (S) 27.5 min, (R) 30.4 min. HPLC for **1h**: Chiralpak IA, hexane/*i*-PrOH = 98:2, 0.5 mL/min, 254 nm, (S) 47.3 min, (R) 49.1 min. HPLC for **2h**: Chiralpak IC, hexane/*i*-PrOH = 98:2, 0.5 mL/min, 254 nm, (R) 16.5 min, (S) 21.7 min. HPLC for 1i: Chiralpak IC, hexane/i-PrOH = 200:1, 0.5 mL/min, 254 nm, (R) 42.2 min, (S) 45.4 min. HPLC for 2i: Chiralpak IC, hexane/i-PrOH = 100:1, 0.5 mL/min, 254 nm, (R) 14.5 min, (S) 17.4 min. HPLC for 1j: Chiralpak IC, hexane/*i*-PrOH = 100:1, 0.5 mL/min, 254 nm, (R) 24.1 min, (S) 29.3 min. HPLC for 2j: Chiralpak IA, hexane/*i*-PrOH = 30:1, 0.5 mL/min, 254 nm, (R) 9.1 min, (S) 10.2 min. HPLC for **1k**: Chiralcel OB-H, hexane/*i*-PrOH = 9:1, 0.5 mL/min, 254 nm, (S) 24.6 min, (R) 28.2 min. HPLC for 2k: Chiralpak IA, hexane/i-PrOH = 30:1, 0.5 mL/min, 254 nm, (R) 10.5 min, (S) 12.1 min. HPLC for 11: Chiralpak IC, hexane/i-PrOH = 98:2, 0.5 mL/min, 254 nm, (S) 45.1 min, (R) 47.9 min. HPLC for 21: Chiralpak IC, hexane/i-PrOH = 9:1, 0.5 mL/min, 254 nm, (R) 11.1 min, (S) 12.3 min. HPLC for 1m: Chiralpak IB, hexane/i-PrOH = 20:1, 0.5 mL/min, 254 nm, (S) 23.5 min, (R) 25.3 min. HPLC for **2m**: Chiralpak IB, hexane/*i*-PrOH = 98:2, 0.5 mL/min, 254 nm, (*R*) 10.0 min, (*S*) 11.2 min. HPLC for **1n**: Chiralcel OD-H, hexane/*i*-PrOH = 98:2, 1.0 mL/min, 254 nm, (R) 11.8 min, (S) 13.7 min. HPLC for **2n**: Chiralcel OB-H, hexane/*i*-PrOH = 97:3, 0.5 mL/min, 254 nm, (S) 10.0 min, (R) 12.3 min. HPLC for 10: Chiralpak IC, hexane/*i*-PrOH = 100:1, 0.5 mL/min, 254 nm, (R) 25.4 min, (S) 27.0 min. HPLC for **20**: Chiralpak IC, hexane/*i*-PrOH = 20:1, 0.5 mL/min, 254 nm, (R) 9.7 min, (S) 10.5 min. HPLC for 1p: Chiralcel OD-H, hexane/i-PrOH = 99:1, 0.5 mL/min, 254 nm, (R) 45.8 min, (S) 59.5 min. HPLC for 2p: Chiralcel OD-H, hexane/*i*-PrOH = 99:1, 0.5 mL/min, 254 nm, (R) 11.2 min, (S) 12.2 min. GC for 1q: Inj. 250 °C, Col. 95 °C, Det. 220 °C, (R) 29.3 min, (S) 32.0 min. GC for 2q: Inj. 250 °C, Col. 95 °C, Det. 220 °C, (S) 24.9 min, (R) 27.7 min. The absolute configurations of 1a, 1b, 1e, 1f, 1k, and 1m-q were determined by comparison with the signs of the reported optical rotation, and those of 1c, 1d, 1g-j, and 1l were determined by the Mosher method with MTPA.12

[E] Lipase-catalyzed kinetic resolution.

General procedure. A mixture of alcohol **1** (0.50 mmol), immobilized lipase (700 mg for **1a–e** and 200 mg for **1f–q**, 0.5% (w/w) enzyme/Toyonite-200M), and molecular sieves 3A (three pieces) in dry *i*-Pr₂O (5.0 mL) in a test tube with a rubber septum was stirred at 30 °C for 30 min. The reaction was started by addition of vinyl acetate (93 μ L, 1.0 mmol) via a syringe. The progress of the reaction was monitored by TLC. The reaction was stopped by filtration at an appropriate conversion, and the filtrate was concentrated under reduced pressure. Alcohol **1** and ester **2** were separated by silica gel column chromatography.

