Supplementary Information

for

Peripherally ethynylated carbazole-based core-modified porphyrins

Chihiro Maeda*, Naoki Yoshioka

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Kohoku-ku, Yokohama 223-8552, Japan. E-mail: cmaeda@applc.keio.ac.jp

Table of Contents

Instrumentation and materials	S2
Experimental section	S2
NMR spectra	S9
Cyclic and differential pulse voltammograms	S19
NICS(0) Values	S20
X-ray crystal structure	S21
References	S23

Instrumentation and materials

¹H and ¹³C NMR spectra were taken on a JEOL ECA-500 spectrometer, and chemical shifts were reported as the delta scale in ppm as internal reference (δ = 7.260 for ¹H NMR, 77.00 for ¹³C NMR, for CDCl₃). UV/Vis/NIR absorption spectra were recorded on a JASCO V-650 spectrometer or on a JASCO V-570 spectrometer. Fluorescence spectra were recorded on a JASCO FP-777W spectrometer and relative fluorescence quantum yields were determined with the reference value of **1a** (0.274 in CH₂Cl₂). High resolution ESI-TOF mass spectra and MALDI-TOF mass spectra were taken on a Bruker microTOF. Redox potentials were measured by cyclic voltammetry method and differential pulse voltammetry method on an ALS electrochemical analyzer model 6102B. X-ray data were taken on a Rigaku-Raxis imaging plate system. Recycling preparative GPC-HPLC was carried out on JAI LC-9225NEXT using preparative JAIGEL-1H, and 2H. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Dry CH₂Cl₂ and toluene was distilled from CaH₂.

Experimental section

β -Tetrabrominated thiophene-bridged carbazole dimer (2)

To a CH_2Cl_2 (50 mL) solution of **1a** (78.4 mg, 109 µmol) was added *N*-bromosuccinimide (97.0 mg, 545 µmol) and the resulting solution was stirred for 2 h. The mixture was passed through a silica gel column with CH_2Cl_2 , and the solvent was evaporated, to give **2** (99.0 mg, 95.7 µmol, 88%).

¹H NMR (CDCl₃) $\delta = 9.47$ (s, 2H, NH), 8.20 (d, J = 1.5 Hz, 4H, carbazole-H), 7.99 (d, J = 1.7 Hz, 4H, carbazole-H), and 1.56 ppm (s, 36H, *t*Bu); ¹³C NMR (CDCl₃) $\delta = 143.13$, 136.32, 133.82, 125.00, 124.20, 117.91, 114.84, 114.65, 35.04, and 31.98 ppm; HR-ESI-MS: m/z = 1032.9702. calcd for C₄₈H₄₅N₂S₂Br₄: 1032.9728 [(M–H)[–]]; Mp: > 300 °C; UV/Vis (CH₂Cl₂) λ_{max} (ε) = 318 (31900) and 394 nm (18300 mol⁻¹dm³cm⁻¹).

β -Tetraethynylated thiophene-bridged carbazole dimer (3a)

A dry toluene (5.0 mL) solution of **2** (151 mg, 146 μ mol), Pd(PPh₃)₄, (50.5 mg, 43.7 μ mol), and tributyl(trimethylsilylethynyl)tin (336 mg, 868 μ mol) was degassed. The mixture was stirred for 16 h at reflux under Ar. After the solvent was evaporated, the residue was separated over a silica gel column with dichloromethane/hexane as an eluent to give **3a** (130 mg, 118 μ mol, 81%).

¹H NMR (CDCl₃) δ = 9.63 (s, 2H, NH), 8.21 (d, *J* = 1.5 Hz, 4H, carbazole-H), 8.15 (d, *J* = 1.5 Hz, 4H, carbazole-H), 1.54 (s, 36H, *t*-Bu), and 0.25 ppm (s, 36H, TMS); ¹³C NMR (CDCl₃) δ = 143.06, 140.04, 135.86, 124.23, 124.09, 123.49, 117.69, 115.30, 99.61, 98.55, 35.14, 32.13, and 0.23 ppm; HR-ESI-MS: *m*/*z* = 1101.4871. calcd for C₆₈H₈₁N₂S₂Si₄: 1101.4924 [(M–H)[–]]; Mp: > 300 °C; UV/Vis (CH₂Cl₂) λ_{max} (ε) = 296 (52600), 331 (35700), and 414 nm (18700 mol⁻¹dm³cm⁻¹); Fluorescence (CH₂Cl₂, λ_{ex} = 360 nm); λ_{max} = 452 nm, $\Phi_{\rm F}$ = 0.0713.

