A Tripeptide-like Prolinamide-Thiourea as an Aldol Reaction Catalyst

S. Fotaras, C. G. Kokotos and G. Kokotos*

Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Athens 15771, Greece

Supporting Information

Table of Contents	Page
General remarks	S2
General Procedure for the Synthesis of the Catalysts 7 and 8	S3
General Procedure for the Synthesis of the Catalyst 9	S7
General Procedure for the Synthesis of the Catalyst 10	S10
General Procedure for the Synthesis of the Catalyst 11	S14
General Procedure for the Synthesis of the Catalyst 12	S15
General Procedure for the Synthesis of the Catalyst 13	S17
General Procedure for the Synthesis of the Catalyst 14	S20
General Procedure for the Synthesis of the Catalyst 15 and 16	S23
General Procedure for the Synthesis of the Catalyst 19a-c	S26
General Procedure for the Aldol Reaction	S28
General Procedure for the Aldol Reaction with catalyst 14	S28
References	\$35
NMR Data	S36
HPLC Data	S64

General Remarks

Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. Chromatographic purification of products was accomplished using forcedflow chromatography on Merck Kieselgel 60 F₂₅₄ 230-400 mesh. Thin-layer chromatography (TLC) was performed on aluminum backed silica plates (0.2 mm, 60 F_{254}). Visualization of the developed chromatogram was performed by fluorescence quenching using phosphomolybdic acid, anisaldehyde or ninhydrin stains. Melting points were determined on a Buchi 530 hot stage apparatus and are uncorrected. ¹H and ¹³C NMR spectra were recorded on Varian Mercury (200 MHz or 50 MHz) and are internally referenced to residual protio solvent signals (CDCl₃, CD₃OD). Data for ¹H NMR are reported as follows: chemical shift (δ ppm), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet, bs = broad signal, bs m = broad signalmultiplet), coupling constant and assignment. Wherever rotamers exist, are presented in brankets. Data for ¹³C NMR are reported in terms of chemical shift (δ ppm). Mass spectra were recorded on a Finnigan Surveyor MSQ Plus, with only molecular ions and major peaks being reported with intensities quoted as percentages of the base peak. IR spectra were recorded on a Nicolet 6700 FT-IR spectrometer and are reported in terms of frequency of absorption (cm⁻¹). High Performance Liquid Chromatography (HPLC) was used to determine enantiomeric excesses and was performed on a Agilent 1100 Series apparatus using Chiralpak[®]AD-H, OD-H, AS-H and AD-RH columns. The configuration of the products has been assigned by comparison to literature data. Optical rotations were measured on a Perkin Elmer 343 polarimeter. Catalysts 6 and 6 (R,R) have been synthesized following our previous protocols.¹

General Procedure for the Synthesis of the Catalysts 7 and 8

(S)-(9H-Fluoren-9-yl)methyl

2-[(1S,2S)-2-amino-1,2-

diphenylethylcarbamoyl]pyrrolidine-1-carboxylate (II)

To a stirring solution of Fmoc-proline (0.64 g, 1.88 mmol) in dry CH₂Cl₂ (15 mL) at 0 $^{\circ}$ C, (1*S*,2*S*)-diphenylethylenediamine (0.40 g, 1.88 mmol), 1-hydroxybenzotriazole (HOBt) (0.30 g, 1.88 mmol), 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide (WSCI) (0.40 g, 2.06 mmol) and Et₃N (0.30 mL, 2.06 mmol), were added consecutively. The reaction mixture was left stirring at 0 $^{\circ}$ C for 1 h, and then warmed to room temperature and left stirring for 18 h. The solvents were evaporated under *vacuo* and the crude product was purified using flash column chromatography eluting with Et₂O:MeOH (90:10). White solid; 0.43 g, 43% yield; mp 71-73 $^{\circ}$ C; [α]_D= -57.6 (*c* = 1.0, CHCl₃); IR (film) 3303, 3030, 2951, 1700, 1508, 1449, 1352, 700 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.94-7.73 (3H, m, ArH, NH), 7.71-7.50 (2H, m, ArH), 7.52-7.07 (14H, m, ArH), 5.17-5.01 (1H, m, NCH), 4.65-4.00 (5H, m, CHCH₂O, CHCH₂O, 2 x NCH), 3.76-3.35 (2H, m, NCH₂), 2.33-1.58 (6H, m, 4 x CHH και NH₂); ¹³C NMR (50 MHz, CDCl₃) δ 171.1 (171.7) (NHCO), 155.9 (155.1) (OCONH), 143.9 (Ar), 143.8 (Ar), 143.2 (Ar), 141.8

(Ar), 141.2 (Ar), 140.2 (Ar), 128.5 (Ar), 128.3 (Ar), 127.7 (Ar), 127.4 (Ar), 127.2 (Ar), 127.1 (Ar), 126.7 (Ar), 126.4 (Ar), 125.1 (Ar), 119.9 (Ar), 67.8 (OCH₂CH), 60.4 (60.9) (NCH), 59.7 (59.3) (NCH), 58.7 (58.5) (NCH), 47.1 (NCH₂), 46.9 (OCH₂CH), 28.3 (CH₂), 24.5 (CH₂); MS (ESI) 532 (M+H⁺, 100%); HRMS exact mass calculated for $[M+H]^+$ (C₃₄H₃₄O₃N₃) requires *m/z* 532.2595, found *m/z* 532.2589.

General Procedure for the coupling of amine II with isothiocyanates

To a stirring solution of amine **II** (0.20 g, 0.38 mmol) in dry CH_2Cl_2 (10 mL), a solution of the corresponding isothiocyanate² (0.38 mmol) in dry CH_2Cl_2 (2 mL) was added. The reaction mixture was left stirring at room temperature for 18 h. The solvent was evaporated under *vacuo* and the crude product was purified using flash column chromatography eluting with various mixtures of petroleum ether (40-60 °C):EtOAc (40:60).

(*S*)-(9*H*-Fluoren-9-yl)methyl 2-[(1*S*,2*S*)-2-{3-[(*S*)-2-*tert*-butoxy-2-oxo-1phenylethyl]thioureido}-1,2-diphenylethylcarbamoyl]pyrrolidine-1-carboxylate (III)

White solid; 0.26 g, 86% yield; mp 95-97 °C; $[\alpha]_{D}=$ -5.5 (*c* = 1.0, CHCl₃); IR (film) 3325, 2954, 2919, 1734, 1707, 1686, 1532, 1452, 1354, 1150, 699 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 8.26 (1H, br s, NH), 7.86-7.50 (3H, m, ArH), 7.49-6.65 (22H, m, ArH, 2 x NH), 6.16-5.52 (2H, br m, 2 x NCH), 5.25-5.03 (1H, m, NCH), 4.64-3.72 (4H, m, OCH₂, OCH₂CH, NCH), 3.68-3.20 (2H, m, NCH₂), 2.14-1.47 (4H, m, 4 x CHH), 1.31 [9H, s, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 182.9 (C=S), 172.9 (CO), 172.8 (CO), 155.7 (OCONH), 144.4 (Ar), 144.0 (Ar), 143.6 (Ar), 141.1 (Ar), 138.6 (Ar), 138.3 (Ar), 137.6 (Ar), 136.4 (Ar), 136.3 (Ar), 128.7 (Ar), 128.6 (Ar), 128.2 (Ar), 128.1 (Ar), 127.4 (Ar), 127.3 (Ar), 127.0 (Ar), 125.4 (Ar), 125.0 (Ar), 119.7 (Ar), 82.3 [*C*(CH₃)₃], 67.6 (OCH₂CH), 67.3 (NCH), 63.1 (NCH), 62.8 (NCH), 60.6 (NCH), 47.0 (NCH₂), 46.7 (OCH₂CH), 29.5 (CH₂), 27.5 [C(CH₃)₃], 24.3 (CH₂); MS (ESI) 781 (M+H⁺, 100%); HRMS exact mass calculated for [M+H]⁺ (C₄₇H₄₉O₅N₄S) requires *m*/*z* 781.3418, found *m*/*z* 781.3413.

(S)-Di-tert-butyl

2-{3-[(1S,2S)-2-{(S)-[((9H-fluoren-9-

yl)methoxy)carbonyl]pyrrolidine-2-carboxamido}-1,2diphenylethyl}thioureido}succinate (IV)

White solid; 0.26 g, 85% yield; mp 117-119 °C; $[\alpha]_{D}$ = +4.5 (*c* = 1.0, CHCl₃); IR (film) 3397, 2955, 2918, 1735, 1540, 1465, 1377, 1182 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 8.09-7.93 (1H, br m, NH), 7.76 (2H, d, *J* = 7.6 Hz, ArH), 7.65-7.29 (7H, m, ArH, NH), 7.26-6.87 (10H, m, ArH), 6.67 (1H, d, *J* = 6.8 Hz, NH), 5.92-5.67 (1H, m, NCH), 5.31-5.07 (2H, m, 2 x NCH), 4.57-3.83 (4H, m, OCH₂CH, NCH, OCH₂CH), 3.70-3.27 (2H, m, NCH₂), 2.87-2.72 (2H, m, CH₂CO), 2.08-1.76 (4H, m, 4 x CHH), 1.42 [9H, s, C(CH₃)₃], 1.35 [9H, s, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 183.0 (C=S), 172.7 (CO), 170.7 (CO), 169.8 (CO), 156.1 (OCONH), 144.4 (Ar), 144.1 (Ar), 143.8 (Ar), 141.2 (Ar), 140.3 (Ar), 140.2 (Ar), 128.4 (Ar), 128.3 (Ar), 127.7 (Ar), 127.6 (Ar), 127.5 (Ar), 127.4 (Ar), 127.0 (Ar), 125.1 (Ar), 119.9 (Ar), 82.3 [C(CH₃)₃], 81.5 [C(CH₃)₃], 67.7 (OCH₂CH), 63.8 (NCH), 60.5 (NCH), 59.5 (NCH), 54.2 (NCH), 47.1 (NCH₂), 46.9 (OCH₂CH), 37.6 (CH₂CO), 29.9 (CH₂), 28.0 [C(CH₃)₃], 27.9 [C(CH₃)₃], 24.5 (CH₂); MS (ESI) 819 (M+H⁺, 100%); HRMS exact mass calculated for [M+H]⁺ (C₄₇H₅₅O₇N₄S) requires *m/z* 819.3786, found *m/z* 819.3782.

General Procedure for the deprotection of the Fmoc protecting group

To a stirring solution of Fmoc-protected derivative (0.19 mmol) in DMF (1 mL), a solution of piperidine 50% in DMF (2 mL) was added. The reaction mixture was left stirring at room temperature for 1 h. After completion of the reaction, the solvents were removed in *vacuo*. The resulting crude was purified using flash column chromatography eluting with Petroleum ether: EtOAc (40:60) initially, followed by CH_2Cl_2 : CH_3OH (70:30).

(S)-*tert*-Butyl 2-{3-[(1S,2S)-1,2-diphenyl-2-[(S)-pyrrolidine-2carboxamido]ethyl]thioureido}-2-phenylacetate (7)

Light yellow solid; 0.11 g, 99% yield; mp 79-81 °C; $[\alpha]_D$ = +24.7 (*c* = 1.0, CH₃OH); IR (film) 3289, 2918, 2849, 1734, 1650, 1525, 1465, 1366, 1151, 699 cm⁻¹; ¹H NMR (200 MHz, CD₃OD) δ 7.47-6.98 (15H, m, ArH), 6.03-5.86 (2H, m, 2 x NCH), 5.19 (1H, d, *J* = 10.6 Hz, NCH), 3.79-3.21 (1H, m, NCH), 2.99-2.60 (2H, m, NCH₂), 1.95-1.43 (4H, m, 4 x CHH), 1.30 [9H, s, C(CH₃)₃]; ¹³C NMR (50 MHz, CD₃OD) δ 184.2 (184.0) (C=S), 176.2 (176.6) (CO), 171.4 (171.7) (CO), 140.2 (Ar), 139.8 (Ar), 138.0 (Ar), 129.7 (Ar), 129.6 (Ar), 129.4 (Ar), 129.2 (Ar), 128.8 (Ar), 128.7 (Ar), 128.6 (Ar), 128.5 (Ar), 83.2 (82.8) [*C*(CH₃)₃], 63.6 (NCH), 62.7 (NCH), 61.4 (NCH), 60.1 (NCH), 46.6 (NCH₂), 31.6 (CH₂), 27.9 (28.1) [C(*C*H₃)₃], 26.5 (CH₂); MS (ESI) 559 (M+H⁺, 100%); HRMS exact mass calculated for [M+H]⁺ (C₃₂H₃₉O₃N₄S) requires *m*/z 559.2737, found *m*/z 559.2733.