Kinetic resolution of 1-phenyl-1-hexanol (1a). (*S*)-1a: Colorless oil; $[\alpha]_{D}^{35}$ –6.4 (*c* 1.18, CHCl₃), 18.2% ee, lit.¹³ $[\alpha]_{D}^{28}$ +35.3 (*c* 1.04, CHCl₃) for (*R*)-1a with 94% ee. (*R*)-2a:¹⁴ Colorless oil; $[\alpha]_{D}^{34}$ +44.1 (*c* 0.673, CHCl₃), 61.3% ee; ¹H NMR (CDCl₃, 600 MHz) δ 0.86 (t, *J* = 7.1 Hz, 3H), 1.22–1.32 (m, 6H), 1.73–1.78 (m, 1H), 1.86–1.91 (m, 1H), 2.07 (s, 3H), 5.72 (dd, *J* = 6.5, 7.6 Hz, 1H), 7.27–7.35 (m, 5H).

Kinetic resolution of 1-phenyl-1-heptanol (1b). (*S*)-**1b**: Colorless oil; $[\alpha]_{D}^{23}$ -16.1 (*c* 1.05, CHCl₃), 44.9% ee, lit.¹³ $[\alpha]_{D}^{30}$ +32.0 (*c* 1.02, CHCl₃) for (*R*)-**1b** with 93% ee. (*R*)-**2b**:¹⁴ Colorless oil; $[\alpha]_{D}^{23}$ +48.1 (*c* 1.19, CHCl₃), 70.8% ee; ¹H NMR (CDCl₃, 600 MHz) δ 0.86 (t, *J* = 7.0 Hz, 3H), 1.21–1.31 (m, 8H), 1.74–1.78 (m, 1H), 1.87–1.91 (m, 1H), 2.07 (s, 3H), 5.72 (dd, *J* = 6.5, 7.5 Hz, 1H), 7.27–7.35 (m, 5H).

Kinetic resolution of 6,6,6-trifluoro-1-phenyl-1-hexanol (1c). (*S*)-**1c**: Colorless oil; $[\alpha]_{D}^{35}$ –17.0 (*c* 1.07, CHCl₃), 41.5% ee. (*R*)-**2c**: Colorless oil; $[\alpha]_{D}^{34}$ +48.2 (*c* 1.22, CHCl₃), 80.8% ee; ¹H NMR (CDCl₃, 600 MHz) δ 1.29–1.33 (m, 1H), 1.39–1.43 (m, 1H), 1.54–1.59 (m, 2H), 1.76–1.82 (m, 1H), 1.90–1.96 (m, 1H), 2.00–2.06 (m, 2H), 2.07 (s, 3H), 5.73 (dd, *J* = 6.4, 7.4 Hz, 1H), 7.28–7.36 (m, 5H); ¹³C NMR (CDCl₃, 150 MHz) δ 21.2, 21.6 (q, *J*_{CF} = 3.1 Hz), 24.6, 33.5 (q, *J*_{CF} = 28.3 Hz), 35.9, 75.7, 126.4, 127.0 (q, *J*_{CF} = 275.0 Hz), 128.0, 128.5, 140.3, 170.3; ¹⁹F NMR (CDCl₃, 565 MHz) δ –67.5 (t, *J*_{FH} = 11.0 Hz, 3F); IR (neat) 3034, 2949, 2874, 1736, 1497, 1437, 1375, 1240, 1140, 1040, 837, 761, 700 cm⁻¹; HRMS (EI) calcd for C₁₄H₁₇F₃O₂ 274.1181, found 274.1179 (M⁺).

Kinetic resolution of 4,4,5,5,6,6,6-heptafluoro-1-phenyl-1-hexanol (1d). (*S*)-1d: White solid; $[\alpha]^{27}_{D}$ –4.5 (*c* 0.97, CHCl₃), 18.6% ee. (*R*)-2d: Colorless oil; ¹H NMR (CDCl₃, 600 MHz) δ 2.04–2.21 (m, 4H), 2.12 (s, 3H), 5.79 (dd, *J* = 4.8, 7.8 Hz, 1H), 7.31–7.39 (m, 5H); ¹³C NMR (CDCl₃, 150 MHz) δ 21.0, 27.02 (t, *J*_{CF} = 21.8 Hz), 27.04 (t, *J*_{CF} = 3.5 Hz), 74.4 (t, *J*_{CF} = 10.9 Hz), 108.7 (t of sextet, *J*_{CF} = 36.5, 262.1 Hz), 117.4 (tt, *J*_{CF} = 31.2, 251.8 Hz), 117.8 (qt, *J*_{CF} = 33.7, 285.7 Hz), 126.2, 128.4, 128.7, 139.2, 170.1; ¹⁹F NMR (CDCl₃, 565 MHz) δ –128.8 (s, 2F), –116.4 (m, 2F), –81.8 (t, *J* = 9.3 Hz, 3F); IR (neat) 3068, 3037, 2951, 1747, 1454, 1354, 1227, 1173, 1115, 1026, 702 cm⁻¹; HRMS (EI) calcd for C₁₄H₁₃F₇O₂ 346.0804, found 346.0810 (M⁺).