β -Tetraethynylated thiophene-bridged carbazole dimer (3b)

To a dry CH_2Cl_2 (10 mL) solution of **3a** (18.9 mg, 17.1 µmol) was added MnO_2 (590 mg) and resulting suspension was stirred. After 14 h, MnO_2 (914 mg) was added and the mixture was stirred for further 5 h. The

mixture was then passed through a pad of celite. Evaporation of the solvent provided **8** (18.6 mg, 16.9 µmol, 99%).

¹H NMR (CDCl₃) $\delta = 10.48$ (s, 4H, carbazole-H), 8.65 (s, 4H, carbazole-H), 1.79 (s, 36H, *t*Bu), and 0.55 ppm (s, 36H, TMS); The ¹³C NMR spectrum couldn't detect peaks due to poor solubility; MALDI-TOF-MS: m/z = 1099.12. calcd for C₆₈H₇₉N₂S₂Si₄: 1099.48 [(M–H)⁻]; Mp: > 300 °C; UV/Vis/NIR (CH₂Cl₂) λ_{max} (ε) = 319 (40600), 359 (34000), 393 (35500), 484 (28500), 877 (36200), 939 (26400), 976 (23100), and 1083 nm (72600 mol⁻¹dm³cm⁻¹).

3,6-Dibromo-1,8-diiodocarbazole (4)

for 17 h at 90°C under Ar. After cooling to rt, water was added and resulting suspension was filtered, washed well with water and hexane to provided crude **4** (2.76 mg, 4.78 mmol, 76%). This product was used for next step without purification due to low solubility.

¹H NMR (CDCl₃) $\delta = 8.09$ (s, 1H, NH), 8.03 (s, 2H, carbazole-H), and 7.91 ppm (s, 2H, carbazole-H); The ¹³C NMR spectrum couldn't detect peaks due to poor solubility; MALDI-TOF-MS: m/z = 576.58. calcd for C₁₂H₅NBr₂I₂: 576.69 [M⁺]; Mp: 225–227 °C; UV/Vis (CH₂Cl₂) λ_{max} (ε) = 295 (12900), 303 (18700), 344 (4990) and 359 nm (5580 mol⁻¹dm³cm⁻¹).

3,6-Dibromo-1,8-bis(trimethylsilylethynyl)carbazole (5)

A flask containing 4 (2.76 mg, 4.78 mmol), CuI (33.8 mg, 178 $\mu mol)$, and

 $PdCl_2(PPh_3)_2$ (68.5 mg, 97.6 µmol) was purged with Ar, and then charged with anhydrous THF (24 mL) and Et₃N (6 mL). After this solution was degassed, trimethylsilylacetylene (4.0 mL. 28 mmol)

was added and the mixture was stirred for 19 h at room temperature. After the solvents were evaporated, the residue was separated over a silica gel column with CH_2Cl_2 /hexane to give **5** (1.88 mg, 3.64 mmol, 76%)

¹H NMR (CDCl₃) $\delta = 8.50$ (s, 1H, NH), 8.06 (d, J = 1.5 Hz, 2H, carbazole-H), 7.66 (d, J = 1.7 Hz, 2H, carbazole-H), 0.34 ppm (s, 18H, TMS); ¹³C NMR (CDCl₃) $\delta = 139.03$, 131.88, 123.90, 123.33, 112.16, 107.64, 101.32, 98.73, and 0.02 ppm; MALDI-TOF-MS: m/z = 516.96. calcd for C₂₂H₂₃NBr₂Si₂: 516.97 [M⁺]; Mp: 183–185 °C; UV/Vis (CH₂Cl₂) λ_{max} (ε) = 309 (22800), 319 (22100), 366 (7450), and 379 nm (9000 mol⁻¹dm³cm⁻¹).

3,6-Bis(triisopropylsilylethynyl)-1,8-bis(trimethylsilylethynyl)carbazole (6)

A dry toluene (30 mL) solution of **5** (1.32 g, 2.55 mmol), Pd(PPh₃)₄, (27.4 mg, 23.7 μ mol), and tributyl(triisopropylsilylethynyl)tin^[S1] (2.59 g, 5.50 mmol) was degassed. The mixture was stirred for overnight at reflux under

Ar. After the solvent was evaporated, the residue was separated over a silica gel column with dichloromethane/hexane as an eluent and recycling GPC to give **6** (954 mg, 1.33 mmol, 52%) as yellow oil.