(*S*)-Di-*tert*-butyl 2-{3-[(1*S*,2*S*)-1,2-diphenyl-2-[(*S*)-(pyrrolidine-2-carboxamido]ethyl]thioureido}succinate (8)

White solid; 0.11 g, 99% yield; mp 89-91 °C; $[\alpha]_D = +35.3$ (c = 0.88, CHCl₃); IR (film) 3326, 2955, 2919, 1735, 1654, 1527, 1456, 1367, 1155, 699 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 8.56 (1H, d, J = 8.6 Hz, NH), 8.05-7.87 (1H, br m, NH), 7.46-7.01 (10H, m, ArH), 6.92-6.66 (1H, br m, NH), 5.98-5.65 (1H, m, NCH), 5.33-5.06 (2H, m, 2 x NCH), 3.97-3.68 (1H, m, NCH), 3.09-2.76 (4H, m, CH₂CO and NCH₂), 2.19-2.03 (1H, m, CHH), 1.87-1.55 (4H, m, 3 x CHH, NH), 1.43 [9H, s, C(CH₃)₃], 1.36 [9H, s, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 182.6 (C=S), 170.4 (CO), 170.1 (CO), 169.9 (CO), 138.7 (Ar), 138.6 (Ar), 128.5 (Ar), 128.3 (Ar), 128.0 (Ar), 127.7 (Ar), 127.5 (Ar), 127.4 (Ar), 82.2 [*C*(CH₃)₃], 81.4 [*C*(CH₃)₃], 64.2 (NCH), 60.3 (NCH), 58.8 (NCH), 54.0 (NCH), 47.1 (NCH₂), 37.8 (*C*H₂CO), 30.5 (CH₂), 28.0 [*C*(*C*H₃)], 27.9 [*C*(*C*H₃)], 25.8 (CH₂); MS (ESI) 597 (M+H⁺, 100%); HRMS exact mass calculated for [M+H]⁺ (C₃₂H₄₅O₅N₄S) requires *m*/z 597.3105, found *m*/z 597.3100.

General Procedure for the Synthesis of the Catalyst 9

Compounds VI and VII were synthesized following literature procedures.³

(S)-(9H-Fluoren-9-yl)methyl2-[(S)-2-(tert-butoxycarbonylamino)-2-phenylethylcarbamoyl]pyrrolidine-1-carboxylate (VIII)

To a stirring solution of **VII** (1.00 g, 3.81 mmol) in THF (20 mL), PPh₃ (2.03 g, 7.75 mmol) was added and the mixture was refluxed for 8 h. Water (8 mL) was then added and the mixture was refluxed for another 16 h. The solvents were removed and the crude residue was purified with column chromatography using CH₂Cl₂:CH₃OH (85:15). Colorless oil;³ 0.89 g, 99% yield; $[\alpha]_D$ = +43.8 (*c* = 1.0, CHCl₃); IR (film) 3304, 2955, 2924, 1700, 1493, 1455, 1365, 1169, 699 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.36-7.03 (5H, m, ArH), 5.68 (1H, br s, NH), 4.68-4.41 (1H, m, NCH), 3.00-2.86 (2H, m, NCH₂), 1.55-1.03 [11H, m, C(CH₃)₃, NH₂]; ¹³C NMR (50 MHz, CDCl₃) δ 155.6 (OCONH), 140.7 (Ar), 128.4 (Ar), 127.1 (Ar), 126.2 (Ar), 79.2 [C(CH₃)₃], 56.4 (NCH), 47.0 (NCH₂), 28.2 [C(CH₃)]; MS (ESI) 237 (M+H⁺, 100%).

To a solution of amine (0.19 g, 0.82 mmol) in CH_2Cl_2 (5 mL), Fmoc-Pro-OH (0.28 g, 0.82 mmol) was added followed by HOBt (0.13 g, 0.82 mmol), WSCI (0.17 g, 0.91 mmol) and Et_3N (0.13 mL, 0.91 mmol). The reaction mixture was left stirring for 24 h,

followed by evaporation of the solvents and purification of the resulting residue with column chromatography using EtOAc. White solid; 0.44 g, 97% yield; mp 178-180 °C; $[\alpha]_{D}$ = -17.7 (*c* = 1.0, CHCl₃); IR (film) 3342, 2955, 2922, 1697, 1524, 1451, 1363, 700 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.77 (2H, d, *J* = 6.0 Hz, ArH), 7.66-7.08 (11H, m, ArH), 7.02-6.91 (0.5H, br m, NH), 6.74-6.58 (0.5H, br m, NH), 5.84-5.68 (0.5H, br m, NH), 5.64-5.50 (0.5H, br m, NH), 4.89-4.66 (1H, m, NCH), 4.65-4.52 (4H, m, CHCH₂O, CHCH₂O, NCH), 3.75-3.32 (4H, m, 4 x NCHH), 2.34-1.70 (4H, m, 4 x CHH), 1.38 [9H, s, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 172.7 (CO), 155.7 (OCONH), 155.6 (OCONH), 143.6 (Ar), 141.1 (Ar), 128.5 (Ar), 127.6 (Ar), 127.4 (Ar), 127.3 (Ar), 126.9 (Ar), 126.1 (Ar), 124.9 (Ar), 119.9 (Ar), 79.4 [*C*(CH₃)], 67.5 (OCH₂CH), 60.4 (NCH), 55.2 (NCH), 47.0 (NCH₂), 46.8 (OCH₂CH), 44.5 (NCH₂), 30.9 (CH₂), 28.1 [C(*C*H₃)], 24.3 (CH₂); MS (ESI) 573 (M+NH₄⁺, 51%), 556 (M+H⁺, 100%); HRMS exact mass calculated for [M+H]⁺ (C₃₃H₃₈O₅N₃) requires *m*/*z* 556.2806, found *m*/*z* 556.2800.

(*S*)-Di*-tert*-butyl 2-{3-[(*S*)-1-{[((9*H*-fluoren-9-yl)methoxy)carbonyl]pyrrolidine-2carboxamido}-1-phenylethyl]thioureido}succinate (IX)

To a stirring solution of **VIII** (0.21 g, 0.38 mmol) in MeOH (5 mL), a 6N HCl/MeOH solution (0.90 mL, 5.40 mmol) was added. The mixture was left stirring for 1 h at room temperature. The volatiles were evaporated in vacuum to give the hydrogen chloride salt quantitatively. Light yellow solid; 0.19 g, 100% yield; mp 91-93 °C; $[\alpha]_{D}$ = -32.6 (*c* = 1.0, CH₃OH); IR (film) 3333, 2955, 2922, 1735, 1674, 1452, 1378, 700 cm⁻¹; ¹H NMR (200 MHz, CD₃OD) δ 7.92-7.00 (13H, m, ArH), 5.12-5.10 (1H, m, NCH), 4.62-4.39 (1H, m, NCH), 4.37-3.86 (4H, m, CHCH₂O, CHCH₂O, NCHH), 3.83-3.37 (3H, m, 3 x NCHH), 2.19-1.41 (4H, m, 4 x CHH); ¹³C NMR (50 MHz, CD₃OD) δ 175.7 (CO), 156.8 (OCONH), 145.1 (Ar), 142.4 (Ar), 135.8 (Ar), 130.4 (Ar), 130.2 (Ar), 128.8 (Ar), 128.4 (Ar), 128.1 (Ar), 126.1 (Ar), 121.0 (Ar), 68.8 (OCH₂CH), 62.0 (NCH), 55.8 (NCH), 45.8 (OCH₂CH), 43.8 (NCH₂), 43.0 (NCH₂), 31.3 (CH₂), 25.3 (CH₂); MS (ESI) 456 (M+H⁺, 100%).

To a stirring solution of the salt obtained (0.19 g, 0.39 mmol) in CH_2Cl_2 (5 mL), isothiocyanate of Asp(OtBu)-OtBu (0.11 g, 0.39 mmol) was added followed by Et_3N (0.05 mL, 0.39 mmol) at 0 °C. The mixture was stirred for 24 h at room temperature and

then the solvents were removed to give the crude product that was purified with column chromatography using Petroleum Ether:EtOAc (60:40). White solid; 0.26 g, 91% yield; mp 77-79 °C; $[\alpha]_D$ = -5.5 (c = 1.0, CHCl₃); IR (film) 3330, 2955, 2918, 1735, 1675, 1531, 1451, 1366, 1156, 699 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.86-7.17 (15H, m, ArH, 2 x NH), 6.99 (1H, br s, NH), 5.31-5.07 (1H, m, NCH), 4.56-3.91 (4H, m, NCH, OCH₂CH, OCH₂CH), 3.86-3.17 (5H, m, NCH, 4 x NCHH), 3.01-2.47 (2H, m, CH₂CO), 2.15-1.57 (4H, m, 4 x CHH), 1.37 [9H, s, C(CH₃)₃], 1.34 [9H, s, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 182.1 (C=S), 172.8 (CO), 170.2 (CO), 169.8 (CO), 155.5 (OCONH), 143.6 (Ar), 141.0 (Ar), 128.5 (Ar), 128.4 (Ar), 127.4 (Ar), 126.8 (Ar), 126.3 (Ar), 126.2 (Ar), 124.8 (Ar), 119.6 (Ar), 81.6 [*C*(CH₃)₃], 80.8 [*C*(CH₃)₃], 67.3 (OCH₂CH), 61.4 (NCH), 60.5 (NCH), 57.8 (NCH), 53.9 (NCH₂), 46.9 (OCH₂CH), 44.7 (NCH₂), 37.5 (*C*H₂CO), 29.6 (CH₂), 27.7 [C(*C*H₃)₃], 27.6 [C(*C*H₃)₃], 24.2 (CH₂); MS (ESI) 743 (M+H⁺, 100%); HRMS exact mass calculated for [M+H]⁺ (C₄₁H₅₁O₇N₄S) requires *m/z* 743.3473, found *m/z* 743.3468.

(S)-Di-tert-butyl2-{3-[(S)-1-phenyl-2-[(S)-pyrrolidine-2-
carboxamido]ethyl]thioureido}succinate (9)

To a stirring solution of **IX** (0.25 g, 0.34 mmol) in DMF (1 mL), piperidine (0.17 mL, 1.68 mmol) was added and the mixture stirred for 1 h at room temperature. DMF was evaporated in vacuum to give the crude product that was purified using flash column chromatography eluting with petroleum ether: EtOAc (40:60) initially, followed by CH₂Cl₂: CH₃OH (70:30). Light yellow solid; 0.16 g, 92% yield; mp 52-54 °C; $[\alpha]_D$ = -8.6 (*c* = 1.0, CHCl₃); IR (film) 3309, 2957, 2925, 1734, 1651, 1532, 1367, 1154, 700 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 8.27-7.99 (2H, m, 2 x NH), 7.43-7.08 (6H, m, ArH, NH), 5.29-5.09 (1H, m, NCH), 4.29-4.11 (1H, m, NCH), 3.93-3.34 (3H, m, NCH, 2 x NC*H*H), 3.00-2.72 (4H, m, CH₂CO and NCH₂), 2.11-1.51 (5H, m, 4 x C*H*H, NH), 1.33 [9H, s, C(CH₃)₃], 1.30 [9H, s, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 182.7 (C=S), 175.3 (CO), 170.1 (CO), 169.9 (CO), 139.1 (Ar), 128.3 (Ar), 127.3 (Ar), 126.5 (Ar), 81.7 [*C*(CH₃)₃], 80.9 [*C*(CH₃)₃], 60.0 (NCH), 58.2 (NCH), 57.9 (NCH), 53.8 (NCH₂), 46.7 (NCH₂), 37.6 (CH₂CO), 30.3 (CH₂), 27.8 [C(CH₃)₃], 27.7 [C(CH₃)₃], 25.4 (CH₂); MS (ESI) 521

 $(M+H^+, 100\%)$; HRMS exact mass calculated for $[M+H]^+$ (C₂₆H₄₁O₅N₄S) requires *m/z* 521.2792, found *m/z* 521.2783.

1. PPh₃, THF 1. HCI/MeOH 2. H₂O 2.CbzCl, Et₃N Boc₂O, Et₃N NHCbz NHCbz NHBoc **BocHN** N_3 CH₂Cl₂ Ρĥ Ρh Ρĥ 69% 78% XII Х XI 1. H₂/Pd, dioxane 2. Fmoc-Pro-OH, Ph 1. HCI/MeOH Ο WSCI, HOBt, Et₃N 2. SCN-Asp(OtBu)-OtBu CO₂tBu CH_2CI_2 DCM, Et₃N Ĥ š Fmoc Fmoc 60% CO₂tBu 60% XIII XIV piperidine, DMF CO₂tBu S 97% CO₂tBu 10

General Procedure for the Synthesis of the Catalyst 10

Compound **XI** was synthesized following literature procedures.⁴

(S)-Benzyl 2-(tert-butoxycarbonylamino)-1-phenylethylcarbamate (XII)

To a stirring solution of **XI** (0.31 g, 1.06 mmol) in THF (5 mL), PPh₃ (0.57 g, 2.17 mmol) was added and the mixture was refluxed for 8 h. After this time, water was added (3 mL) and the mixture was refluxed for another 16 h. The solvents were removed and the crude residue was purified with column chromatography using CH₂Cl₂:MeOH (85:15) to afford the corresponding free amine.⁴ White solid; 0.25 g, 87% yield; $[\alpha]_D$ = +29.5 (*c* = 1.0, CH₃OH); ¹H NMR (200 MHz, CD₃OD) δ 7.42-6.96 (10H, m, ArH), 5.13-4.89 (2H, m, CH₂O), 4.81-4.58 (1H, m, NCH), 2.88-2.68 (2H, m, CH₂N); ¹³C NMR (50 MHz, CD₃OD) δ 158.3 (OCONH), 142.2 (Ar), 137.9 (Ar), 129.5 (Ar), 129.3 (Ar), 128.8 (Ar), 128.7 (Ar), 128.3 (Ar), 127.4 (Ar), 67.4 (CH₂O), 58.9 (NCH), 49.8 (CH₂N); MS (ESI) 271 (M+H⁺, 100%).