Kinetic resolution of 2-methoxymethoxy-1-phenylethanol (1e). (*R*)-1e: Colorless oil; $[\alpha]_{D}^{25}$ -37.3 (*c* 1.03, CHCl₃), 73.7% ee, lit.¹⁵ $[\alpha]_{D}^{22}$ +24.9 (*c* 4.25, cyclohexane) for (*S*)-1e with 70% ee. (*S*)-2e:⁴ Colorless oil; $[\alpha]_{D}^{25}$ +74.8 (*c* 1.05, CHCl₃), 99.2% ee; ¹H NMR (CDCl₃, 400 MHz) δ 2.12 (s, 3H), 3.30 (s, 3H), 3.75 (dd, *J* = 4.0, 11.0 Hz, 1H), 3.85 (dd, *J* = 7.9, 11.0 Hz, 1H), 4.62 (d, *J* = 6.7

Hz, 1H), 4.64 (d, J = 6.7 Hz, 1H), 5.96 (dd, J = 4.0, 7.9 Hz, 1H), 7.30–7.38 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 21.1, 55.2, 69.9, 74.5, 96.3, 126.7, 128.3, 128.4, 137.4, 170.1; IR (neat) 3036, 2939, 2889, 1739, 1497, 1454, 1373, 1234, 1153, 1111, 1042, 949, 918, 860, 760, 702 cm⁻¹; HRMS (EI) calcd for C₁₂H₁₇O₄ 225.1127, found 225.1111 ([M + H]⁺).

Kinetic resolution of 1-phenyl-5-hexen-1-ol (1f). (*S*)-**1f**: Colorless oil; $[\alpha]_{D}^{30}$ –28.0 (*c* 0.976, CHCl₃), 64.0% ee, lit.¹⁶ $[\alpha]_{D}$ –35.1 (*c* 1.74, CHCl₃) for (*S*)-**1f** with 92% ee. (*R*)-**2f**: Colorless oil; $[\alpha]_{D}^{30}$ +69.8 (*c* 0.979, CHCl₃), 98.9% ee; ¹H NMR (CDCl₃, 400 MHz) δ 1.31–1.37 (m, 1H), 1.38–1.48 (m, 1H), 1.73–1.82 (m, 1H), 1.87–1.96 (m, 1H), 2.06 (q, *J* = 7.2 Hz, 2H), 2.07 (s, 3H), 4.93–5.01 (m, 2H), 5.70–5.80 (m, 2H), 7.28–7.36 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 21.2, 24.7, 33.3, 35.7, 75.9, 114.8, 126.4, 127.8, 128.4, 138.2, 140.7, 170.3; IR (neat) 3067, 3036, 2939, 2862, 1736, 1373, 1238, 1022, 910, 760, 698 cm⁻¹; HRMS (EI) calcd for C₁₄H₁₈O₂ 218.1307, found 218.1298 (M⁺).

Kinetic resolution of 5-methoxymethoxy-1-phenyl-1-pentanol (1g). (*S*)-**1g**: Colorless oil; $[\alpha]_{D}^{29}$ –28.6 (*c* 1.07, CHCl₃), 83.2% ee. (*R*)-**2g**: Colorless oil; $[\alpha]_{D}^{35}$ +58.1 (*c* 1.05, CHCl₃), 96.4% ee; ¹H NMR (CDCl₃, 400 MHz) δ 1.29–1.34 (m, 1H), 1.39–1.45 (m, 1H), 1.57–1.64 (m, 2H), 1.77–1.83 (m, 1H), 1.89–1.95 (m, 1H), 2.07 (s, 3H), 3.33 (s, 3H), 3.49 (t, *J* = 6.6 Hz, 2H), 4.59 (s, 2H), 5.73 (dd, *J* = 6.3, 7.6 Hz, 1H), 7.28–7.36 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 21.2, 22.2, 29.3, 36.0, 55.0, 67.3, 75.9, 96.3, 126.4, 127.8, 128.3, 140.6, 170.3; IR (neat) 3065, 3034, 2941, 2870, 1738, 1456, 1373, 1240, 1150, 1111, 1047, 918, 762, 700 cm⁻¹; HRMS (EI) calcd for C₁₅H₂₂O₄ 266.1518, found 266.1505 (M⁺).

