Supporting information

Chiral Phosphine-Catalyzed Asymmetric Allylic Alkylation of 3-Substituted Benzofunan-2(3H)-ones or Oxindoles with Morita-Baylis-Hillman Carbonates

De Wang,^a Yuan-Liang Yang,^a Jia-Jun Jiang,^a and Min Shi^{a,b}*

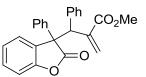
 ^aKey Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
 ^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032 China. Mshi@mail.sioc.ac.cn

Contents:

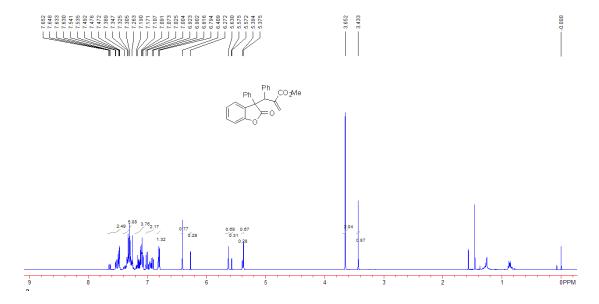
1. General methods	S2
2. General procedure for the synthesis of 3	S 3
3. General procedure for the synthesis of 5	S 3
4. Characterization and spectra charts containing HPLC traces for products 3a-3k	S4
5. Characterization and spectra charts containing HPLC traces for products 5a-5k	S 34
6. A plausible reaction mechanism	S 67
7. References	S68

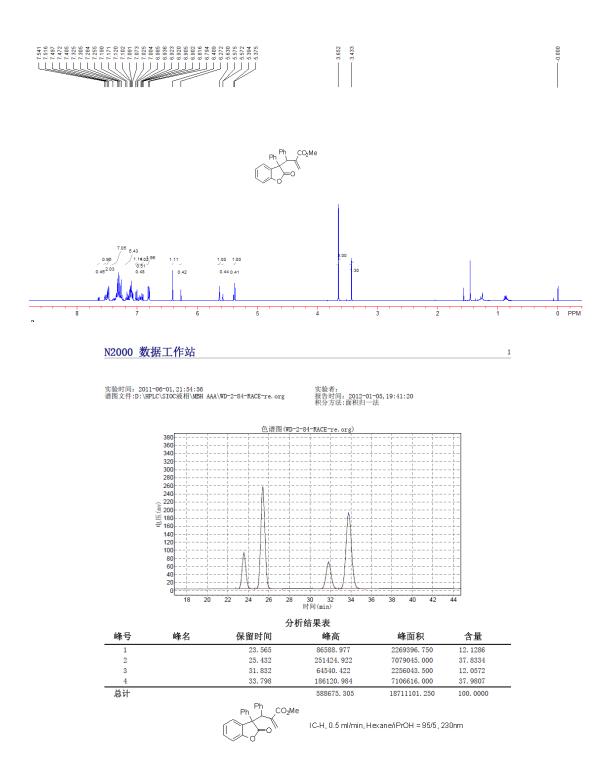
1. General Methods: ¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz or 300 and 75 MHz by VARIAN, respectively. Low- and high-resolution mass spectra were recorded by EI, ESI or MALDI method. The used organic solvents were dried by standard methods if it was necessary. Optical rotations were determined at 589 nm (sodium D line) by using a Perkin-Elmer-341 MC digital polarimeter; $[\alpha]_D$ -values are given in unit of 10 deg⁻¹ cm² g⁻¹. Chiral HPLC was performed on a SHIMADZU SPD-10A *vp* series with chiral columns (Chiralpak AD-H, OD-H and IC-H columns 4.6 x 250 mm, (Daicel Chemical Ind., Ltd.)). Commercially obtained reagents were used without further purification. All these reactions were monitored by TLC with silica-gel-coated plates. Flash column chromatography was carried out by using silica gel at increased pressure.

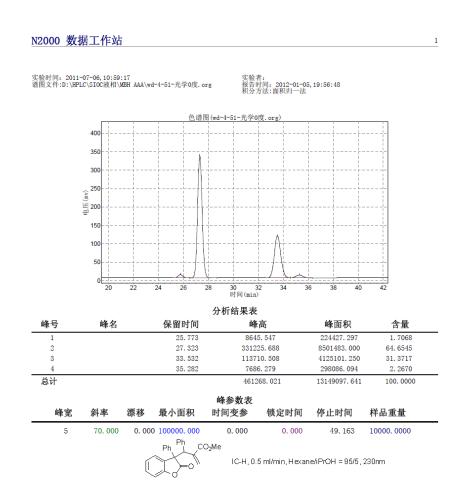
Chiral phosphine catalysts **LB1-LB5** were synthesized according to our previous works.¹ All MBH carbonates 2a-2h,² 3-substituted benzofunan-2(3H)-ones $1a-1d^3$ and 3-substituted oxindoles $4a-4e^4$ were prepared according to the previously reported procedures.