To a stirring solution of the amine obtained (0.24 g, 0.89 mmol) in CH_2Cl_2 (2 mL), Boc_2O (0.29 g, 1.34 mmol) was added followed by Et_3N (0.20 mL, 1.34 mmol). The

reaction mixture was stirred for 24 h at room temperature. The solvent was evaporated and the crude residue was purified with column chromatography using EtOAc. White solid; 0.30 g, 90% yield; mp 103-105 °C; $[\alpha]_{D}$ = +22.9 (c = 1.0, CHCl₃); IR (film) 3357, 2956, 2918, 1684, 1533, 1249, 699 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.46-6.86 (10H, m, ArH), 6.23 (1H, d, J = 6.0 Hz, NH), 5.18-4.90 (3H, m, CH₂O, NH), 4.87-4.65 (1H, m, NCH), 3.47-3.23 (2H, m, CH₂N), 1.42 [9H, s, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 156.8 (OCONH), 156.2 (OCONH), 139.8 (Ar), 136.3 (Ar), 128.5 (Ar), 128.3 (Ar), 127.9 (Ar), 127.5 (Ar), 126.2 (Ar), 79.6 [$C(CH_3)_3$], 66.5(CH₂O), 56.6 (NCH), 45.5 (CH₂N), 28.2 [$C(CH_3)_3$]; MS (ESI) 371 (M+H⁺, 61%); HRMS exact mass calculated for [M+H]⁺ ($C_{21}H_{27}O_4N_2$) requires m/z 371.1965, found m/z 371.1964.

(S)-(9H-Fluoren-9-yl)methyl2-[(S)-2-(tert-butoxycarbonylamino)-1-phenylethylcarbamoyl]pyrrolididne-1-carboxylate (XIII)

To a stirring solution of **XII** (0.29 g, 0.77 mmol) in 1,4-dioxane (5 mL), Pd/C (10%, 0.11 g) was added and the mixture was stirred for 24 h under H₂ atmosphere. After filtration over celite, the solvents were removed and the crude residue was purified with column chromatography using initially EtOAc followed by CH₂Cl₂:MeOH (90:10). Colourless oil; 0.11 g, 60% yield; $[\alpha]_D$ = -1.6 (c = 1.0, CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 7.50-7.08 (5H, m, ArH), 5.38-5.14 (1H, m, NH), 4.17-3.91 (1H, m, NCH), 3.45-3.10 (2H, m, CH₂N), 2.65 (2H, br s, NH₂), 1.37 [9H, s, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 156.0 (OCONH), 142.5 (Ar), 128.5 (Ar), 127.4 (Ar), 126.3 (Ar), 79.1 [$C(CH_3)_3$], 55.4 (NCH), 47.8 (CH₂N), 28.2 [$C(CH_3)_3$]; MS (ESI) 237 (M+H⁺, 61%).

To a solution of the amine (0.11 g, 0.45 mmol) in CH₂Cl₂ (5 mL), Fmoc-Pro-OH (0.16 g, 0.45 mmol) was added followed by HOBt (0.07 g, 0.45 mmol), WSCI (0.09 g, 0.49 mmol) and Et₃N (0.07 mL, 0.49 mmol). The mixture was left stirring for 24 h followed by evaporation of the solvent and purification of the resulting residue with column chromatography using EtOAc. White solid; 0.25 g, 100% yield; mp 82-84 °C; $[\alpha]_D$ = -21.6 (*c* = 1.0, CHCl₃); IR (film) 3306, 2955, 2917, 1735, 1710, 1526, 1465, 1168, 700 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.91 (1H, d, *J* = 6.0 Hz, NH), 7.74 (2H, d, *J* = 7.0 Hz, ArH), 7.58 (2H, d, *J* = 7.0 Hz, ArH), 7.45-7.03 (9H, m, ArH), 5.29-4.90 (2H, m, NH,

NCH), 4.53-3.86 (4H, m, CHCH₂O, CHCH₂O, NCH), 3.78-3.09 (4H, m, 2 x NCH₂), 2.31-1.65 (4H, m, 4 x CHH), 1.38 [9H, s, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ (172.0) 171.6 (CO), (157.1) 156.7 (OCONH), 155.4 (154.6) (OCONH), 143.7 (Ar), 143.5 (Ar), 141.0 (Ar), 139.3 (Ar), 128.2 (Ar), 127.4 (Ar), 127.0 (Ar), 126.8 (Ar), 126.0 (Ar), 124.9 (Ar), 119.6 (Ar), (79.5) 79.1 [C(CH₃)], 67.4 (OCH₂CH), 60.5 (NCH), 54.8 (NCH), 54.5 (54.4) (NCH₂), 46.8 (OCH₂CH), 45.4 (NCH₂), 31.1 (CH₂), 28.0 [C(CH₃)], 24.3 (CH₂); MS (ESI) 556 (M+H⁺, 100%); HRMS exact mass calculated for [M+H]⁺ (C₃₃H₃₈O₅N₃) requires *m/z* 556.2806, found *m/z* 556.2809.

(S)-Di-*tert*-butyl

2-{3-[(S)-2-[(S)-1-[{[(9H-fluoren-9-

yl)methoxy]carbonyl}pyrrolidine-2-carboxamido]-2phenylethyl]thioureido}succinate (XIV)

To a stirring solution of XIII (0.26 g, 0.47 mmol) in MeOH (2 mL), a 6N HCl/MeOH solution (1.13 mL, 6.77 mmol) was added. The mixture was left stirring for 1 h at room temperature. The volatiles were evaporated in vacuum to give the hydrogen chloride salt quantitatively. Light yellow solid; 0.24 g, 100% yield; mp 116-118 °C; $[\alpha]_{D}$ = -33.6 (c = 1.0, CH₃OH); IR (film) 3304, 2954, 2922, 1737, 1674, 1541, 1452, 700 cm⁻¹; ¹H NMR (200 MHz, CD₃OD) δ 7.90-7.80 (1H, m, ArH), 7.79-7.63 (2H, m, ArH), 7.63-7.47 (2H, m, ArH), 7.46-7.09 (8H, m, ArH), 6.99-6.76 (1H, m, NH), 5.41-5.17 (1H, m, NCH), 4.58-3.69 (4H, m, CHCH₂O, CHCH₂O, NCH), 3.66-3.32 (4H, m, 4 x NCHH), 2.53-1.48 (4H, m, 4 x CHH); ¹³C NMR (50 MHz, CD₃OD) δ 175.2 (CO), 157.1 (156.7) (OCONH), 145.2 (Ar), 144.9 (Ar), 142.4 (Ar), 139.0 (Ar), 130.0 (Ar), 129.9 (Ar), 129.7 (Ar), 129.4 (Ar), 129.2 (Ar), 128.8 (Ar), 128.1 (Ar), 127.8 (Ar), 127.7 (Ar), 126.5 (Ar), 126.1 (Ar), 120.9 (Ar), 68.9 (OCH₂CH), 62.3 (NCH), 61.7 (61.5) (NCH), (52.9) 52.7 (NCH₂), 45.6 $(OCH_2CH), 44.4 (NCH_2), (31.2) 31.4 (CH_2), 25.4 (CH_2); MS (ESI) 456 (M+H^+, 100\%).$ To a stirring solution of the salt (0.24 g, 0.47 mmol) in CH₂Cl₂ (3 mL), isothiocyanate of Asp(OtBu)-OtBu (0.13 g, 0.47 mmol) was added followed by Et₃N (0.06 mL, 0.47 mmol) at 0 °C. The mixture was stirred for 24 h at room temperature, followed by evaporation of the solvent and purification of the resulting residue with column chromatography using Petroleum Ether: EtOAc (60:40). White solid; 0.22 g, 60% yield; mp 98-100 °C; $[\alpha]_D$ = -4.7 (c = 1.0, CHCl₃); IR (film) 3330, 2955, 2919, 1736, 1675, 1531, 1452, 1366, 1157, 700 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 8.00-6.98 (16H, m, ArH, 3 x NH), 5.41-5.13 (1H, m, NCH), 5.09-4.82 (1H, m, NCH), 4.61-3.85 (5H, m, OCH₂CH, OCH₂CH, NCH, NCHH), 3.82-3.29 (3H, m, 3 x NCHH), 3.01-2.70 (2H, m, CH₂CO), 2.23-1.71 (4H, m, 4 x CHH), 1.41 [9H, s, C(CH₃)₃], 1.35 [9H, s, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 183.4 (C=S), 172.4 (CO), (170.8) 170.7 (CO), 170.3 (170.2) (CO), 155.5 (154.7) (OCONH), 144.0 (Ar), 143.7 (Ar), 141.1 (Ar), 139.5 (Ar), 128.4 (Ar), 127.4 (Ar), 127.2 (Ar), 126.9 (Ar), 126.3 (Ar), 125.1 (Ar), 119.7 (Ar), 82.2 [C(CH₃)₃], 81.1 [C(CH₃)₃], 67.4 (OCH₂CH), 60.8 (NCH), 56.2 (NCH), 55.5 (NCH), 54.1 (NCH₂), 48.5 (NCH₂), 47.0 (OCH₂CH), 37.5 (CH₂CO), 29.5 (CH₂), 27.8 [C(CH₃)₃], 27.7 [C(CH₃)₃], 24.3 (CH₂); MS (ESI) 743 (M+H⁺, 100%); HRMS exact mass calculated for [M+H]⁺ (C₄₁H₅₁O₇N₄S) requires *m*/z 743.3473, found *m*/z 743.3477.

(S)-Di-tert-butyl

2-{3-[(S)-2-phenyl-2-[(S)-pyrrolidine-2-

carboxamido]ethyl]thioureido}succinate (10)

To a stirring solution of **XIV** (0.17 g, 0.23 mmol) in DMF (1 mL), piperidine (0.11 mL, 1.13 mmol) was added and the mixture was stirred for 1 h at room temperature. DMF was evaporated in vacuum to give a residue that was purified with column chromatography using initially Petroleum Ether:EtOAc (60:40) followed by CH₂Cl₂: MeOH (90:10). Yellow solid; 0.12 g, 97% yield; mp 73-75 °C; $[\alpha]_{D}$ = +19.4 (*c* = 1.0, CHCl₃); IR (film) 3303, 2955, 2917, 1735, 1653, 1526, 1456, 1367, 1155, 699 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 8.46-8.18 (1H, m, NH), 7.69-7.13 (7H, m, ArH, 2 x NH), 5.66-5.34 (1H, m, NCH), 4.49-3.58 (4H, m, NCH₂, 2 x NCH), 3.23-2.52 (4H, m, CH₂CO and NCH₂), 2.29-1.57 (5H, m, 4 x CHH, NH), 1.40 [18H, s, 2 x C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 183.6 (C=S), 175.2 (CO), 173.6 (CO), 169.2 (CO), 138.5 (Ar), 128.8 (Ar), 127.8 (Ar), 126.3 (Ar), 82.4 [*C*(CH₃)₃], 82.2 [*C*(CH₃)₃], 60.4 (NCH), 55.6 (NCH), 51.2 (NCH), 51.0 (NCH₂), 46.9 (NCH₂), 36.2 (*C*H₂CO), 30.3 (CH₂), 27.9 [C(*C*H₃)₃], 27.9 [C(*C*H₃)₃], 25.9 (CH₂); MS (ESI) 521 (M+H⁺, 100%); HRMS exact mass calculated for [M+H]⁺ (C₂₆H₄₁O₅N₄S) requires *m*/z 521.2792, found *m*/z 521.2782.