¹H NMR (CDCl₃) $\delta = 8.61$ (s, 1H, NH), 8.14 (d, J = 1.5 Hz, 2H, carbazole-H), 7.70 (d, J = 1.5 Hz, 2H, carbazole-H), 1.17 (s, 42H, TIPS), and 0.35 ppm (s, 18H, TMS); ¹³C NMR (CDCl₃) $\delta = 140.09$, 133.25, 125.22, 122.71, 115.48, 106.94, 106.23, 100.32, 99.42, 88.94, 18.73, 11.37, and 0.04 ppm; MALDI-TOF-MS: m/z = 719.53. calcd for C₄₄H₆₅NSi₄: 719.42 [M⁺]; Mp: 210–212 °C; UV/Vis (CH₂Cl₂) λ_{max} (ε) = 315 (40000), 321 (39700), 364 (8600), and 381 nm (9220 mol⁻¹dm³cm⁻¹).

1,8-Diethynyl-3,6-bis(triisopropylsilylethynyl)carbazole (7)

Tetrabutylammonium fluoride (3.4 mL, 1.0 M in THF, 3.4 mmol) was added to the CH_2Cl_2 (20 mL) solution of **6** (954 mg, 1.33 mmol) and stirred for 5 min. The

mixture was passed through a silica gel column with CH_2Cl_2 , and solvent was evaporated, which provided 7 (645 mg, 1.12 mmol, 84%).

¹H NMR (CDCl₃) $\delta = 8.63$ (s, 1H, NH), 8.17 (s, 2H, carbazole-H), 7.73 (s, 2H, carbazole-H), 3.49 (s, 2H, C=CH), 1.18 ppm (s, 42H, TIPS); ¹³C NMR (CDCl₃) $\delta = 140.22$, 133.86, 125.43, 122.78, 115.63, 106.74, 105.11, 89.24, 82.68, 78.60, 18.73, 11.38 78.95 ppm; MALDI-TOF-MS: m/z = 576.27. calcd for C₃₈H₅₀NSi₂: 576.35 [(M+H)⁺]; Mp: 158–160 °C; UV/Vis (CH₂Cl₂) λ_{max} (ε) = 308 (41600), 316 (44900), 360 (5540), and 377 nm (5600 mol⁻¹dm³cm⁻¹).

Tetrakis(triisopropylsilylethynyl)-substituted butadiyne-bridged carbazole dimer (8)

To a pyridine (60 mL) suspension of $Cu(OAc)_2 \cdot H_2O$ (1.52 g, 7.60 mmol) was added dropwise a toluene (200 mL) solution of 7 (585 mg, 1.02 mmol) for 3 h, and the mixture was stirred for further 3.5 days

under air. After the solvents were evaporated, the residue was separated over a silica gel column with CHCl₃ and GPC to give **8** (157 mg, 137 µmol, 27%).

¹H NMR (CDCl₃) δ = 9.48 (s, 2H, NH), 8.11 (d, *J* = 1.2 Hz, 4H, carbazole-H), 7.59 (d, *J* = 1.2 Hz, 4H, carbazole-H), 1.19 ppm (s, 84H, TIPS); ¹³C NMR (CDCl₃) δ = 142.18, 131.81, 126.19, 122.73, 115.91, 106.50, 104.71, 89.59, 79.62, 79.49, 18.75, and 11.38 ppm; HR-ESI-MS: *m/z* = 1146.6409. calcd for C₇₆H₉₃N₂Si₄: 1146.6453 [(M–H)⁻]; Mp: 260–270 °C (decomp.); UV/Vis (CH₂Cl₂) λ_{max} (ε) =

300 (104000), 325 (98200) and 429 nm (60200 mol⁻¹dm³cm⁻¹); Fluorescence (CH₂Cl₂, $\lambda_{ex} = 360$ nm); $\lambda_{max} = 436$ nm, $\Phi_F = 0.975$.

Tetrakis(triisopropylsilylethynyl)-substituted thiophene-bridged carbazole dimer (9a)

A *p*-xylene/2-methoxyethanol (10.0 mL/10.0 mL) solution of **8** (157 mg, 137 μ mol) and Na₂S•9H₂O (604 mg, 2.52 mmol) was heated refluxed for 14 h under Ar. The mixture was diluted with CH₂Cl₂, washed with water, and passed through a silica gel column with CH₂Cl₂.

After the solvent was evaporated, the residue was purified by recycling GPC to give 9a (68.2 mg, 56.1 μ mol, 41%).