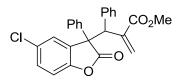

2. General procedure for the synthesis of 3 (using 3a as an example)

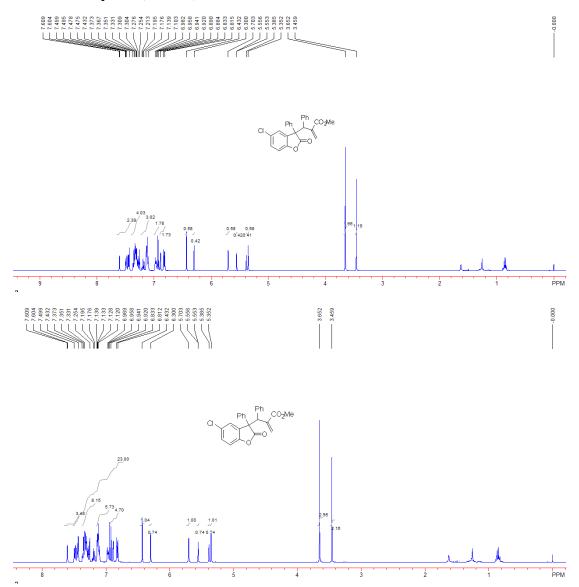
To a mixture of **1a** (0.10 mmol, 21.0 mg), **2a** (0.20 mmol, 58.0 mg) and **LB1** (10.0 mg, 0.02 mmol) was added 1.0 mL of toluene at 0 °C. The reaction solution was monitored by TLC. After the reaction complete, the solution was concentrated under reduced pressure and the residue was further purified by silica gel column chromatography (EtOAc/PE = 1/10) to give the target product **3a**.

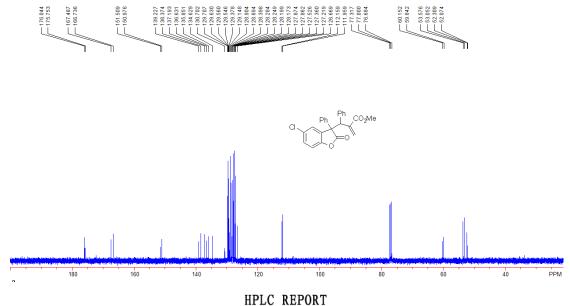

3. General procedure for the synthesis of 5 (using 5a as an example)


To a mixture of **4a** (0.10 mmol, 31.0 mg), **2e** (0.20 mmol, 67.0 mg) and **LB1** (10.0 mg, 0.02 mmol) was added 1.0 mL of toluene at roomtempreture. The reaction solution was monitored by TLC. After the reaction complete, the solution was concentrated under reduced pressure and the residue was further purified by silica gel column chromatography (EtOAc/PE = 1/10) to give the target product **5a**.


4. Characterization and spectra charts containing HPLC traces for products 3a-q.

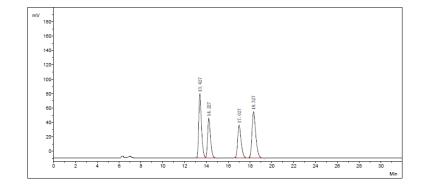

Methyl 2-((2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-yl)(phenyl)methyl)acrylate **3a** A white solid, this is a known compound,⁵ 95% yield, 36 mg (*syn:anti* = 67:33); $[\alpha]^{20}_{D}$ = -160.5 (c 0.5, CHCl₃) for 94% ee (*syn*) and 91% ee (*anti*); Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column, Hexane/ⁱPrOH = 95/5, 0.5 mL/min, 230 nm, for *syn* product t_{major} = 27.323 min, t_{minor} = 35.282 min; for *anti* product t_{major} = 33.532 min, t_{minor} = 25.773 min; ¹H NMR (400 MHz, CDCl₃, TMS): δ 3.43 (s, 0.99H, CH₃), 3.65 (s, 2.01H, CH₃), 5.38 (s, 0.67H, =CH₂), 5.39 (s, 0.33H, =CH₂), 5.57 (d, *J* = 1.2 Hz, 0.33H, =CH₂), 5.63 (s, 0.67H, =CH₂), 6.27 (s, 0.33H, CH), 6.41 (s, 0.67H, CH), 6.79-6.82 (m, 1H, Ar), 6.90-7.03 (m, 2H, Ar), 7.07-7.19 (m, 4H, Ar), 7.26-7.39 (m, 5H, Ar), 7.47-7.65 (m, 2H, Ar); MS (ESI) *m/z* 407.4 (M+Na⁺, 100). HRMS (MALDI) Calcd. for C₂₅H₂₀O₄Na requires (M+Na⁺) 407.1270, Found: 407.1254.