General Procedure for the Synthesis of the Catalyst 11

(S)-Di-tert-butyl

2-{3-[(1*S*,2*S*)-2-{(*S*)-[((9*H*-fluoren-9-

yl)methoxy)carbonyl]pyrrolidine-2-carbothioamido}-1,2diphenylethyl}thioureido}succinate (XV)

To a stirring solution of IV (0.17 g, 0.21 mmol) in absolute THF (10 mL), Lawesson's reagent (0.13 g, 0.32 mmol) was added and the mixture was refluxed for 24 h. The solvents were removed and the residue was purified with column chromatography using Petroleum Ether: EtOAc (1:1). Light yellow solid; 0.14 g, 81% yield; mp 96-98 °C: [a]n= +2.70 (*c* = 1.0, CHCl₃); IR (film) 3304, 2955, 2917, 1735, 1674, 1531, 1453, 1365, 1153, 697 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 10.41 (0.6H, br s, NHC=S), 10.05 (0.4H, br s, NHC=S), 8.01-6.88 (20H, m, ArH, 2 x NH), 6.15-5.65 (2H, m, 2 x NCH), 5.40-4.96 (1H, m, NCH), 4.94-4.49 (1H, m, NCH), 4.44-3.41 (5H, m, OCH₂CH, OCH₂CH, NCH₂), 3.08-2.61 (2H, m, CH₂CO), 2.48-1.87 (4H, m, 4 x CHH), 1.41 [9H, s, C(CH₃)₃], 1.37 [9H, s, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 203.9 (C=S), 183.5 (C=S), 170.1 (CO), 170.0 (CO), 155.3 (154.6) (OCONH), 143.9 (Ar), 143.4 (Ar), 140.8 (Ar), 137.6 (Ar), 137.5 (Ar), 137.2 (Ar), 137.1 (Ar), 136.9 (Ar), 136.6 (Ar), 135.3 (Ar), 128.3 (Ar), 128.2 (Ar), 127.8 (Ar), 127.4 (Ar), 127.2 (Ar), 126.7 (Ar), 125.1 (Ar), 119.5 (Ar), 82.2 [C(CH₃)₃], 81.1 [C(CH₃)₃], 67.7 (OCH₂CH), 67.3 (NCH), 62.5 (NCH), 60.2 (NCH), 53.9 (NCH), (47.6) 47.5 (NCH₂), 46.7 (46.5) (OCH₂CH), (36.9) 36.7 (CH₂CO), 29.9 (29.3) (CH₂), 27.6 $[C(CH_3)_3]$, 27.5 $[C(CH_3)_3]$, (23.6) 23.1 (CH_2) ; MS (ESI) 835 $(M+H^+, 100\%)$; HRMS exact mass calculated for $[M+H]^+$ (C₄₇H₅₅O₆N₄S₂) requires m/z 835.3558, found *m/z* 835.3563.

(S)-Di-*tert*-butyl 2-{3-[(1S,2S)-1,2-diphenyl-2-[(S)-(pyrrolidine-2-carbothioamido]ethyl]thioureido}succinate (11)

To a stirring solution of **XV** (0.06 g, 0.07 mmol) in DMF (0.5 mL), piperidine (0.04 mL, 0.36 mmol) was added and the mixture was stirred for 1 h at room temperature. DMF was evaporated in vacuum to give a residue that was purified with column chromatography using initially Petroleum Ether:EtOAc (60:40) followed by CH₂Cl₂: MeOH (90:10). White solid; 0.04 g, 98% yield; mp 82-84 °C; $[\alpha]_{D}$ = +21.4 (*c* = 1.0, CHCl₃); IR (film) 3355, 2955, 2918, 1733, 1526, 1456, 1367, 1153, 698 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 10.86 (1H, br s, NHC=S), 7.73-7.07 (12H, m, ArH, 2 x NH), 6.89-6.38 (1H, m, NCH), 6.21-5.84 (1H, m, NCH), 5.25-4.93 (1H, m, NCH), 4.32-4.01 (1H, m, NCH), 3.28-2.67 (4H, m, CH₂CO, NCH₂), 2.47-1.65 (5H, m, 4 x CHH, NH), 1.43 [9H, s, C(CH₃)₃], 1.39 [9H, s, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 205.7 (C=S), 181.5 (NHC=SNH), 170.2 (CO), 169.8 (CO), 137.9 (Ar), 136.9 (Ar), 128.7 (Ar), 128.5 (Ar), 128.1 (Ar), 127.8 (Ar), 82.5 [*C*(CH₃)₃], 81.9 [*C*(CH₃)₃], 67.9 (NCH), 63.2 (NCH), 62.8 (NCH), 54.1 (NCH), 47.2 (NCH₂), 38.0 (*C*H₂CO), 29.7 (CH₂), 28.0 [*C*(*C*H₃)₃], 27.9 [*C*(*C*H₃)₃], 25.8 (CH₂); MS (ESI) 623 (M+H⁺, 100%); HRMS exact mass calculated for [M+H]⁺ (C₃₂H₄₅O₄N₄S₂) requires *m*/*z* 613.2877, found *m*/*z* 613.2874.

General Procedure for the Synthesis of the Catalyst 12

(S)-*tert*-Butyl 2-{(S)-2-[(1S,2S)-2-{3-[3,5-bis(trifluoromethyl)phenyl]thioureido}-1,2diphenylethylcarbamoyl]pyrrolidine-1-carbonyl}pyrrolidine-1-carboxylate (XVI)

To a solution of the amine 6 (0.10 g, 0.17 mmol) in CH_2Cl_2 (2 mL), Boc-Pro-OH (0.04 g, 0.17 mmol) was added followed by HOBt (0.03 g, 0.17 mmol), WSCI (0.04 g, 0.19 mmol) and Et₃N (0.03 mL, 0.19 mmol). The mixture was left stirring for 24 h followed by evaporation of the solvent and purification of the resulting residue with column chromatography using Petroleum Ether: EtOAc (40:60). White solid; 0.11 g, 83% yield; mp 141-143 °C; $[\alpha]_{D} = -9.3$ (c = 1.0, CHCl₃); IR (film) 3304, 2918, 2850, 1736, 1670, 1536, 1380, 1277, 1136, 699 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 9.46-9.33 (0.5H, br m, NH), 8.83-8.67 (0.5H, br m, NH), 8.51 (1H, d, J = 7.4 Hz, NH), 8.29-8.03 (2H, m, 2 x ArH), 7.68-7.47 (1H, m, ArH), 7.45-6.96 (11H, m, ArH, NH), 6.19-5.97 (1H, m, NCH), 5.73-5.36 (1H, m, NCH), 5.35-4.82 (1H, m, NCH), 4.52-4.22 (1H, m, NCH), 3.75-3.23 (4H, m, 2 x NCH₂), 2.47-1.68 (8H, m, 8 x CHH), 1.52 [9H, s, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 181.7 (180.8) (C=S), 172.7 (173.9) (CO), 172.0 (171.6) (CO), 155.4 (154.6 (OCONH), 141.3 (Ar), 140.8 (Ar), 138.2 (138.8) (Ar), 131.6 (q, J = 33.6 Hz, Ar), 128.5 (Ar), 128.4 (Ar), 128.2 (Ar), 128.0 (Ar), 127.7 (Ar), 127.5 (Ar), 123.7 (Ar), 123.2 $(q, J = 272.7 \text{ Hz}, \text{CF}_3)$, 121.9 (Ar), 80.7 (79.6) [C(CH₃)₃], 63.0 (62.7) (NCH), 61.8 (61.7) (NCH), 58.9 (60.0) (NCH), 58.7 (57.4) (NCH), 47.4 (46.9) (NCH₂), 47.1 (46.5) (NCH₂), 31.5 (29.7) (CH₂), 29.3 (29.0) (CH₂), 28.5 (28.4) [C(CH₃)], 24.1 (25.6) (CH₂), 22.8 (22.6) (CH₂); MS (ESI) 776 (M-H⁻, 100%); HRMS exact mass calculated for $[M+H]^+$ $(C_{38}H_{42}F_6O_4N_5S)$ requires m/z 778.2856, found m/z 778.2861.

(*S*)-*N*-[(1*S*,2*S*)-2-{3-[3,5-Bis(trifluoromethyl)phenyl]thioureido}-1,2-diphenylethyl]-1-[(*S*)-pyrrolidine-2-carbonyl]pyrrolidine-2-carboxamide (12)

To a stirring solution of **XVI** (0.08 g, 0.10 mmol) in MeOH (1 mL), a 6N HCl/MeOH solution (0.24 mL, 1.42 mmol) was added. The mixture was left stirring for 1 h at room temperature. The volatiles were evaporated in *vacuo* and the resulting hydrochloride salt was suspended in CH_2Cl_2 (4 mL) and a sat. aq. NaHCO₃ solution (4 mL) was added. The biphasic system was stirred vigorously for 10 min and then transferred to a separating

funnel. The organic layer was separated and the aqueous layer was washed with CH₂Cl₂ (3 x 3mL). The combined organics were washed with brine (1 x 2 mL), dried over Na₂SO₄ and the solvents were removed to afford the desired compound quantitatively. Light yellow solid; 0.07 g, 100% yield; mp 149-151 °C; $[\alpha]_{D}$ = -45.1 (*c* = 1.0, CH₃OH); IR (film) 3253, 2923, 2852, 1734, 1627, 1572, 1384, 1276, 1134, 699 cm⁻¹; ¹H NMR (200 MHz, CD₃OD) δ 8.24-8.13 (2H, m, 2 x ArH), 7.66-7.59 (1H, m, ArH), 7.36-7.08 (10H, m, ArH), 6.16 (1H, d, *J* = 9.6 Hz, NCH), 5.40 (1H, d, *J* = 9.6 Hz, NCH), 4.56-4.41 (1H, m, NCH), 4.00-3.84 (1H, m, NCH), 3.65-3.44 (2H, m, NCH₂), 3.14-2.63 (2H, m, NCH₂), 2.33-1.53 (8H, m, 8 x CHH); ¹³C NMR (50 MHz, CD₃OD) δ 182.6 (C=S), 174.1 (173.9) (CO), 172.9 (172.8) (CO), 143.0 (Ar), 140.0 (Ar), 139.7 (Ar), 132.7 (q, *J* = 33.1 Hz, Ar), 129.6 (Ar), 129.5 (Ar), 129.1 (Ar), 63.9 (NCH), 61.7 (NCH), 60.0 (NCH), 59.8 (NCH), 48.2 (NCH₂), 48.0 (NCH₂), 30.7 (CH₂), 30.4 (CH₂), 26.7 (CH₂), 25.8 (CH₂); MS (ESI) 678 (M+H⁺, 100%); HRMS exact mass calculated for [M+H]⁺ (C₃₃H₃₄F₆O₂N₅S) requires *m/z* 678.2332, found *m/z* 678.2322.

General Procedure for the Synthesis of the Catalyst 13

(S)-1-(9H-Fluoren-9-yl)methyl 2-((1S,2S)-2-(tert-butoxycarbonylamino)-1,2diphenylethyl) pyrrolidine-1,2-dicarboxylate (XIX)

A stirring solution of (1S,2S)-2-amino-1,2-diphenylethanol (**XVII**) (0.20 g, 0.94 mmol) in CH₂Cl₂ (8 mL) was cooled at 0 °C and Et₃N (14 µL, 1.04 mmol) was added, followed by addition of a solution of Boc₂O (0.23 g, 1.04 mmol, 1.1 equiv.) in CH₂Cl₂ (2 mL). The

reaction mixture was stirred at 0 °C for 1 h and then warmed at room temperature and left stirring for 24 h. The solvent was evaporated and the residue was purified using flash column chromatography eluting with petroleum ether: EtOAc (80:20) initially, followed by CH₂Cl₂: CH₃OH (90:10). White solid; 0.27 g, 91% yield; mp: 118-120 °C; $[\alpha]_D$ = -10.2 (*c* = 1.0, CHCl₃); IR (film) 2914, 2361, 1683, 1492, 1365, 1163, 697 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.63-6.85 (10H, m, ArH), 5.64 (1H, s, NH), 4.84 (2H, m, NCH and OCH), 3.39 (1H, s, OH), 1.33 [9H, s, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 155.7 (OCONH), 140.6 (Ar), 139.8 (Ar), 128.0 (Ar), 127.8 (Ar), 127.2 (Ar), 127.0 (Ar), 126.6 (Ar), 125.9 (Ar), 79.4 [C(CH₃)₃], 76.7 (OCH), 60.3 (NCH), 27.9 [C(CH₃)₃]; MS (ESI) 314 (M+H⁺, 100%).

To a stirring solution of Fmoc-L-Pro-OH (0.15 g, 0.42 mmol) in CH₂Cl₂ (10 mL) at 0 °C. compound **XVIII** (0.13 g, 0.42 mmol) was added followed by dicyclohexylcarbodiimide (DCC) (0.096 g, 0.47 mmol) and 4-dimethylaminopyridine (DMAP) (0.005 g, 0.04 mmol). The mixture was left stirring at 0 °C for 1 h and then warmed at room temperature and left stirring for 24 h. Dicyclohexylurea (DCU) was filtered and the solvent was evaporated. The residue was purified using flash column chromatography eluting with petroleum ether: EtOAc (70:30). Colourless oil; 0.27 g, 100% yield; $[\alpha]_D = -23.7$ (c = 1.0, CHCl₃); IR (film) 3348, 2956, 2917, 1736, 1710, 1465, 1377, 1164, 698 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 8.03-7.59 (3H, m, ArH), 7.58-7.08 (14H, m, ArH), 7.08-6.73 (1H, m, ArH), 6.18-6.05 (1H, m, NH), 5.60 (0.5H, d, *J* = 9.1 Hz, OCH), 5.37 (0.5H, d, *J* = 9.1 Hz, OCH), 5.29-5.03 (1H, m, NCH), 4.59-4.37 (2H, m, OCH₂CH), 4.34-4.08 (1.5H, m, 0.5 x NCH and OCH₂CH), 3.88 (0.5H, t, J = 18.6 Hz, NCH), 3.74-3.34 (2H, m, NCH₂), 2.31-1.73 (4H, m, 4 x CHH), 1.34 [9H, d, J = 18.6 Hz, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 171.8 (171.3) (CO), (155.0) 154.9 (154.8) (OCONH), 154.1 (OCONH), 144.0 (143.8) (Ar), 143.4 (141.1) (Ar), 140.9 (Ar), 138.8 (Ar), 138.3 (Ar), 136.5 (136.3) (Ar), 128.2 (Ar), 128.1 (Ar), 128.0 (Ar), 127.9 (Ar), 127.5 (Ar), 127.4 (Ar), 127.3 (Ar), 126.8 (Ar), 126.7 (Ar), 126.4 (Ar), 124.9 (Ar), (119.8) 119.6 (Ar), (79.7) 79.5 [C(CH₃)₃], (78.0) 77.2 (OCH), 67.5 (67.4) (OCH₂CH), 59.0 (NCH), 58.7 (NCH), 47.0 (46.9) (NCH₂), (46.8) 46.2 (OCH₂CH), (30.7) 29.3 (CH₂), 28.0 [C(CH₃)₃], (28.1) 27.9 [C(CH₃)₃], 23.9 (23.2) (CH₂); MS (ESI) 633 (M+H⁺, 34%); HRMS exact mass calculated for $[M+H]^+$ $(C_{39}H_{41}O_6N_2)$ requires m/z 633.2959, found m/z 633.2951.