¹H NMR (CDCl₃) $\delta = 10.47$ (s, 2H, NH), 8.25 (d, J = 1.5 Hz, 4H, carbazole-H), 7.87 (d, J = 1.5 Hz, 4H, carbazole-H), 7.46 (s, 4H, thiophene- β), and 1.21 ppm (s, 84H, TIPS); ¹³C NMR (CDCl₃) $\delta = 138.45$, 136.80, 128.10, 127.19, 124.95, 123.72, 117.53, 116.04, 107.49, 89.13, 18.81, and 11.46 ppm; HR-ESI-MS: m/z = 1214.6260. calcd for C₇₆H₉₇N₂S₂Si₄: 1214.6207 [(M–H)[–]]; Mp: > 300 °C; UV/Vis (CH₂Cl₂) λ_{max} (ε) = 315 (83600) and 410 nm (23600 mol⁻¹dm³cm⁻¹); Fluorescence (CH₂Cl₂, $\lambda_{ex} = 360$ nm); $\lambda_{max} = 442$ nm, $\Phi_{F} = 0.522$.

Tetrakis(triisopropylsilylethynyl)-substituted thiophene bridged carbazole dimer (9b)

To a dry CH_2Cl_2 (20 mL) solution of **9a** (23.9 mg, 19.7 µmol) was added MnO_2 (418 mg) and resulting suspension was stirred. After 14 h, MnO_2 (918 mg) was added and the mixture was stirred for further 9 h. the mixture was then passed through a pad of celite. Evaporation of the solvent provided **9b** (19.4 mg, 16.0 µmol, 81%).

¹H NMR (CDCl₃) δ = 9.08 (s, 4H, carbazole-H), 8.97 (s, 4H, carbazole-H), 8.42 (s, 4H, thiophene- β), and 1.21 ppm (s, 84H, TIPS); The ¹³C NMR spectrum couldn't detect peaks due to poor solubility;

MALDI-TOF-MS: m/z = 1213.85. calcd for C₇₆H₉₆N₂S₂Si₄: 1213.61 [M⁺]; Mp: > 300 °C; UV/Vis/NIR (CH₂Cl₂) λ_{max} (ε) = 329 (53500), 361 (59300), 395 (40000), 925 (52100), 998 (38200), and 1110 nm (59300 mol⁻¹dm³cm⁻¹).

Fig. S4 1 H NMR spectrum of **4** in CDCl₃

Fig. S11 Cyclic and differential pulse voltammograms of (a) **1b**, (b) **3b**, and (c) **9b** (solvent: CH_2Cl_2 supporting electrolyte: Bu_4NPF_6 (0.10 M), counter electrode: Pt, reference electrode: Ag/Ag^+ , scan rate: 0.05 V/s).

Fig. S12 NICS(0) values at the selected points of (a) **3b** and (b) **9b** calculated at B3LYP/6-31G^{*} level using Gaussian 09 package^[S2-4]

S20

X-ray crystal structure

Single crystals of **3a** suitable for X-ray crystal analysis were obtained by slow diffusion of methanol into a CH₂Cl₂ solution of **3a**. X-ray data of **3a** at 93 K were taken on Rigaku-Raxis-RAPID imaging plate system with Cu-K α radiation (λ = 1.54187 Å) and graphite monochromator. Structure was processed by CrystalStructure and then refined by YADOKARI. All non-hydrogen atoms were refined anisotropically and the hydrogen atoms were calculated in ideal positions. The solvent molecules contained in the lattice were severely disordered for **3a**. The contribution to the scattering arising from the presence of the disordered solvents in the crystals was removed by use of the utility SQUEEZE in the PLATON software package: (a) A. L. Spek, *PLATON, A Multipurpose Crystallographic Tool*; Utrecht, The Netherlands, 2005; (b) P. van der Sluis, A. L. Spek, *Acta Crystallogr. Sect. A*, 1990, **46**, 194.

The following serious alerts were generated due to the rotation of *t*-butyl and trimethylsilyl groups.

Large Non-Solvent H Ueq(max)/Ueq(min) ... 10.0 Ratio

Fig. S13 X-ray crystal structure of **3a**: (a) top view and (b) side view. Hydrogen atoms except for NH protons are omitted for clarity. The selected bond distances(Å) and angle(°) are shown. The thermal ellipsoids were at 50% probability level.

References

- [S1] M. Toganoh, T. Kimura, H. Furuta, Chem. Eur. J., 2008, 14, 10585.
- [S2] Gaussian 09, Revision A.02. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [S3] A. D. Becke, J. Chem. Phys., 1993, 98, 1372.
- [S4] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.