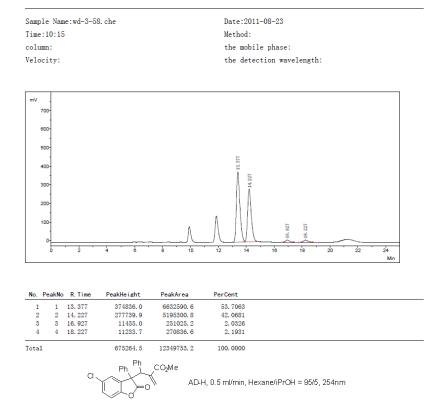


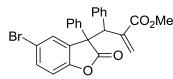


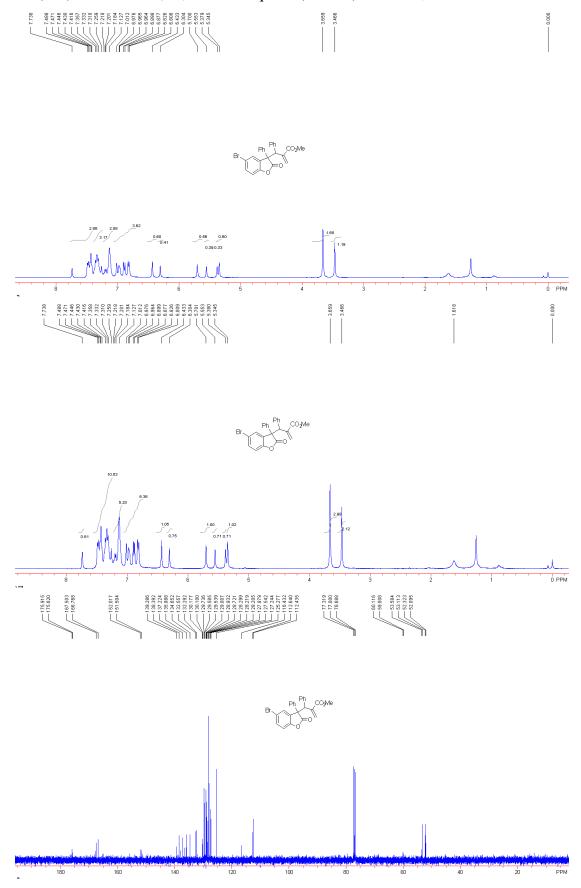
Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column, Hexane/PrOH = 95/5, 0.5 mL/min, 230 nm, for *syn* product t_{major} = 27.323 min, t_{minor} = 35.282 min; for *anti* product t_{major} = 33.532 min, t_{minor} = 25.773 min;

Methyl 2-((5-chloro-2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-yl)(phenyl)methyl)acrylate **3b** A white solid, 93% yield, 38 mg, m.p. 105-108 °C, (*syn:anti* = 56:44); $[\alpha]^{20}_{D}$ = -148.1 (c 1.1, CHCl₃) for 92% ee (*syn*) and 91% ee (*anti*); Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 254 nm, for *syn* product t_{major} = 13.377 min, t_{minor} = 18.227 min; for *anti* product t_{major} = 14.227 min, t_{minor} = 16.927 min. ¹H NMR (400 MHz, CDCl₃, TMS): δ 3.46 (s, 1.32H, CH₃), 3.65 (s, 1.68H, CH₃), 5.35 (s, 0.56H, =CH₂), 5.39 (s, 0.44H, =CH₂), 5.55 (d, *J* = 1.2 Hz, 0.44H, =CH₂), 5.70 (s, 0.56H, =CH₂), 6.30 (s, 0.44H, CH), 6.43 (s, 0.56H, CH), 6.82-6.89 (m, 2H, Ar), 6.92-6.98 (m, 2H, Ar), 7.10-7.21 (m, 3H, Ar), 7.25-7.37 (m, 4H, Ar), 7.43-7.61 (m, 2H, Ar); ¹³C NMR (CDCl₃, 100 MHz): δ \Box 52.07, 52.31, 53.05, 53.58, 59.84, 60.15, 111.96, 112.16, 126.67, 127.22, 127.36, 127.53, 127.86, 127.87, 128.17, 128.20, 128.25, 128.28, 128.40, 128.69, 128.90, 129.15, 129.38, 129.55, 129.56, 129.63, 129.71, 130.70, 134.63, 135.85, 136.63, 137.19, 138.37, 139.23, 150.98, 151.51, 166.74, 167.49, 175.75, 176.04; IR (neat) v 2949, 1805, 1718, 1466, 1262, 1132, 1065, 702 cm⁻¹; MS (ESI) m/z 441.4 (M+Na⁺, 100). HRMS (ESI) Calcd. for C₂₅H₁₉ClO₄Na requires (M+Na⁺) 441.0868, Found: 441.0864.