(S)-1-(9H-Fluoren-9-yl) methyl 2-((1S,2S)-2-(3-((S)-1,4-di-tert-butoxy-1,4dioxobutan-2-yl) thioureido)-1,2-diphenyl ethyl) pyrrolidine-1,2-dicarboxylate (XX)

To a stirring solution of compound XIX (0.14 g, 0.22 mmol) in CH₂Cl₂ (6 mL), a 1:1 TFA/ CH₂Cl₂ solution (10.75 mmol, 1.65 mL) was added and the mixture was left stirring for 1 h. The volatiles removed in vacuo followed by addition of CH₂Cl₂ (6 mL) and evaporation. This process was repeated three times in order to remove the excess of TFA. The resulting solid residue was dried to afford the TFA salt quantitatively (0.14 g, 0.22 mmol, 100%). To a stirring suspension of the salt in CH_2Cl_2 (6 mL) at 0 °C, a solution of SCN-Asp(OtBu)-OtBu (0.06 g, 0.22 mmol) in CH₂Cl₂ was added, followed by N,Ndiisopropylethylamine (DIPEA) (0.04 mL, 0.22 mmol). The mixture was stirred at 0 °C for 30 min., warmed to room temperature and left stirring for 24 h. The solvent was removed and the residue was purified using flash column chromatography eluting with petroleum ether: EtOAc (1:1). White solid; 0.12 g, 68% yield; mp 102-104 °C; $[\alpha]_D = -4.2$ (*c* = 1.0, CHCl₃); IR (film) 3356, 2955, 2917, 2849, 1736, 1526, 1465, 1418, 1376, 1162, 758 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.83-7.57 (3H, m, ArH), 7.56-7.01 (15H, m, 13) x ArH, 2 x NH), 6.99-6.81 (2H, m, ArH), 6.29-6.03 (1H, m, NCH), 5.25-4.98 (1H, m, OCH), 4.62-4.39 (2H, m, OCH₂CH), 4.34-4.20 (1H, m, NCH), 4.19-4.03 (1H, m, NCH), 3.85-3.27 (3H, m, NCH₂, OCH₂CH), 2.97-2.68 (2H, m, CH₂CO), 2.37-1.71 (4H, m, 4 x CHH), 1.43 [9H, m, C(CH₃)₃], 1.35 [9H, m, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 182.1 (C=S), 171.8 (171.2) (CO), 170.5 (CO), 169.8 (CO), 155.1 (154.3) (OCONH), 144.2 (144.0) (Ar), 143.8 (143.5) (Ar), 141.2 (Ar), 141.0 (140.9) (Ar), 136.4 (Ar), 136.3 (135.8) (Ar), 128.5 (Ar), 128.3 (Ar), 128.1 (Ar), 127.7 (Ar), 127.5 (Ar), 127.4 (Ar), 127.1 (Ar), 126.9 (Ar), 126.6 (Ar), 126.5 (Ar), 125.2 (Ar), 125.0 (Ar), 119.8 (119.7) (Ar), 82.4 (82.2) [C(CH₃)₃], 81.4 (81.2) [C(CH₃)₃], (78.2) 77.2 (OCH), (67.6) 67.5 (OCH₂CH), 62.3 (NCH), 59.2 (58.8) (NCH), (54.4) 54.2 (NCH), 47.1 (46.9) (NCH₂), 46.4 (OCH₂CH), 37.4 (CH₂CO), 29.6 (29.3) (CH₂), 27.9 [C(CH₃)₃], 27.8 [C(CH₃)₃], 24.1 (23.3) (CH₂); MS (ESI) 820 (M+H⁺, 100%); HRMS exact mass calculated for $[M+H]^+$ $(C_{47}H_{54}O_8N_3S)$ requires m/z 821.0114, found m/z 821.0107.

(S)-Di-tert-butyl2-(3-((1S,2S)-1,2-diphenyl-2-((S)-pyrrolidine-2-carbonyloxy)ethyl)thioureido)succinate (13)

Compound **XX** (0.10 g, 0.12 mmol) was deprotected following the general procedure for the removal of Fmoc. The crude product was purified using flash column chromatography eluting with petroleum ether: EtOAc (40:60) initially, followed by CH₂Cl₂: CH₃OH (70:30). White solid; 0.07 g, 95% yield; mp 60-62 °C; $[\alpha]_{D}$ = +16.4 (*c* = 1.0, CHCl₃); IR (film) 3347, 2955, 2916, 1732, 1539, 1455, 1374, 1152, 686 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.43-6.88 (12H, m, ArH, 2 x NH), 6.19-6.01 (1H, m, NCH), 5.26-5.04 (1H, m, OCH), 3.88-3.68 (1H, m, NCH), 3.18-2.74 (5H, m, CH₂CO, NCH₂ and NCH), 2.25-2.01 (1H, m, *CH*H), 1.99-1.57 (4H, m, 3 x *CH*H and NH), 1.40 [9H, s, C(*C*H₃)₃], 1.35 [9H, s, C(*C*H₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 182.2 (C=S), 174.8 (174.5) (CO), 170.6 (CO), 170.0 (169.7) (CO), 137.6 (Ar), 136.4 (Ar), 128.3 (Ar), 128.2 (Ar), 127.7 (Ar), 127.4 (Ar), 127.2 (Ar), 126.9 (Ar), 82.2 [*C*(CH₃)₃], 81.2 [*C*(CH₃)₃], 78.1 (77.2) (OCH), 62.3 (NCH), 59.7 (NCH), 54.2 (NCH), 46.7 (NCH₂), 37.6 (*C*H₂CO), 30.0 (CH₂), 28.0 [C(*C*H₃)₃], 27.8 [C(*C*H₃)₃], 25.2 (CH₂); MS (ESI) 598 (M+H⁺, 100%); HRMS exact mass calculated for [M+H]⁺ (C₃₂H₄₄O₆N₃S) requires *m*/*z* 598.2945, found *m*/*z* 598.2927.

General Procedure for the Synthesis of the Catalyst 14

(S)-tert-Butyl 2-((1S,2S)-2-hydroxy-1,2-diphenylethylcarbamoyl)pyrrolidine-1carboxylate (XXI)

To a stirring solution of Boc-L-proline (0.20 g, 0.94 mmol) in dry CH₂Cl₂ (10 mL) at 0 $^{\circ}$ C, (1*S*,2*S*)-2-amino-1,2-diphenvlethanol (**XVII**) (0.20 g, 0.94 mmol)], 1hydroxybenzotriazole (HOBt) (0.14 g, 0.94 mmol), 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide (WSCI) (0.20 g, 1.03 mmol) and Et₃N (0.15 mL, 1.03 mmol) were added consecutively. The reaction mixture was left stirring at 0 ° C for 1 h, and then warmed to room temperature and left stirring for 18 h. The solvents were evaporated under vacuo and the crude product was purified using flash column chromatography eluting with EtOAc. White solid; 0.37 g, 96% yield; mp: 169-171 °C; $[\alpha]_D = -75.6$ (c = 1.0, CHCl₃); IR (film) 3345, 2953, 2917, 1675, 1521, 1427, 1366, 1169, 697 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.92 (1H, d, J = 7.2 Hz, NH), 7.43-6.95 (10 H, m, ArH), 5.17-5.01 (1H, m, OCH), 4.94-4.76 (1H, m, NCH), 4.39-3.97 (2H, m, NCH and OH), 3.45-3.07 (2H, m, NCH₂), 2.19-1.57 (4H, m, 4 x CHH), 1.35 [9H, m, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 172.5 (171.8) (CO), 155.4 (154.3) (OCONH), 141.0 (Ar), 139.4 (Ar), 128.0 (Ar), 127.8 (Ar), 127.2 (Ar), 127.0 (Ar), 126.9 (Ar), 126.1 (Ar), 80.1 [C(CH₃)₃], 77.2 (76.8) (OCH), 60.4 (NCH), 59.5 (59.3) (NCH), 46.7 (NCH₂), 30.5 (CH₂), 28.0 (27.7) [C(CH₃)₃], 24.3 (23.2) (CH₂); MS (ESI) 411 (M+H⁺, 100%); HRMS exact mass calculated for $[M+H]^+$ $(C_{24}H_{31}O_4N_2)$ requires m/z 411.2278, found m/z 411.2272.

(S)-tert-Butyl 2-((1S,2S)- 2-(3,5-bis (trifluoromethyl) phenyl carbamo thioyloxy)-1,2diphenylethylcarbamoyl) pyrrolidine-1-carboxylate (XXII)

To a stirring solution of compound **XXI** (0.18 g, 0.45 mmol) in dry THF (5 mL) at room temperature under argon, 1-isothiocyanato-3,5-bis(trifluoromethyl)benzene (0.09 mL, 0.50 mmol) was added, followed by a suspension of NaH (0.01 g, 0.50 mmol) in dry THF (5 mL). The mixture was left stirring for 24 h, followed by solvent evaporation and purification with flash column chromatography eluting with petroleum ether: EtOAc (60:40). White solid; 0.24 g, 77% yield; mp 99-101 °C; $[\alpha]_D$ = -54.5 (*c* = 1.0, CHCl₃); IR (film) 3291, 2955, 2918, 2850, 1735, 1668, 1540, 1472, 1379, 1278, 1176, 1138, 699 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 10.55-9.92 (1H, m, NH), 8.49-7.95 (2H, m, ArH), 7.64

(1H, s, ArH), 7.49-6.62 (12H, m, 10 x ArH, NH and NCH), 5.67 (1H, s, OCH), 4.58 (1H, s, NCH), 3.51-3.02 (2H, m, NCH₂), 2.30-1.63 (4H, m, 4 x C*H*H), 1.38 [9H, s, C(CH₃)₃]; ¹³C NMR (50 MHz, CDCl₃) δ 187.1 (C=S), 171.8 (CO), 156.0 (154.8) (OCONH), 139.2 (Ar), 137.4 (Ar), 136.1 (Ar), 131.8 (q, *J* =33.4 Hz, Ar), 128.3 (Ar), 127.5 (Ar), 127.3 (Ar), 125.7 (Ar), 122.2 (q, *J* = 272.8 Hz, CF3), 120.2 (Ar), 118.2 (Ar), 114.8 (Ar), 80.5 [C(CH₃)₃], 77.2 (OCH), 59.6 (59.9) (NCH), 57.3 (57.5) (NCH), 47.0 (NCH₂), 29.6 (CH₂), 28.1 [C(CH₃)₃], 24.3 (23.9) (CH₂); MS (ESI) 682 (M+H⁺, 30%); HRMS exact mass calculated for [M+H]⁺ (C₃₃H₃₄F₆O₄N₃S) requires *m/z* 682.2169, found *m/z* 682.2161.

(S)-2-[(1S,2S)-2-3,5-Bis(trifluoromethyl)phenylcarbamothioyloxy]-1,2diphenylethylcarbamoyl) pyrrolidinium 2,2,2-trifluoroacetate (14)

To a stirring solution of compound XXII (0.12 g, 0.17 mmol) in CH₂Cl₂ (6 mL), a 1:1 TFA/CH₂Cl₂ solution (8.65 mmol, 1.33 mL) was added and the mixture was left stirring for 1 h. The volatiles removed in vacuo and a three times repeated addition of CH₂Cl₂ (6 mL) and evaporation was followed, in order to remove the excess of TFA. A twice repeated addition of CHCl₃ (6 mL) and evaporation, afforded a light yellow solid that was further suspended in a small volume of CHCl₃ (0.5 mL) and precipitated with petroleum ether (8 mL). The resulting white solid was filtered, washed three times with petroleum ether (8 mL) and dried to afford the trifluoroacetate salt 14. White solid; 0.11 g, 91% yield; mp 97-99 °C; $[\alpha]_{D}$ = -9.3 (c = 1.0, CHCl₃); IR (film) 3239, 2955, 2918, 2850, 1735, 1672, 1563, 1468, 1379, 1278, 1180, 1136, 700 cm⁻¹; ¹H NMR (200 MHz, CD₃OD) δ 8.18-8.01 (2H, m, ArH), 7.74-6.96 (13H, m, 11 x ArH, 2 x NH), 6.32 (0.6H, d, J = 12 Hz, OCH), 6.14 (0.4H, dd, J = 7.2 Hz and 4.0 Hz, OCH), 4.58-4.46 (0.5H, m, NCH), 4.44-4.26 (0.5H, m, NCH), 4.21-3.98 (1H, m, NCH), 3.31-3.06 (2H, m, NCH₂), 2.57-1.63 (6H, m, 4 x CHH, 2 x NH); ¹³C NMR (50 MHz, CD₃OD) δ 188.5 (C=S), 168.4 (q, J= 15.9 Hz, CF₃CO₂) 168.7 (168.2) (CO), 142.8 (143.5) (Ar), 142.2 (142.5) (Ar), 141.7 (141.8) (Ar), 133.2 (q, J = 33.2 Hz, Ar), 130.2 (Ar), 129.6 (Ar), 129.2 (Ar), 129.1 (Ar), 128.1(Ar), 127.4 (Ar), 124.5 (q, J = 272.1 Hz, CF₃), 119.8 (Ar), 117.4 (Ar), 114.9 (q, J = 243.9 Hz, CF₃), 76.9 (80.7) (OCH), 60.7 (m, NCH), 57.9 (58.6) (m, NCH), 47.2 (m, NCH₂), 30.6 (m, CH_2) , 24.5 (m, CH_2) ; MS (ESI) 582 $(M+H^+, 100\%)$; HRMS exact mass calculated for $[M+H]^+$ (C₂₈H₂₆F₆O₂N₃S) requires m/z 582.1644, found m/z 582.1626.