Kinetic resolution of 1,6-diphenyl-1-hexanol (1h). (*S*)-**1h**: Colorless oil; $[\alpha]_{0}^{20}$ –15.7 (*c* 1.03, CHCl₃), 69.1% ee. (*R*)-**2h**: Colorless oil; $[\alpha]_{0}^{19}$ +51.8 (*c* 1.04, CHCl₃), >99.5% ee; ¹H NMR (CDCl₃, 400 MHz) δ 1.25–1.36 (m, 4H), 1.57–1.60 (m, 2H), 1.74–1.78 (m, 1H), 1.85–1.90 (m, 1H), 2.06 (s, 3H), 2.57 (t, *J* = 7.8 Hz, 2H), 5.71 (t, *J* = 6.8 Hz, 1H), 7.13–7.18 (m, 3H), 7.24–7.35 (m, 7H); ¹³C NMR (CDCl₃, 100 MHz) δ 21.2, 25.3, 28.9, 31.2, 35.7, 36.1, 76.0, 125.6, 126.4, 127.8, 128.1, 128.30, 128.33, 140.7, 142.5, 170.3; IR (neat) 3086, 3063, 3028, 2934, 2856, 1736, 1603, 1495, 1454, 1371, 1236, 1022, 964, 750, 700 cm⁻¹; HRMS (EI) calcd for C₁₈H₂₁ 237.1643, found 237.1575 ([M – OAc]⁺).

Kinetic resolution of 5-methyl-1-phenyl-1-hexanol (1i). (*S*)-**1i**: White solid; $[\alpha]_{D}^{30}$ –15.5 (*c* 1.15, CHCl₃), 53.4% ee. (*R*)-**2i**: Colorless oil; $[\alpha]_{D}^{30}$ +66.8 (*c* 1.14, CHCl₃), 97.7% ee; ¹H NMR (CDCl₃, 400 MHz) δ 0.83 (d, *J* = 6.8 Hz, 3H), 0.84 (d, *J* = 6.8 Hz, 3H), 1.14–1.35 (m, 4H), 1.46–1.53 (m, 1H), 1.69–1.77 (m, 1H), 1.84–1.91 (m, 1H), 2.07 (s, 3H), 5.72 (t, *J* = 7.0 Hz, 1H), 7.28–7.36 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 21.2, 22.46, 22.48, 23.2, 27.7, 36.4, 38.5, 76.1, 126.5, 127.7, 128.3, 140.8, 170.3; IR (neat) 3067, 3032, 2955, 2870, 1740, 1493, 1458, 1369, 1242, 1123, 1022, 961, 899, 760, 698, 552 cm⁻¹; HRMS (EI) calcd for C₁₅H₂₂O₂ 234.1620, found 234.1609 (M⁺).

Kinetic resolution of 1-(4-trifluoromethylphenyl)-1-hexanol (1j). (*S*)-**1***j*: Colorless oil; $[\alpha]_{D}^{25}$ –20.9 (*c* 1.07, CHCl₃), 80.7% ee. (*R*)-**2***j*: Colorless oil; $[\alpha]_{D}^{24}$ +48.9 (*c* 0.991, CHCl₃), 97.8% ee; ¹H NMR (CDCl₃, 400 MHz) δ 0.85–0.88 (m, 3H), 1.27–1.29 (m, 6H), 1.73–1.77 (m, 1H), 1.86–1.90

(m, 1H), 2.08 (s, 3H), 5.74 (t, J = 6.4 Hz, 1H), 7.43 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 8.2 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 13.9, 21.1, 22.4, 25.0, 31.4, 36.2, 75.4, 124.0 (q, $J_{CF} = 270.6$ Hz), 125.4 (q, $J_{CF} = 3.7$ Hz), 126.7, 129.9 (q, $J_{CF} = 32.2$ Hz), 144.9, 170.2; ¹⁹F NMR (CDCl₃, 376 MHz) δ -63.6 (s, 3F); IR (neat) 2959, 2934, 2862, 1742, 1622, 1373, 1327, 1238, 1167, 1128, 1069, 1018, 837 cm⁻¹; HRMS (EI) calcd for C₁₅H₁₉F₃O₂ 288.1337, found 288.1323 (M⁺).