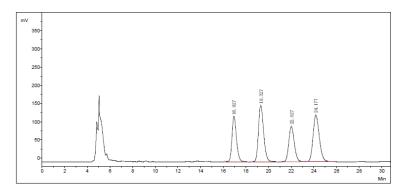



III LC KEFU

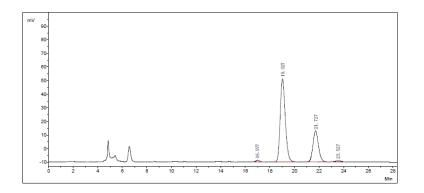

Date:2011-08-23 Method: the mobile phase: the detection wavelength:

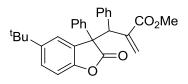

No.	PeakNo	R	Time	PeakHeight	PeakArea	PerCent
1	1	13	427	89100.1	1578296.0	30. 4137
2	2	14	227	54979.2	1025046.9	19.7526
3	3	17.	027	45598.9	1018930. 0	19.6347
4	4	18	327	64006.5	1567151.8	30.1990
Total	L			253684.7	5189424.7	100.0000
				CI Ph.		AD-H, 0.5 ml/min, Hexane/iPrOH = 95/5, 254nm

HPLC REPORT



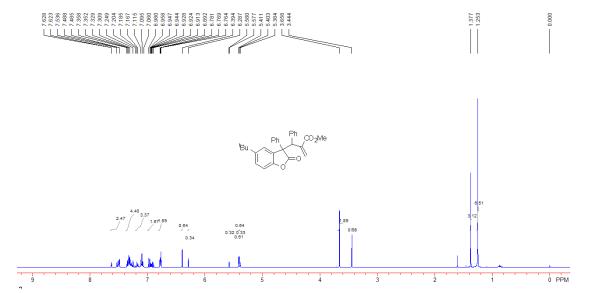
Methyl 2-((5-bromo-2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-yl)(phenyl)methyl)acrylate **3c** A white solid, 90% yield, 41 mg, m.p. 94-95 °C, (*syn:anti* = 71:29); $[\alpha]^{20}{}_{D}$ = -172.7 (c 0.6, CHCl₃) for 97% ee (*syn*) and 92% ee (*anti*); Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column, Hexane/ⁱPrOH = 98/2, 0.7 mL/min, 230 nm, for *syn* product t_{major} = 19.027 min, t_{minor} = 23.527 min; for *anti* product t_{major} = 21.727 min, t_{minor} = 16.977 min. ¹H NMR (400 MHz, CDCl₃, TMS): δ 3.47 (s, 0.87H, CH₃), 3.66 (s, 2.13H, CH₃), 5.35 (s, 0.71H, =CH₂), 5.38 (s, 0.29H, =CH₂), 5.55 (s, 0.29H, =CH₂), 5.70 (s, 0.71H, =CH₂), 6.30 (s, 0.29H, CH), 6.43 (s, 0.71H, CH), 6.81-7.01 (m, 4H, Ar), 7.13-7.22 (m, 3H, Ar), 7.31-7.36 (m, 3H, Ar), 7.42-7.74 (m, 3H, Ar); ¹³C NMR (CDCl₃, 100 MHz): δ \Box 52.10, 52.32, 53.11, 53.58, 59.81, 60.12, 112.44, 112.64, 116.43, 125.28, 127.24, 127.54, 127.88, 128.21, 128.22, 128.30, 128.72, 128.93, 129.01, 129.54, 129.59, 129.74, 130.10, 130.18, 132.29, 132.56, 134.65, 135.89, 137.22, 138.39, 139.29, 151.50, 152.02, 166.77, 167.50, 175.62, 175.92; IR (neat) v 2916, 1806, 1719, 1466, 1234, 1135, 1065, 701 cm⁻¹; MS (ESI) m/z 485.3 (M+Na⁺, 100). HRMS (ESI) Calcd. for C₂₅H₁₉BrO₄Na requires (M+Na⁺) 485.0366, Found: 485.0359.