General Procedure for the Synthesis of the Catalysts 15 and 16

(S)-(9H-Fluoren-9-yl)methyl2-[(1S,2S)-2-isothiocyanato-1,2-diphenylethylcarbamoyl]pyrrolidine-1-carboxylate (XXIII)

To a stirring solution of compound **II** (0.27 g, 0.51 mmol) in CH_2Cl_2 (5 mL), a saturated aqueous solution of NaHCO₃ (5 mL) was added at 0 °C and left stirring vigorously for 10 min. The stirring was stopped and thiophosgene (0.043 mL, 0.57 mmol) was added to the organic layer *via* syringe. The mixture was stirred vigorously at room temperature for 1 h. The two layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined organics were dried over Na_2SO_4 and the solvent was evaporated to afford the isothiocyanate compound **XXIII** quantitatively. It was used immediately to the next step without purification.

General procedure for the coupling of compound XXIII with aromatic amines

To a stirring solution of freshly prepared isothiocyanate **XXIII** (0.10 g, 0.17 mmol) in CH_2Cl_2 (5 mL), a solution of the appropriate amine (0.17 mmol) in CH_2Cl_2 (2 mL) was added and the mixture was left stirring for 24 h. The solvent was evaporated in *vacuo* and the residue was purified by column chromatography using petroleum ether: EtOAc=40:60.

(S)-(9H-Fluoren-9-yl)methyl 2-((1S,2S)-1,2-diphenyl-2-(3-phenylthioureido) ethylcarbamoyl)pyrrolidine-1-carboxylate (XXIV)

White solid; 0.08 g, 70% yield; mp 119-121 °C; $[\alpha]_D$ = -76.2 (*c* = 1.0, CHCl₃); IR (film) 3296, 3061, 2952, 1680, 1530, 1496, 1450, 1353, 1120, 759, 699 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 8.56 (1H, s, NH), 8.19 (1H, d, *J* = 7.4 Hz, NH), 8.15-8.01 (1H, br m, ArH), 7.73-7.56 (2H, m, ArH), 7.44 (2H, m, ArH), 7.36-6.75 (19H, m, 18 x ArH and NH), 6.11-5.79 (1H, m, NCH), 5.23-5.01 (1H, m, NCH), 4.38-3.73 (4H, m, OCH₂CH, NCH, OCH₂CH), 3.63-3.45 (1H, m, NCHH), 3.42-3.21 (1H, m, NCHH), 2.03-1.58 (4H, m, 4 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 180.7 (C=S), 172.4 (CO), 155.6 (154.9) (OCONH), 143.7 (Ar), 143.4 (Ar), 140.9 (Ar), 138.6 (Ar), 137.6 (Ar), 137.3 (Ar), 136.4 (Ar), 136.2 (Ar), 129.4 (Ar), 128.4 (Ar), 128.3 (Ar), 128.1 (Ar), 127.7 (Ar), 127.6 (Ar), 127.4 (Ar), 127.3 (Ar), 123.6 (Ar), 119.7 (Ar), (67.6) 67.4 (OCH₂CH), 63.1 (62.7) (NCH), 60.8 (NCH), (60.1) 59.7 (NCH), 47.2 (NCH₂), 46.8 (OCH₂CH), (29.5) 29.2 (CH₂), (23.4) 24.2 (CH₂); MS (ESI) 667 (M+H⁺, 100%); HRMS exact mass calculated for [M+H]⁺ (C₄₁H₃₉O₃N₄S) requires *m/z* 667.8378, found *m/z* 667.8372.

(S)-(9H-Fluoren-9-yl)methyl 2-((1S,2S)-2-(3-methyl-3-phenylthioureido)-1,2diphenylethylcarbamoyl)pyrrolidine-1-carboxylate (XXV)

White solid; 0.09 g, 78% yield; mp 105-107 °C; $[\alpha]_D$ = -86.3 (*c* = 1.0, CHCl₃); IR (film) 3378, 2955, 2917, 2849, 1736, 1518, 1466, 1377, 1117, 699 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 8.29-8.18 (1H, m, NH), 7.78 (2H, d, *J* = 7.0 Hz, ArH), 7.63 (2H, m, ArH), 7.56-7.18 (9H, m, ArH), 7.17-6.91 (7H, m, ArH), 6.90-6.57 (3H, m, ArH), 6.17 (1H, d, *J* = 8.4 Hz, NH), 6.01 (1H, dd, *J* = 8.4 Hz and *J* = 8.6 Hz, NCH), 5.00 (1H, dd, *J* = 7.2 Hz and *J* = 8.0 Hz, NCH), 4.64-4.21 (3H, m, OCH₂CH, NCH), 4.18-3.92 (1H, m, OCH₂CH), 3.85-3.31 (5H, m, NCH₂, NCH₃), 2.38-1.65 (4H, m, 4 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ (181.9) 181.6 (C=S), (172.2) 171.8 (CO), 155.7 (154.5) (OCONH), 143.9 (Ar), 143.6 (Ar), 142.1 (Ar), 141.7 (Ar), 141.0 (Ar), 138.8 (Ar), 138.2 (Ar), 130.4 (Ar), 130.2 (Ar), 128.5 (Ar), 128.3 (Ar), 128.1 (Ar), 128.0 (Ar), 127.6 (Ar), 127.5 (Ar), 127.4 (Ar), 127.1 (Ar), 126.9 (Ar), 126.8 (Ar), 126.2 (Ar), 125.3 (Ar), 125.1 (Ar), 124.9 (Ar), 119.7

(Ar), (67.5) 67.4 (OCH₂CH), 63.2 (NCH), 60.8 (60.3) (NCH), 59.6 (NCH), 47.3 (NCH₂), (46.9) 46.8 (OCH₂CH), 43.2 (NCH₃), (29.5) 29.2 (CH₂), (23.4) 24.1 (CH₂); MS (ESI) 681 (M+H⁺, 100%); HRMS exact mass calculated for $[M+H]^+$ (C₄₂H₄₁O₃N₄S) requires *m/z* 681.2894, found *m/z* 681.2888.

General procedure for the deprotection of the Fmoc group

Compounds **XXIV** (0.08 g, 0.12 mmol) or **XXV** (0.08 g, 0.12 mmol) were deprotected following the general procedure for the removal of Fmoc. The crude product was purified using flash column chromatography eluting with petroleum ether: EtOAc (40:60) initially, followed by CH_2Cl_2 : CH_3OH (70:30).

(S)-N-((1S,2S)-1,2-Diphenyl-2-(3-phenylthioureido) ethyl) pyrrolidine-2carboxamide (15)

White solid; 0.05 g, 100% yield; mp 85-88 °C; $[\alpha]_D$ = -25.8 (*c* = 1.0, CHCl₃); IR (film) 3304, 2955, 2917, 2849, 1736, 1656, 1540, 1466, 1377, 1116, 698 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 9.04 (1H, s, NH), 8.63 (1H, d, *J* = 9.4 Hz, NH), 7.86 (1H, d, *J* = 8.8 Hz, ArH), 7.56-6.15 (15H, m, 14 x ArH and NH), 6.07 (1H, t, *J* = 9.0 Hz, NCH), 5.29 (1H, t, *J* = 9.8 Hz, NCH), 3.67 (1H, dd, *J* = 4.2 Hz, *J* = 6.2 Hz, NCH), 3.15-2.63 (3H, m, NCH₂, NH), 2.16-1.35 (4H, m, 4 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 180.8 (C=S), 175.0 (CO), 137.9 (Ar), 137.4 (Ar), 129.1 (Ar), 128.4 (Ar), 128.2 (Ar), 127.5 (Ar), 127.4 (Ar), 127.3 (Ar), 125.9 (Ar), 124.3 (Ar), 63.3 (NCH), 60.2 (NCH), 58.8 (NCH), 46.6 (NCH₂), 29.9 (CH₂), 25.4 (CH₂); MS (ESI) 445 (M+H⁺, 100%); HRMS exact mass calculated for [M+H]⁺ (C₂₆H₂₉ON₄S) requires *m*/*z* 445.2057, found *m*/*z* 445.2038.

(S)-N-((1S,2S)-2-(3-Methyl-3-phenylthioureido)-1,2-diphenylethyl)pyrrolidine-2carboxamide (16)

White solid; 0.06 g, 100% yield; mp 55-57 °C; $[\alpha]_D$ = -112.5 (*c* = 1.0, CHCl₃); IR (film) 3249, 2955, 2917, 2849, 1735, 1651, 1519, 1466, 1376, 1105, 698 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 8.38 (1H, d, *J* = 9.0 Hz, NH), 7.62-7.39 (3H, m, ArH), 7.38-6.89 (9H, m, ArH), 6.88-6.69 (3H, m, ArH), 6.48 (1H, d, *J* = 8.0 Hz, NH), 5.87 (1H, t, *J* = 8.8 Hz,

NCH), 4.99 (1H, t, J = 9.2 Hz, NCH), 3.83-3.35 (4H, m, NCH₃, NCH), 3.02-2.57 (3H, m, NCH₂, NH), 2.16-1.91 (1H, m, C*H*H), 1.79-1.38 (3H, m, 3 x C*H*H); ¹³C NMR (50 MHz, CDCl₃) δ 181.5 (C=S), 174.8 (CO), 142.6 (Ar), 138.7 (Ar), 138.2 (Ar), 130.4 (Ar), 128.5 (Ar), 128.3 (Ar), 128.2 (Ar), 128.0 (Ar), 127.4 (Ar), 127.3 (Ar), 126.9 (Ar), 64.3 (NCH), 60.3 (NCH), 58.0 (NCH), 47.0 (NCH₂), 43.2 (NCH₃), 30.3 (CH₂), 25.8 (CH₂); MS (ESI) 459 (M+H⁺, 100%); HRMS exact mass calculated for [M+H]⁺ (C₂₇H₃₁ON₄S) requires *m/z* 459.2213, found *m/z* 459.2196.

General Procedure for the Synthesis of the Catalyst 19a-c

(S)-2-{3-[(1S,2S)-[(S)-1-{[(9H-Fluoren-9-yl)methoxy]carbonyl}pyrrolidine-2carboxamido]-1,2-diphenylethyl]thioureido}-2-phenylacetic acid (17)

To a stirring solution of **III** (0.23 g, 0.30 mmol) in CH₂Cl₂ (2 mL), a 1:1 TFA/CH₂Cl₂ solution (0.64 mL, 4.20 mmol) was added and the mixture left stirring for 24 h at room temperature. The volatiles were evaporated in *vacuo* and the residue was purified by column chromatography using initially Petroleum Ether:EtOAc (30:370) followed by CH₂Cl₂:MeOH (90:10). White solid; 0.19 g, 86% yield; mp 185-187 °C; $[\alpha]_D$ = -21.7 (*c* = 1.0, CH₃OH); ¹H NMR (200 MHz, CD₃OD) δ 7.85-6.52 (23H, m, ArH), 5.29-4.90 (3H, m, 3 x NCH), 4.41-3.73 (4H, m, NCH, OCH₂CH, OCH₂CH), 3.58-3.34 (2H, m, NCH₂), 2.29-1.50 (4H, m, 4 x CHH); ¹³C NMR (50 MHz, CD₃OD) δ 182.6 (C=S), 175.0 (CO),

174.9 (CO), 156.7 (OCONH), 145.6 (Ar), 145.5 (Ar), 145.1 (Ar), 144.8 (Ar), 142.8 (Ar), 142.6 (Ar), 142.4 (Ar), 131.1 (Ar), 129.9 (Ar), 129.8 (Ar), 129.7 (Ar), 129.4 (Ar), 129.3 (Ar), 129.2 (Ar), 129.0 (Ar), 128.9 (Ar), 128.4 (Ar), 128.3 (Ar), 128.2 (Ar), 126.4 (Ar), 126.3 (Ar), 121.0 (Ar), 69.2 (NCH), 68.9 (OCH₂CH), 61.9 (NCH), 60.9 (NCH), 60.1 (NCH), 47.1 (NCH₂), 46.8 (OCH₂CH), 32.3 (CH₂), 25.3 (CH₂); MS (ESI) 723 (M-H⁻, 100%); HRMS exact mass calculated for $[M+H]^+$ (C₄₃H₄₁O₅N₄S) requires *m*/*z* 725.2792, found *m*/*z* 725.2783.