Kinetic resolution of 1-(4-methoxylphenyl)-1-hexanol (1k). (*S*)-**1k**: Colorless oil; $[\alpha]_{D}^{26}$ -18.1 (*c* 0.818, CHCl₃), 69.1% ee, lit.¹⁰ $[\alpha]_{D}^{23}$ -17.8 (*c* 1.13, MeOH) for (*S*)-**1k** with 88% ee. (*R*)-**2k**:¹⁷ Colorless oil; $[\alpha]_{D}^{26}$ +85.4 (*c* 1.11, CHCl₃), 99.3% ee; ¹H NMR (CDCl₃, 400 MHz) δ 0.84–0.87 (m, 3H), 1.19–1.28 (m, 6H), 1.69–1.76 (m, 1H), 1.82–1.91 (m, 1H), 2.04 (s, 3H), 3.80 (s, 3H), 5.67 (t, *J* = 7.1 Hz, 1H), 6.87 (d, *J* = 8.7 Hz, 2H), 7.26 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 13.9, 21.2, 22.4, 25.2, 31.4, 35.9, 55.1, 75.8, 113.7, 127.9, 132.8, 159.1, 170.3; IR (neat) 3001, 2955, 2932, 2858, 1732, 1612, 1585, 1516, 1462, 1373, 1242, 1177, 1107, 1034, 949, 829 cm⁻¹; HRMS (EI) calcd for C₁₅H₂₂O₃ 250.1569, found 250.1567 (M⁺).

Kinetic resolution of 1-(3-methoxymethoxyphenyl)-1-hexanol (11). (*S*)-**1**I: Colorless oil; $[\alpha]^{24}_{D}$ –19.1 (*c* 1.01, CHCl₃), 73.2% ee. (*R*)-**2**I: Colorless oil; $[\alpha]^{24}_{D}$ +61.1 (*c* 1.02, CHCl₃), 99.2% ee; ¹H NMR (CDCl₃, 400 MHz) δ 0.84–0.88 (m, 3H), 1.27–1.29 (m, 6H), 1.73–1.78 (m, 1H), 1.82–1.89 (m, 1H), 2.07 (s, 3H), 3.48 (s, 3H), 5.16 (d, *J* = 6.9 Hz, 1H), 5.18 (d, *J* = 6.9 Hz, 1H), 5.69 (dd, *J* = 6.4, 7.5 Hz, 1H), 6.95–6.98 (m, 3H), 7.23–7.26 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 13.9, 21.2, 22.4, 25.1, 31.4, 36.2, 56.0, 75.9, 94.5, 114.5, 115.2, 119.9, 129.4, 142.6, 157.3, 170.3; IR (neat) 2955, 2934, 2860, 2827, 1736, 1587, 1489, 1456, 1371, 1236, 1151, 1080, 1018, 995, 924, 876, 789, 700 cm⁻¹; HRMS (EI) calcd for C₁₆H₂₄O₄ 280.1675, found 280.1664 (M⁺).

Kinetic resolution of 1-(2-naphthyl)-1-hexanol (1m). (*S*)-**1m**: White solid; $[\alpha]_{D}^{35}$ –25.4 (*c* 1.00, CHCl₃), 68.0% ee, lit.¹⁰ $[\alpha]_{D}^{23}$ –18 (*c* 1, MeOH) for (*S*)-**1m** with 82% ee. (*R*)-**2m**: Colorless oil; $[\alpha]_{D}^{33}$ +76.5 (*c* 1.10, CHCl₃), >99.5% ee; ¹H NMR (CDCl₃, 400 MHz) δ 0.86 (t, *J* = 7.0 Hz, 3H), 1.28–1.30 (m, 6H), 1.84–1.88 (m, 1H), 1.95–2.00 (m, 1H), 2.09 (s, 3H), 5.89 (t, *J* = 7.0 Hz, 1H), 7.44–7.49 (m, 3H), 7.78–7.84 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ 13.9, 21.3, 22.4, 25.2, 31.5, 36.1, 76.2, 124.3, 125.7, 125.9, 126.1, 127.6, 127.9, 128.2, 133.0, 133.1, 138.1, 170.3; IR (neat) 3055, 2955, 2932, 2858, 1736, 1601, 1508, 1458, 1369, 1238, 1126, 1022, 945, 895, 856, 818, 748 cm⁻¹; HRMS (EI) calcd for C₁₈H₂₂O₂ 270.1620, found 270.1618 (M⁺).