HPLC REPORT

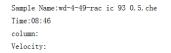


No.	PeakN	o R.Time	PeakHeight	PeakArea	PerCent
1	1	16.927	123881.6	3418705.6	20.7303
2	2	19.327	153823.6	4916406.4	29.8120
3	3	22.027	96401.4	3267880.7	19.8157
4	4	24.177	127228.1	4888389.3	29.6421
Tota	1		501334.8	16491382.0	100.0000
		Br Ph Ph CO2Me		⊃h CO₂Me ⊨O	IC-H, 0.7 ml/min, Hexane/iPrOH = 98/2, 230nm

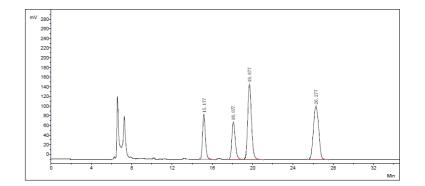
Sample Name:wd-4-48 ic 98.che Time:15:01 column: Velocity: Date:2011-08-25 Method: the mobile phase: the detection wavelength:



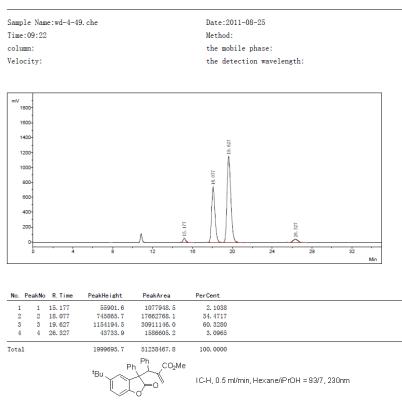
No.	PeakNo	R. Time	PeakHe i ght	PeakArea	PerCent
1	1	16.977	1182.3	29229.5	1.1621
2	2	19.027	60933.8	1752194.2	69.6627
3	3	21.727	22674.7	707999.2	28.1482
4	4	23. 527	795.5	25832.0	1. 0270
Tota	1		85586.3	2515254.9	100.0000
	Br Ph CO ₂ Me		CO2Me =0	IC-H, 0.7 ml/min, Hexane/iPrOH = 98/2, 230nm	

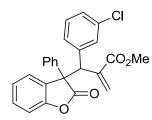

Methyl 2-((5-(tert-butyl)-2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-yl)(phenyl)methyl)acrylate **3d**

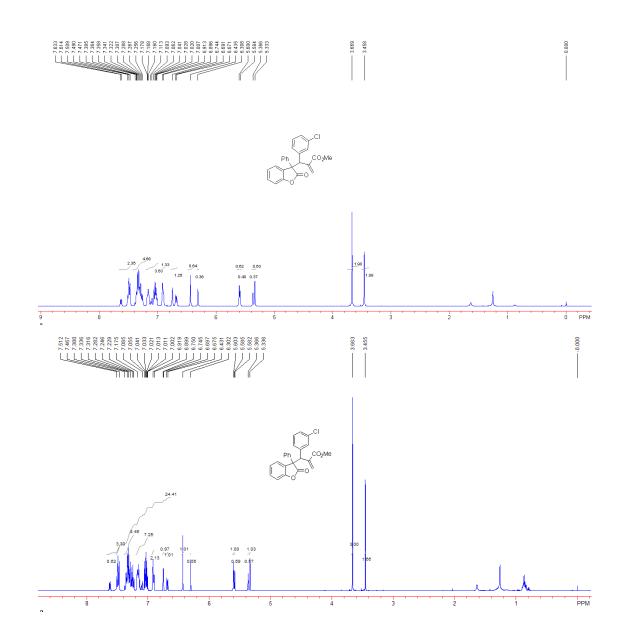
A colorless oil, 91% yield, 40 mg (*syn:anti* = 63:37); $[\alpha]^{20}{}_{D}$ = -134.6 (c 2.0, CHCl₃) for 90% ee (*syn*) and 88% ee (*anti*); Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column, Hexane/¹PrOH = 93/7, 0.5 mL/min, 230 nm, for *syn* product t_{major} = 19.627 min, t_{minor} = 26.327 min; for *anti* product t_{major} = 18.077 min, t_{minor} = 15.177 min. ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.25 (s, 5.67H, ¹Bu), 1.38 (s, 3.33H, ¹Bu), 3.44 (s, 1.11H, CH₃), 3.66 (s, 1.89H, CH₃), 5.38 (s, 0.37H, =CH₂), 5.40 (s, 0.63H, =CH₂), 5.41 (s, 0.67H, =CH₂), 5.58 (d, *J* = 1.2 Hz, 0.33H, =CH₂), 6.29 (s, 0.33H, CH), 6.39 (s, 0.67H, CH), 6.76-6.78 (m, 2H, Ar), 6.89-6.98 (m, 2H, Ar), 7.06-7.20 (m, 3H, Ar), 7.25-7.36 (m, 4H, Ar), 7.49-7.63 (m, 2H, Ar); ¹³C NMR (CDCl₃, 100 MHz): $\delta \square$ 31.39, 31.52, 34.64, 34.71, 51.97, 52.26, 53.00, 53.39, 59.45, 59.67, 110.06, 110.09, 124.59, 125.98, 126.04, 127.29, 127.30, 127.58, 127.64, 127.66, 127.80, 127.90, 127.92, 128.01, 128.44, 128.60, 128.99, 129.61, 129.88, 135.12, 136.69, 137.77, 139.05, 139.78, 146.77, 146.84, 150.68, 150.86, 166.79, 167.71, 176.87, 177.17; IR (neat) v 2957, 1801, 1720, 1488, 1264, 1145, 1065, 704, 702 cm⁻¹; MS (ESI) *m/z* 463.5 (M+Na⁺, 100). HRMS (ESI) Calcd. for C₂₉H₂₈O₄Na requires (M+Na⁺) 463.1889, Found: 463.1880.