General procedure for the synthesis of resins 18a-c

Aminomethylated resin (JandaJel, PS-DVB or CM) (0.015 mmol) was placed in a vessel for solid phase synthesis and swelled with DMF (1 mL) for 20 min. In the meantime, a small excess of **17** (0.02 g, 0.03 mmol) and HOBt (0.004 g, 0.03 mmol), was placed in an eppendorf and the solid mixture was dissolved in DMF (0.1 mL). The solution was cooled at 0 $^{\circ}$ C for 10 min and at room temperature for a few minutes before the addition of an equimolar amount of DIC (N,N-diisopropylcarbodiimide) (0.005 ml, 0.03 mmol). The mixture was left for 10 min at room temperature to complete the generation of the reactive ester and then aspirated to the resin with prior removal of the solvent used for swelling. The heterogeneous mixture was stirred for 24 h at room temperature, filtered and the resin was washed with DMF (4 x 1 mL). Quantitative immobilization indicated by chloranil test. The resin was washed with CH₂Cl₂ (2 x 1 mL), Et₂O (2 x 2 mL) and dried in vacuum.

General procedure for the synthesis of resins 19a-c

The resin **18a-c** were swelled initially with DMF (1 mL) followed by Fmoc cleavage using a 20% piperidine/DMF solution for 20 min (1 mL). The resin was filtered and the procedure was repeated. The resin was washed with DMF (4 x 1 mL), CH_2Cl_2 (2 x 1 mL), Et_2O (2 x 2 mL) and dried in vacuum.

General Procedure for the Aldol Reaction

To a stirring solution of catalyst **8** (8 mg, 0.014 mmol) in toluene (1.0 mL), 4nitrobenzoic acid (2.5 mg, 0.014 mmol) was added. Aldehyde (0.14 mmol) followed by ketone (1.40 mmol) were added at -20 °C. The reaction mixture was left stirring at -20°C until the reaction was complete (by TLC). The solvent was evaporated and the crude product was purified using flash column chromatography eluting with various mixtures of petroleum ether (40-60 °C): EtOAc. All characterazation data for the aldol products are in accordance with the literature.

General Procedure for the aldol reaction in the presence of catalyst 14

To a stirring solution of catalyst (0.014 mmol) in toluene (0.5 mL), N,Ndiisopropylethylamine (DIPEA) (2.5 μ L, 0.014 mmol) was added at room temperature. The stirring was continued vigorously for 10 min. Acetone (1.40 mmol) was added and the reaction mixture was cooled down at - 20 °C. A solution of aldehyde (0.14 mmol) and 4-nitrobenzoic acid (2.5 mg, 0.014 mmol) in toluene (0.5 mL) was added to the mixture. The reaction mixture was left stirring at -20 °C until the reaction was complete (by TLC). The solvent was evaporated and the crude product was purified using flash column chromatography eluting with various mixtures of petroleum ether (40-60 °C): EtOAc.

(*R*)-4-Hydroxy-4-(4-nitrophenyl)-butan-2-one¹ (Table 4, entry 1)

100% yield; ¹H NMR (200 MHz, CDCl₃) δ 8.20 (2H, d, *J* = 7.0 Hz, ArH), 7.52 (2H, d, *J* = 7.0 Hz, ArH), 5.25 (1H, m, OCH), 3.56 (1H, br s, OH), 3.01-2.71 (2H, m, CHHCO), 2.21 (3H, s, CH₃CO); ¹³C NMR (50 MHz, CDCl₃) δ 208.6 (C=O), 149.9 (Ar), 147.4 (Ar), 126.4 (Ar), 123.8 (Ar), 68.9 (OCH), 51.5 (CH₂), 30.7 (CH₃); HPLC analysis: Diacel Chiralpak AD-RH, MeCN:H₂O 30:70, flow rate 0.5 mL/min, retention time: 22.14 (major) and 27.98 (minor).

(*R*)-4-Hydroxy-4-(2-nitrophenyl)-butan-2-one¹ (Table 4, entry 2)

100% yield; ¹H NMR (200 MHz, CDCl₃) δ 8.05-7.85 (2H, m, ArH), 7.72-7.61 (1H, m, ArH), 7.49-7.38 (1H, m, ArH), 5.68 (1H, d, *J* = 9.3 Hz, OCH), 3.76 (1H, br s, OH), 3.15 (1H, dd, *J* = 17.8 Hz, CHHCO), 2.73 (1H, dd, *J* = 17.8 and 9.3 Hz, CHHCO), 2.25 (3H, s, CH₃CO); ¹³C NMR (50 MHz, CDCl₃) δ 208.7 (C=O), 148.1 (Ar), 144.6 (Ar), 131.8 (Ar), 129.4 (Ar), 122.5 (Ar), 120. 6 (Ar), 68.6 (OCH), 51.4 (CH₂), 30.7 (CH₃); HPLC analysis: Diacel Chiralpak AS-H, hexane:ⁱPrOH 80:20, flow rate 0.8 mL/min, retention time: 18.23 (major) and 30.34 (minor).

(*R*)-4-Hydroxy-4-[4-(trifluoromethyl)phenyl]-butan-2-one¹ (Table 4, entry 3)

100% yield; ¹H NMR (200 MHz, CDCl₃) δ 7.62-7.52 (2H, m, ArH), 7.48-7.38 (2H, m, ArH), 5.17 (1H, t, *J* = 5.9 Hz, OCH), 3.62 (1H, br s, OH), 2.85-2.77 (2H, m, CHHCO), 2.17 (3H, s, CH₃CO); ¹³C NMR (50 MHz, CDCl₃) δ 208.8 (C=O), 146.6 (Ar), 129.6 (q, *J* = 31.0 Hz, Ar), 125.8 (Ar), 125.3 (Ar), 123.9 (q, *J* = 271.0 Hz, Ar), 69.0 (OCH), 51.6 (CH₂), 30.6 (CH₃); HPLC analysis: Diacel Chiralpak AS-H, hexane:ⁱPrOH 80:20, flow rate 0.5 mL/min, retention time: 11.18 (major) and 12.85 (minor).

(*R*)-3-(1-Hydroxy-3-oxonutyl)benzonitrile¹ (Table 4, entry 4)

Pale yellow oil, 82% yield; ¹H NMR (200 MHz, CDCl₃) δ 7.74-7.68 (1H, m, ArH), 7.65-7.54 (2H, m, ArH), 7.52-7.40 (1H, m, ArH), 5.19 (1H, t, *J* = 6.4 Hz, OCH), 3.61 (1H, br

s, OH), 2.84 (2H, d, J = 6.4 Hz, CHHCO), 2.22 (3H, s, CH₃CO); ¹³C NMR (50 MHz, CDCl₃) δ 208.5 (C=O), 144.3 (Ar), 131.1 (Ar), 130.1 (Ar), 129.2 (Ar), 129.1 (Ar), 118.6 (CN), 112.3 (Ar), 68.6 (OCH), 51.5 (CH₂), 30.6 (CH₃); HPLC analysis: Diacel Chiralpak AD-RH, MeCN:H₂O 40:60, flow rate 1.0 mL/min, retention time: 7.58 (major) and 9.04 (minor).

(*R*)-4-Hydroxy-4-phenyl-butan-2-one¹ (Table 4, entry 5)

40% yield; ¹H NMR (200 MHz, CDCl₃) δ 7.37-7.21 (5H, m, ArH), 5.21-5.07 (1H, m, OCH), 3.27 (1H, br s, OH), 2.88-2.77 (2H, m, CHHCO), 2.15 (3H, s, CH₃CO); ¹³C NMR (50 MHz, CDCl₃) δ 209.0 (C=O), 142.5 (Ar), 128.3 (Ar), 127.6 (Ar), 125.5 (Ar), 69.6 (OCH), 51.9 (CH₂), 30.6 (CH₃); HPLC analysis: Diacel Chiralpak AS-H, hexane:ⁱPrOH 90:10, flow rate 0.8 mL/min, retention time: 15.33 (major) and 17.77 (minor).

(S)-2-[(R)-Hydroxy-(4-(nitrophenyl)methyl]-cyclohexanone¹ (Table 4, entry 6)

100% yield; ¹H NMR (200 MHz, CDCl₃) *anti* δ 8.20 (2H, d, *J* = 8.8 Hz, ArH), 7.51 (2H, d, *J* = 8.8 Hz, ArH), 4.87 (1H, d, *J* = 8.4 Hz, OCH), 4.09 (1H, br s, OH), 2.64-2.26 (3H, m, CH and CHH), 2.17-1.29 (6H, m, 6 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 214.6 (C=O), 148.4 (Ar), 127.9 (Ar), 127.8 (Ar), 123.4 (Ar), 73.8 (OCH), 57.0 (CH), 42.5 (CH₂), 30.6 (CH₂), 27.5 (CH₂), 24.5 (CH₂); HPLC analysis: Diacel Chiralpak AS-H, hexane:ⁱPrOH 80:20, flow rate 0.5 mL/min, retention time: 24.72 (minor) and 31.71 (major).

(S)-2-[(R)-Hydroxy-(3-(nitrophenyl)methyl]-cyclohexanone⁵ (Table 4, entry 7)

95% yield; ¹H NMR (200 MHz, CDCl₃) *anti* δ 8.23-8.14 (2H, m, ArH), 7.67 (1H, d, J = 7.3 Hz, ArH), 7.55 (1H, d, J = 7.6 Hz, ArH), 4.90 (1H, d, J = 8.4 Hz, OCH), 4.11 (1H, br s, OH), 2.68-2.31 (3H, m, COCH and CHH), 2.17-1.32 (6H, m, 6 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 214.6, 148.2, 143.1, 133.1, 129.2, 122.7, 121.9, 74.0, 57.0, 42.6, 30.6, 27.6, 24.6; HPLC analysis: Diacel Chiralpak AD-H, hexane: ⁱPrOH 92:8, flow rate 1.0 mL/min, retention time: 25.15 (major) and 31.99 (minor).

(S)-2-[(R)-Hydroxy-(2-(nitrophenyl)methyl]-cyclohexanone⁵ (Table 4, entry 8)

92% yield; ¹H NMR (200 MHz, CDCl₃) *anti* δ 7.91-7.72 (2H, m, ArH), 7.63 (1H, t, *J* = 6.5 Hz, ArH), 7.42 (1H, t, *J* = 6.6 Hz, ArH), 5.43 (1H, d, *J* = 7.1 Hz, OCH), 4.16 (1H, br s, OH), 2.85-2.01 (3H, m, COCH, CHH), 1.90-1.52 (6H, m, 6 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 214.9, 136.5, 133.0, 128.9, 128.3, 124.0, 69.7, 57.2, 42.8, 31.1, 27.7, 24.9; HPLC analysis: Diacel Chiralpak AD-H, hexane: ⁱPrOH 95:5, flow rate 0.8 mL/min, retention time: 40.77 (major) and 42.92 (minor).

(S)-2-[(R)-Hydroxy-(phenyl)methyl]-cyclohexanone⁶ (Table 4, entry 9)

57% yield; ¹H NMR (200 MHz, CDCl₃) *anti* δ 7.51-7.21 (5H, m, ArH), 4.78 (1H, d, J = 8.8 Hz, OCH), 3.84 (1H, br s, OH), 2.70-2.31 (3H, m, COCH and CHH), 2.15-1.24 (6H, m, 6 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 215.5, 140.8, 128.3, 127.8, 125.7, 74.7, 57.4,

42.6, 30.8, 27.8, 24.7; HPLC analysis: Diacel Chiralpak OD-H, hexane:ⁱPrOH 90:10, flow rate 0.5 mL/min, retention time: 17.73 (major) and 24.49 (minor).

(S)-2-[(R)-Hydroxy-(4-(bromophenyl)methyl]-cyclohexanone¹ (Table 4, entry 10)

49% yield; ¹H NMR (200 MHz, CDCl₃) *anti* δ 7.46 (2H, d, *J* = 8.4 Hz, ArH), 7.19 (2H, d, *J* = 8.4 Hz, ArH), 4.74 (1H, d, *J* = 8.7 Hz, OCH), 3.98 (1H, br s, OH), 2.61-2.11 (3H, m, CH and CHH), 2.13-2.07 (1H, m, CHH), 1.81-1.43 (5H, m, 5 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 215.2 (C=O), 140.0 (Ar), 131.5 (Ar), 128.7 (Ar), 121.7 (Ar), 74.2 (OCH), 57.3 (CH), 42.7 (CH₂), 30.7 (CH₂), 27.7 (CH₂), 24.7 (CH₂); HPLC analysis: Diacel Chiralpak AD-H, hexane:ⁱPrOH 90:10, flow rate 0.5 mL/min, retention time: 30.19 (minor) and 35.08 (major).