Kinetic resolution of 1-phenyl-1-pentanol (1n). (*S*)-**1n**: Colorless oil; $[\alpha]^{31}_{D}$ –25.9 (*c* 1.05, CHCl₃), 66.9% ee, lit.¹⁸ $[\alpha]^{24}_{D}$ –39.3 (*c* 0.57, CHCl₃) for (*S*)-**1n** with 92% ee. (*R*)-**2n**: Colorless oil; $[\alpha]^{30}_{D}$ +79.3 (*c* 1.04, CHCl₃), 98.0% ee, lit.¹⁹ $[\alpha]^{23}_{D}$ +76.7 (*c* 1.01, CHCl₃) for (*R*)-**2n** with 90.1% ee; ¹H NMR (CDCl₃, 400 MHz) δ 0.85–0.89 (m, 3H), 1.18–1.35 (m, 4H), 1.72–1.81 (m, 1H), 1.86–1.95 (m, 1H), 2.07 (s, 3H), 5.70–5.74 (m, 1H), 7.28–7.36 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 13.9, 21.2, 22.4, 27.6, 36.0, 76.1, 126.5, 127.7, 128.3, 140.8, 170.4; IR (neat) 3088, 3065, 3034, 2957, 2936, 2862, 1738, 1605, 1587, 1495, 1456, 1371, 1240, 1109, 1074, 1020, 964, 760, 700, 550 cm⁻¹; HRMS (EI) calcd for C₁₃H₁₈O₂ 206.1307, found 206.1286 (M⁺).

Kinetic resolution of 1-phenyl-1-butanol (10). (*S*)-10: White solid; $[\alpha]_{D}^{31} - 34.4$ (*c* 1.06, CHCl₃), 72.0% ee, lit.¹⁸ $[\alpha]_{D}^{24} - 44.9$ (*c* 0.45, CHCl₃) for (*S*)-10 with 92% ee. (*R*)-20: Colorless oil; $[\alpha]_{D}^{31} + 86.6$ (*c* 1.04, CHCl₃), 98.6% ee, lit.²⁰ $[\alpha]_{D}^{22} + 78.2$ (*c* 0.9, CHCl₃) for (*R*)-20 with 93% ee; ¹H NMR (CDCl₃, 400 MHz) δ 0.91 (t, *J* = 7.4 Hz, 3H), 1.23–1.39 (m, 2H), 1.69–1.78 (m, 1H), 1.85–1.94 (m, 1H), 2.07 (s, 3H), 5.74 (dd, *J* = 6.3, 7.7 Hz, 1H), 7.27–7.36 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 13.7, 18.7, 21.2, 38.4, 75.9, 126.5, 127.7, 128.3, 140.8, 170.4; IR (neat) 3088, 3065, 3034, 2961, 2936, 2874, 1728, 1605, 1587, 1495, 1456, 1371, 1236, 1180, 1103, 1055, 1024, 957, 845, 762, 700, 544 cm⁻¹; HRMS (EI) calcd for C₁₂H₁₆O₂ 192.1150, found 192.1145 (M⁺).

Kinetic resolution of 1-phenyl-1-propanol (1p). (*S*)-**1p**: Colorless oil; $[\alpha]_{D}^{28} - 27.3$ (*c* 0.973, CHCl₃), 56.6% ee, lit.¹⁸ $[\alpha]_{D}^{24} - 44.4$ (*c* 0.63, CHCl₃) for (*S*)-**1p** with 80% ee. (*R*)-**2p**: Colorless oil; $[\alpha]_{D}^{26} + 100.3$ (*c* 1.10, CHCl₃), >99.5% ee, lit.²¹ $[\alpha]_{D}^{20} + 98.2$ (*c* 1.308, CHCl₃) for (*R*)-**2p** with 99% ee; ¹H NMR (CDCl₃, 400 MHz) δ 0.88 (t, *J* = 7.4 Hz, 3H), 1.76–1.85 (m, 1H), 1.87–1.98 (m, 1H), 2.08 (s, 3H), 5.66 (t, *J* = 7.0 Hz, 1H), 7.27–7.36 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 9.9, 21.2, 29.2, 77.3, 126.5, 127.8, 128.3, 140.5, 170.4; IR (neat) 3090, 3065, 3034, 2970, 2937, 2880, 1736, 1495, 1454, 1371, 1236, 1086, 1042, 1020, 966, 893, 839, 754, 700, 548 cm⁻¹; HRMS (EI) calcd for C₁₁H₁₄O₂ 178.0994, found 178.0968 (M⁺).