HPLC REPORT

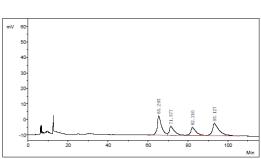



Date:2011-08-25 Method: the mobile phase: the detection wavelength:

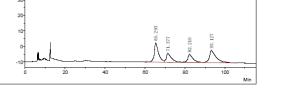

No.	PeakNo	R	Time	PeakHeight	PeakArea	PerCent
1	1	15	177	92028.8	1809233.1	15. 4578
2	2	18	077	76674.5	1830128.1	15.6363
3	3	19	677	155688.8	4063108.5	34.7145
4	4	26	. 277	110060.1	4001874.8	34.1914
Total	1			434452.1	11704344. 5	100.0000
				^t Bu Ph	CO ₂ Me	IC-H, 0.5 ml/min, Hexane/iPrOH = 93/7, 230nm

HPLC REPORT

Methyl 2-((3-chlorophenyl)(2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-yl)methyl)acrylate **3e** A white solid, this is a know compound,⁵ 99% yield, 41 mg (*syn:anti* = 56:44); $[\alpha]^{20}_{D}$ = -189.6 (c 2.2, CHCl₃) for 94% ee (*syn*) and 90% ee (*anti*); Enantiomeric excess was determined by HPLC with a Chiralcel REGIS-H column, Hexane/^{*i*}PrOH = 100/0.5, 0.5 mL/min, 230 nm, for *syn* product *t_{major}* = 93.710 min, *t_{minor}* = 68.245 min; for *anti* product *t_{major}* = 71.377 min, *t_{minor}* = 86.127 min; ¹H NMR (400 MHz, CDCl₃, TMS): δ 3.46 (s, 1.32H, CH₃), 3.67 (s, 1.68H, CH₃), 5.33 (s, 0.63H, =CH₂), 5.37 (s, 0.37H, =CH₂), 5.58 (s, 0.40H, =CH₂), 5.60 (s, 0.60H, =CH₂), 6.31 (s, 0.36H, CH), 6.44 (s, 0.64H, CH), 6.67-6.74 (m, 1H, Ar), 6.90 (d, *J* = 6.8 Hz, 1H, Ar), 7.01-7.18 (m, 4H, Ar), 7.27-7.39 (m, 5H, Ar), 7.47-7.51 (m, 2H, Ar).



Time:12:09


Wave Length:

Column:

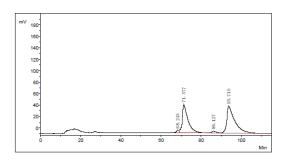
Sample Name:WD-4-84-REGIS-100+0.5-0.5. che

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1	1	Unknown	65.293	12397.5	1872218.9	32. 5371	
2	2	Unknown	71.377	5610.4	1052225.9	18.2865	
3	3	Unknown	82.210	5115.8	980482.7	17.0397	
4	4	Unknown	93.127	7825.4	1849184.9	32.1368	
Total				30949.2	5754112.4	100.0000	
		Ph 1	CO ₂ Me				

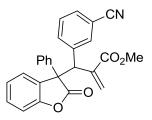
HPLC REPORT

Date:2011-09-07

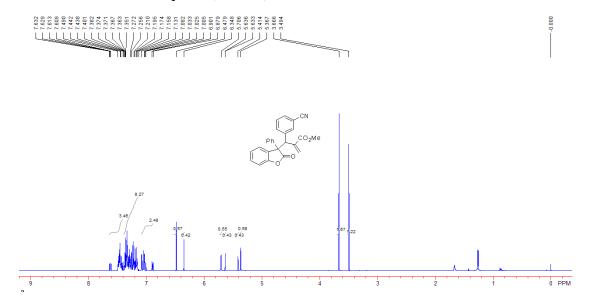
Method:

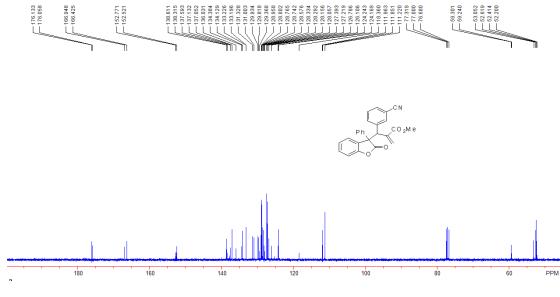

Flow Rate:

REGIS, 0.5 ml/min, Hexane/iPrOH = 100/0.5, 230nm

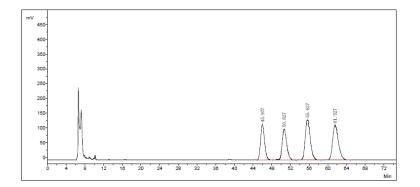

HPLC REPORT

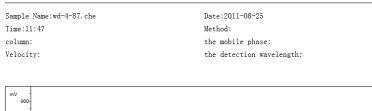
Sample Name:WD-4-80. che							
Time:08:04							
Column:							
Wave Length:							

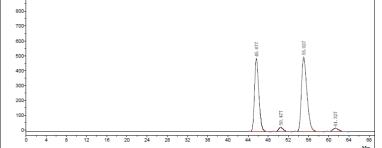


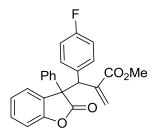


No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent		
1	1	Unknown	68.245	4141.1	376997.5	1.6046		
2	2	Unknown	71.377	49499.3	9791626.4	41.6757		
3	3	Unknown	86.127	2778.3	506412.8	2.1554		
4	4	Unknown	93.710	46967.7	12819777.9	54. 5643		
Tota	1	ſ	CI	103386.4	23494814.6	100.0000		
	Ĺ	Ph	CO ₂ Me	REGIS, 0.5 m	nl/min, Hexane/iF	PrOH = 100/0.5, 2	30nm	

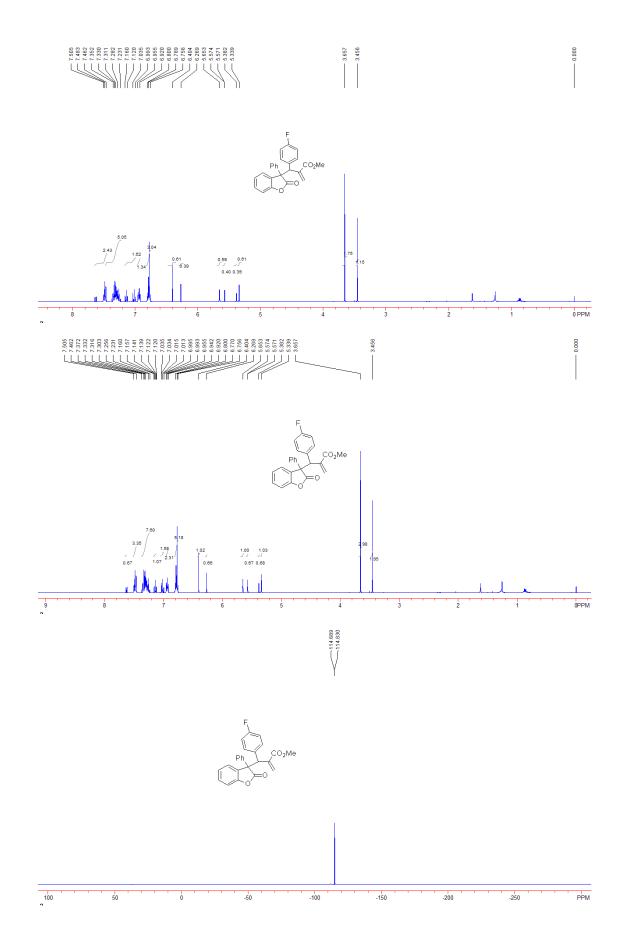

Methyl 2-((3-cyanophenyl)(2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-yl)methyl)acrylate **3f** A white solid, 84% yield, 34 mg, m.p. 124-126 °C, (*syn:anti* = 56:44); $[\alpha]^{20}_{D}$ = -254.8 (c 1.8, CHCl₃) for 90% ee (*syn*) and 88% ee (*anti*); Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column, Hexane/¹PrOH = 93/7, 0.5 mL/min, 230 nm, for *syn* product t_{major} = 55.027 min, t_{minor} = 61.327 min; for *anti* product t_{major} = 45.677 min, t_{minor} = 50.477 min; ¹H NMR (400 MHz, CDCl₃, TMS): δ 3.49 (s, 1.32H, CH₃), 3.67 (s, 1.68H, CH₃), 5.37 (s, 0.56H, =CH₂), 5.41 (s, 0.44H, =CH₂), 5.63 (d, *J* = 1.2 Hz, 0.44H, =CH₂), 5.71 (s, 0.56H, =CH₂), 6.35 (s, 0.44H, CH), 6.48 (s, 0.56H, CH), 6.88-7.08 (m, 2H, Ar), 7.13-7.38 (m, 8H, Ar), 7.40-7.63 (m, 3H, Ar); ¹³C NMR (CDCl₃, 100 MHz): $\delta \Box$ 52.20, 52.41, 52.62, 53.05, 59.24, 59.30, 111.22, 111.85, 111.96, 118.36, 124.17, 124.24, 126.11, 126.79, 127.22, 127.39, 128.06, 128.16, 128.29, 128.33, 128.58, 128.74, 128.77, 128.80, 128.96, 129.37, 129.82, 129.93, 131.00, 131.33, 133.20, 133.23, 134.13, 134.38, 136.03, 137.05, 137.13, 137.59, 138.32, 138.61, 152.52, 152.77, 166.43, 166.95, 176.06, 176.13; IR (neat) v 2952, 2230, 1800, 1719, 1462, 1271, 1066, 753, 699 cm⁻¹; MS (ESI) *m/z* 432.3 (M+Na⁺, 100). HRMS (ESI) Calcd. for C₂₆H₁₉NO₄Na requires (M+Na⁺) 432.1216, Found: 432.1206.