(S)-2-[(R)-Hydroxy-(4-(nitrophenyl)methyl]-cyclopentanone¹ (Table 4, entry 11)

100% yield; ¹H NMR (200 MHz, CDCl₃) δ 8.20 (2H, d, *J* = 8.8 Hz, ArH), 7.15 (2H, d, *J* = 8.8 Hz, ArH), 5.41 (1H, s, OCH *syn*), 4.83 (1H, d, *J* = 9.2 Hz, OCH *anti*), 4.76 (1H, br s, OH *anti*), 2.69 (1H, br s, OH *syn*), 2.52-2.18 (3H, m, CH and CHH), 2.15-1.83 (2H, m, 2 x CHH), 1.78-1.55 (2H, m, 2 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 214.6 (C=O), 213.4 (C=O), 149.2 (Ar), 147.9 (Ar), 147.4 (Ar), 147.3 (Ar), 127.2 (Ar), 126.5 (Ar), 123.0 (Ar), 122.9 (Ar), 73.5 (OCH), 69.8 (OCH), 57.0 (CH), 56.3 (CH), 42.5 (CH₂), 30.2 (CH₂), 27.7 (CH₂), 25.5 (CH₂), 24.6 (CH₂), 24.3 (CH₂); HPLC analysis: Diacel Chiralpak AD-H, hexane:ⁱPrOH 95:5, flow rate 1 mL/min, retention time: 26.80 (*syn* major) and 36.35 (*syn* minor), 45.29 (*anti* minor) and 46.83 (*anti* major).

(S)-3-[(R)-Hydroxy-[4-(nitrophenyl)methyl]dihydro-2H-pyran-4(3H)-one¹ (Table 4, entry 12)

98% yield; ¹H NMR (200 MHz, CDCl₃) *anti* δ 8.21 (2H, d, *J* = 8.8 Hz, ArH), 7.50 (2H, d, *J* = 8.8 Hz, ArH), 4.97 (1H, d, *J* = 8.2 Hz, OCH), 4.28-4.09 (1H, m, OCHH), 3.90-3.64 (3H, m, 2 x OCHH and OH), 3.44 (1H, dd, *J* = 11.4 and 9.8 Hz, OCHH), 3.02-2.41 (3H, m, 3 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 209.2 (C=O), 147.7 (Ar), 147.4 (Ar), 127.4 (Ar), 123.8 (Ar), 71.2 (OCH), 69.7 (OCH₂), 68.2 (OCH₂), 57.5 (CH), 42.7 (CH₂); HPLC analysis: Diacel Chiralpak AD-H, hexane:ⁱPrOH 80:20, flow rate 1 mL/min, retention time: 19.91 (minor) and 23.04 (major).

(S)-3-[(R)-Hydroxy-[4-(nitrophenyl)methyl]dihydro-2H-thiopyran-4(3H)-one¹ (Table 4, entry 13)

86% yield; ¹H NMR (200 MHz, CDCl₃) *anti* δ 8.21 (2H, d, J = 8.3 Hz, ArH), 7.53 (2H, d, J = 8.3 Hz, ArH), 5.04 (1H, d, J = 7.9 Hz, OCH), 3.65 (1H, br s, OH), 3.13-2.91 (3H, m, CH and CHH), 2.87-2.70 (2H, m, 2 x CHH), 2.68-2.42 (2H, m, 2 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 211.2 (C=O), 147.7 (Ar), 147.6 (Ar), 127.7 (Ar), 123.8 (Ar), 73.1 (OCH), 59.4 (CH), 44.7 (CH₂), 32.8 (CH₂), 30.7 (CH₂); HPLC analysis: Diacel Chiralpak AD-H, hexane:ⁱPrOH 90:10, flow rate 1 mL/min, retention time: 57.28 (minor) and 65.65 (major).

(S)-7-[(R)-Hydroxy-4-(nitrophenyl)methyl]-1,4-dioxospiro[4.5]decan-8-one¹ (Table 4, entry 14)

66% yield; ¹H NMR (200 MHz, CDCl₃) *anti* δ 8.20 (2H, d, J = 8.8 Hz, ArH), 7.49 (2H, d, J = 8.8 Hz, ArH), 4.83 (1H, d, J = 7.5 Hz, OCH), 4.04 (1H, br s, OH), 3.98-3.68 (4H, m, 4 x OC*H*H), 2.91-2.74 (1H, m, CH), 2.66-2.54 (1H, m, C*H*H), 2.51-2.42 (1H, m, C*H*H), 2.07-1.55 (3H, m, 3 x C*H*H), 1.54-1.44 (1H, m, C*H*H); ¹³C NMR (50 MHz, CDCl₃) δ 213.1 (C=O), 147.9 (Ar), 127.8 (Ar), 126.5 (Ar), 123.6 (Ar), 106.7 [<u>C</u>(OCH₂)₂], 73.8 (OCH), 64.6 (OCH₂), 64.5 (OCH₂), 52.9 (CH), 38.8 (CH₂), 37.8 (CH₂), 34.3 (CH₂); HPLC analysis: Diacel Chiralpak AS-H, hexane:ⁱPrOH 70:30, flow rate 1 mL/min, retention time: 11.96 (minor) and 18.97 (major).

(2*S*,4*R*)-2-[(*R*)-Hydroxy-(4-(nitrophenyl)methyl]-4-methylcyclohexanone^{6,7} (Table 4, entry 15)

99% yield; $[\alpha]_D$ = -6.8 (*c* = 1.0, CHCl₃); ¹H NMR (200 MHz, CDCl₃) *anti* δ 8.22 (2H, d, *J* = 8.8 Hz, ArH), 7.51 (2H, d, *J* = 8.8 Hz, ArH), 4.92 (1H, d, *J* = 8.6 Hz, OCH), 3.99-3.87 (1H, br s, OH), 2.81-2.29 (3H, m, CH and CHH), 2.15-1.29 (5H, m, 4 x CHH, CH); 1.07 (3H, d, *J* = 7.1 Hz, CH₃); ¹³C NMR (50 MHz, CDCl₃) δ 214.8 (C=O), 148.4 (Ar), 147.5 (Ar), 127.8 (Ar), 123.7 (Ar), 73.9 (OCH), 52.9 (CH), 38.3 (CH₂), 36.1 (CH₂), 33.0 (CH), 26.5 (CH₂), 18.2 (CH₃); HPLC analysis: Diacel Chiralpak AD-H, hexane:ⁱPrOH 90:10, flow rate 1.0 mL/min, retention time: 28.87 (major) and 31.23 (minor).

References

- S. Fotaras, C. G. Kokotos, E. Tsandi, G. Kokotos, *Eur. J. Org. Chem.* 2011, 1310-1317.
- 2. The isothiocyanates were prepared according to C. G. Kokotos, G. Kokotos, *Adv. Synth. Catal.* **2009**, *351*, 1355-1362.
- 3. P. M. O'Brien, D. R. Sliskovic, C. J. Blankley, B. D. Roth, M. W. Wilson, K. L. Hamelehle, B. R. Krause, R. L. Stanfield, *J. Med. Chem.* **1994**, *37*, 1810-1822.
- 4. D. C. Horwell, J. Hughes, J. C. Hunter, M. C. Pritchard, R. S. Richardson, E. Roberts, G. N. Woodruff, J. Med. Chem. 1991, 34, 404-414.
- M. Lei, L. Shi, G. Li, S. Chen, W. Fang, Z. Ge, T. Cheng, R. Li, *Tetrahedron* 2007, 63, 7892-7898.
- R. Pedrosa, J. M. Andres, R. Manzano, D. Roman, S. Tellez, *Org. Biomol. Chem.* 2011, 9, 935-940.
- 7. H. Yang, R. G. Carter, Org. Lett. 2008, 10, 4649-4652.

150 100 50

S. Fotaras, C. G. Kokotos and G. Kokotos

S. Fotaras, C. G. Kokotos and G. Kokotos

S. Fotaras, C. G. Kokotos and G. Kokotos

# Time Area		Area	Height	Width	Area%
1	18.118	660.2	8.5	0.918	50.975
2	31.06	635	22.7	0.4656	49.025

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Heiqht [mAU]	Area %
1	18.228	MM	2.0324	1.32561e5	1087.07886	98.1137
2	30.337	MM	1.2145	2548.53540	34.97424	1.8863
Total	ls :			1.35109e5	1122.05309	

#	Time Area		Height	Area%	
1	10.392	29	1.6	0.2939	49.108
2	11.525	30	5	0.0998	50.892

Peak RetTime Ty	pe Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
	-	I		
1 11.175 MM	0.6240	4794.53467	128.06207	99.4063
2 12.851 MM	0.2232	28.63451	2.13799	0.5937
Totals :		4823.16918	130.20006	

Peak	RetTime	Type	Width	Are	a	Hei	qht	Area	
#	[min]		[min]	mAU	*s	[mAU]	8	
									L
1	7.578	MM	0.4818	2519.3	5937	87.	15219	99.3181	
2	9.035	MM	0.3225	17.2	9844	8.941	04e-1	0.6819	

#	Time Area 14.112 1777.8		Height	Height Width Area%				
1	14.112	1777.8	43.1	0.6874	51.547			
2	17.132	1671.1	61.5	0.4527	48.453			

Peak RetTim	= Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	%
	-				
1 15.33	2 MM	0.7999	3.76392e4	784.21271	94.9274
2 17.77	7 MM	0.5047	2011.30298	66.41292	5.0726
Totals :			3.96505e4	850.62563	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	24.717	MM	1.3633	768.16370	9.39069	0.5022
2	31.711	MM	3.5234	1.52186e5	719.88208	99.4978
Total	ls :			1.52955e5	729.27277	

#	Time	Area	Height	Width	Area%
1	26.514	7035	129.9	0.7616	51.004
2	2 32.07 6758.1		103.3	1.0899	48.996

#	Time	Area	Height	Width	Area%	Symmetry
1	25.151	51218.4	1030.5	0.7519	98.229	1.011
2	31.987	923.2	18.5	0.8328	1.771	0.747

#	Time	Area	Height	Width	Area%	Symmetry
1	40.773	13055.1	267.4	0.7496	98.889	0.913
2	42.923	146.6	3.9	0.5448	1.111	0.575
S. Fotaras, C. G. Kokotos and G. Kokotos

#	Time	Area	Height	Width	Area%
1	19.013	1986.3	42.5	0.6075	47.286
2	24.546	2214.3	54.1	0.6821	52.714

#	Time	Area	Height	Width	Area%	Symmetry
1	17.73	129938.7	1643.5	1.0744	98.076	1.474
2	24.485	2548.8	40.1	1.06	1.924	1.456

25	30	35	40

#	Time	Area	Height	Width	Area%
1	30.133	33.8	8E-1	0.7067	48.345
2	36.732	36.1	6.2E-1	0.6847	51.655

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.194	MM	1.1655	2740.69214	39.19107	2.1611
2	35.084	MM	1.8117	1.24077e5	1141.41467	97.8389
Total	.s :			1.26817e5	1180.60575	

#	Time	Area	Height	Width	Area%
1	28.341	615.4	8.5	1.2048	25.099
2	39.157	653.1	8.5	0.9221	26.639
З	48.038	607.4	22.4	0.4515	24.775
4	52.532	575.8	9.8	0.6905	23.487

#	RetTime	Area	Height	Width	Area %
1	26.803	86511.1	1361.6	1.0589	59.953
2	36.346	6863.8	75.7	1.5109	4.757
3	45.297	268.1	5.7	0.7819	0.186
4	46.825	50656	455.6	1.8532	35.105

#	Time	Area	Height	Width	Area%
1	14.487	2790.4	203.9	0.2281	16.893
2	17.997	2908.5	53.2	0.912	17.608
3	20.443	5477	241	0.3787	33.158
4	25.343	5342	94.7	0.7158	32.341

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.906	MM	0.7784	673.63885	14.42324	1.3033
2	23.044	MM	1.5266	5.10141e4	556.96405	98.6967
Total	s:			5.16877e4	571.38729	

S. Fotaras, C. G. Kokotos and G. Kokotos Supporting Information S76

#	Time	Area	Height	Width	Area%
1	33.034	81.9	3.1	0.3105	6.956
2	42.172	86.7	3.4	0.3044	7.364
3	52.033	535.7	4.7	1.3424	45.505
4	76.595	473	6.6	0.8497	40.174

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	57.281	MM	1.7020	1658.82910	16.24372	3.5977
2	65.647	MM	2.2174	4.44490e4	334.09885	96.4023
Total	s :			4.61078e4	350.34257	

S. Fotaras, C. G. Kokotos and G. Kokotos

#	Time	Area	Height	Width	Area%
1	10.205	70.8	6.8	0.1725	4.482
2	11.995	653	18.1	0.6019	41.343
3	15.998	95.1	4.8	0.2333	6.024
4	21.344	760.6	11.5	0.772	48.152

#	RetTime	Area	Height	Width	Area %	
1	11.956	702.8	18.7	0.6255	4.093	
2	18.974	16466.3	197.5	1.3894	95.907	

S. Fotaras, C. G. Kokotos and G. Kokotos

#	Time	Area	Height	Width	Area%	Symmetry
1	28.871	78680.6	1459.8	0.8983	99.437	0.461
2	31.227	445.4	12.1	0.6143	0.563	0.197