Kinetic resolution of 1-phenylethanol (1q). (*S*)-1q: Colorless oil; $[\alpha]_{D}^{25} - 56.9$ (*c* 0.686, CHCl₃), 99.8% ee, lit.¹⁸ $[\alpha]_{D}^{23} - 43.7$ (*c* 0.90, CHCl₃) for (*S*)-1q with 69% ee. (*R*)-2q: Colorless oil; $[\alpha]_{D}^{26} + 110.6$ (*c* 1.02, CHCl₃), 99.1% ee, lit.¹⁹ $[\alpha]_{D}^{25} + 112$ (*c* 1.00, CHCl₃) for (*R*)-2q with 99.9% ee; ¹H NMR (CDCl₃, 400 MHz) δ 1.54 (d, *J* = 6.6 Hz, 3H), 2.07 (s, 3H), 5.88 (q, *J* = 6.6 Hz, 1H), 7.28–7.36 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 21.2, 22.1, 72.2, 126.0, 127.8, 128.4, 141.6, 170.2; IR (neat) 3088, 3065, 3034, 2982, 2934, 2872, 1732, 1605, 1585, 1495, 1454, 1371, 1209, 1242, 1067, 1030, 943, 854, 762, 700, 621, 540 cm⁻¹.

			Time	71	\mathcal{O}_{c} Viald ^c (\mathcal{O}_{c} as)		
_			lime		% Tield	-1	
Entry	1	Lipase	(h)	$c (\%)^{b}$	(R)-2	(<i>S</i>)-1	E^{a}
1	1 a	wild-type	41	23	21 (61.3)	73 (18.2)	5
2	1 a	I287F	41	46	49 (87.1)	44 (72.8)	32
3	1 a	I287A	41	20	13 (13.5)	78 (3.4)	1.4
4	1 a	I287W	41	17	11 (62.1)	62 (12.4)	5
5	1 a	I287Y	41	10	10 (84.3)	87 (9.5)	13
6	1 a	I287F/I290A	2.5	50	43 (98.9)	50 (98.4)	>200
7	1 a	I287F/I290F	41	10	18 (56.4)	80 (6.4)	4
8	1 a	I290A	41	41	35 (95.1)	51 (65.3)	79
9	1 a	I287F/I290A/Q292A	6	45	37 (91.8)	51 (73.7)	52
10	1b	wild-type	41	39	35 (70.8)	58 (44.9)	9
11	1b	I287F	22	47	39 (92.8)	43 (83.9)	71
12	1b	I287F/I290A	4	47	40 (98.7)	46 (86.6)	>200
13	1c	wild-type	41	34	35 (80.8)	61 (41.5)	14
14	1c	I287F	22	47	40 (91.4)	38 (80.2)	55
15	1c	I287F/I290A	4	50	41 (98.4)	46 (96.5)	>200
16	1d	I287F/I290A	75	19	9 (78.9)	44 (18.6)	10
17	1e	wild-type	41	45	41 (53.3)	49 (43.0)	5^e
18	1e	I287F	41	42	41 (79.5)	45 (58.3)	16 ^e
19	1e	I287F/I290A	3	43	40 (99.2)	54 (73.7)	>200 ^e

Table S2 Kinetic resolution of **1** with wild-type and mutant enzymes^{*a*}

^{*a*} Conditions: immobilized lipase (700 mg, 0.5% (w/w) enzyme/Toyonite-200M), **1** (0.50 mmol), vinyl acetate (1.0 mmol), molecular sieves 3A (three pieces), dry *i*-Pr₂O (5 mL), 30 °C. ^{*b*} Conversion calculated from c = ee(1)/(ee(1) + ee(2)). ^{*c*} Isolated yield. ^{*d*} Calculated from E = ln[1 - c(1 + ee(2))]/ln[1 - c(1 - ee(2))]. ^{*e*} (S)-2e and (R)-1e were obtained.

				% Yield	^c (% ee)	Wild-ty	ype	
Entry	1	Time (h)	$c (\%)^b$	(<i>R</i>)- 2	(<i>S</i>)-1	E^{d}	$c (\%)^{e}$	E^{d}
1	1f	7	39	35 (98.9)	56 (64.0)	>200	0	_
2	1g	22	46	44 (96.4)	46 (83.2)	143	6	_
3	1h	6.5	41	38 (>99.5)	56 (69.1)	>200	3	_
4	1i	9	35	34 (97.7)	62 (53.4)	147	0	_
5	1j	54	45	42 (97.8)	46 (80.7)	>200	4	_
6	1k	7	41	35 (99.3)	57 (69.1)	>200	2	_
7	1 l	7	42	40 (99.2)	56 (73.2)	>200	3	_
8	1m	7	41	42 (>99.5)	56 (68.0)	>200	0	_
9	1n	24	41	36 (98.0)	53 (66.9)	199	5	_
10	10	50	42	32 (98.6)	44 (72.0)	>200	18^{b}	19
11	1p	50	36	33 (>99.5)	61 (56.6)	>200	38 ^b	113
12	1q	3	50	47 (99.1)	40 (99.8)	>200	45^b	68

 Table S3
 Substrate scope of I287F/I290A double mutant^a

^{*a*} Conditions: immobilized lipase (200 mg, 0.5% (w/w) enzyme/Toyonite-200M), **1** (0.50 mmol), vinyl acetate (1.0 mmol), molecular sieves 3A (three pieces), dry *i*-Pr₂O (5 mL), 30 °C. ^{*b*} Conversion calculated from c = ee(1)/(ee(1) + ee(2)). ^{*c*} Isolated yield. ^{*d*} Calculated from $E = \ln[1 - c(1 + ee(2))]/\ln[1 - c(1 - ee(2))]$. ^{*e*} Conversion calculated from ¹H NMR.

References

- 1 J. Sambrook and D. W. Russell, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, New York, 3rd edn, 2001.
- 2 T. Ema, T. Fujii, M. Ozaki, T. Korenaga and T. Sakai, *Chem. Commun.*, 2005, 4650–4651.
- 3 T. Ema, S. Kamata, M. Takeda, Y. Nakano and T. Sakai, *Chem. Commun.*, 2010, **46**, 5440–5442.
- 4 M. J. Comin, E. Elhalem and J. B. Rodriguez, *Tetrahedron*, 2004, **60**, 11851–11860.
- 5 B. M. Trost, J. Xu and M. Reichle, J. Am. Chem. Soc., 2007, **129**, 282–283.
- M. Paradas, A. G. Campaña, R. E. Estévez, L. Álvarez de Cienfuegos, T. Jiménez, R. Robles, J. M. Cuerva and J. E. Oltra, *J. Org. Chem.*, 2009, 74, 3616–3619.
- 7 Z. Xu, H.-S. Byun and R. Bittman, J. Org. Chem., 1991, 56, 7183–7186.
- 8 C. S. Cho, B. T. Kim, T.-J. Kim and S. C. Shim, J. Org. Chem., 2001, 66, 9020–9022.
- 9 G. Takahashi, E. Shirakawa, T. Tsuchimoto and Y. Kawakami, *Chem. Commun.*, 2005, 1459–1461.
- 10 G. R. A. Adair and J. M. J. Williams, Chem. Commun., 2007, 2608–2609.
- 11 T. S. Lee, A. Das and C. Khosla, *Bioorg. Med. Chem.*, 2007, **15**, 5207–5218.
- 12 J. A. Dale and H. S. Mosher, J. Am. Chem. Soc., 1973, 95, 512–519.
- 13 G. Onodera, Y. Nishibayashi and S. Uemura, Angew. Chem., Int. Ed., 2006, 45, 3819–3822.
- 14 W. Adam, Z. Lukacs, K. Viebach, H.-U. Humpf, C. R. Saha-Möller and P. Schreier, J. Org. Chem., 2000, 65, 186–190.
- 15 T. Mukaiyama, K. Tomimori and T. Oriyama, *Chem. Lett.*, 1985, 1359–1362.
- 16 J. L. von dem Bussche-Hünnefeld and D. Seebach, *Tetrahedron*, 1992, **48**, 5719–5730.
- 17 E. J. Corey and R. K. Bakshi, *Tetrahedron Lett.*, 1990, **31**, 611–614.
- 18 N. A. Salvi and S. Chattopadhyay, Tetrahedron, 2001, 57, 2833–2839.
- 19 T. Ema, N. Ura, M. Yoshii, T. Korenaga and T. Sakai, *Tetrahedron*, 2009, **65**, 9583–9591.
- 20 E. García-Urdiales, F. Rebolledo and V. Gotor, Adv. Synth. Catal., 2001, 343, 646–654.
- 21 P. Bachu, J. S. Gibson, J. Sperry and M. A. Brimble, *Tetrahedron: Asymmetry*, 2007, 18, 1618–1624.

[F] NMR spectra.

400 MHz ¹H NMR of **1f** in CDCl₃.

400 MHz ¹H NMR of **1i** in CDCl₃.

100 MHz ¹³C NMR of **1i** in CDCl₃.

OAc

400 MHz ¹H NMR of **2i** in CDCl₃.

100 MHz ¹³C NMR of **2i** in CDCl₃.

400 MHz ¹H NMR of **2n** in CDCl₃.

100 MHz ¹³C NMR of **2n** in CDCl₃.

OAc

400 MHz ¹H NMR of **20** in CDCl₃.

100 MHz ¹³C NMR of **20** in CDCl₃.

400 MHz ¹H NMR of 2p in CDCl₃.

100 MHz ¹³C NMR of **2p** in CDCl₃.

400 MHz ¹H NMR of 2q in CDCl₃.

100 MHz ¹³C NMR of **2q** in CDCl₃.