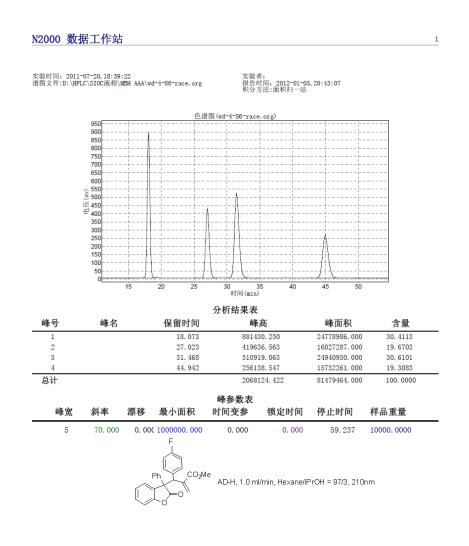

HPLC REPORT

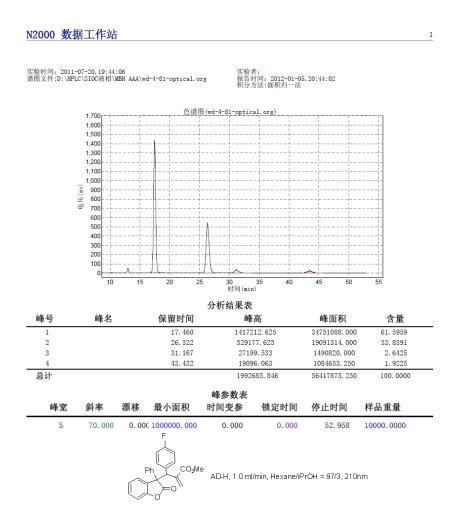

Sample Name:wd-4-87-rac ic 93 0.5.che Time:10:30 column: Velocity: Date:2011-08-25 Method: the mobile phase: the detection wavelength:

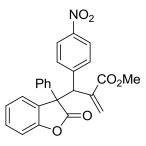

No. I	PeakNo	R. Time	PeakHeight	PeakArea	PerCent	
1	1	45.977	121196.9	7184814.3	20.4908	
2	2	50.627	104886.5	7200155.6	20.5346	
3	3	55.627	137349.5	10356109.6	29.5352	
4	4	61.527	118658.8	10322494.6	29.4394	
Total			482091.6	35063574.1	100.0000	
				_CN ,CO₂Me ∖\ IC-H, I	5 ml/min, Hexane/iPrOH = 93/	7, 230nm

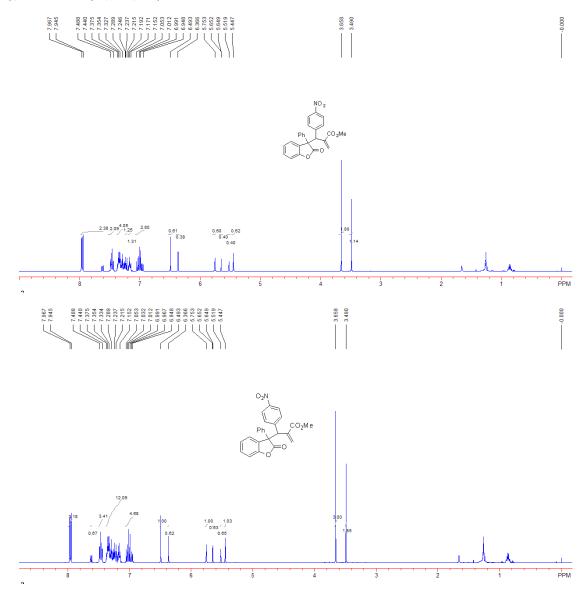
HPLC REPORT

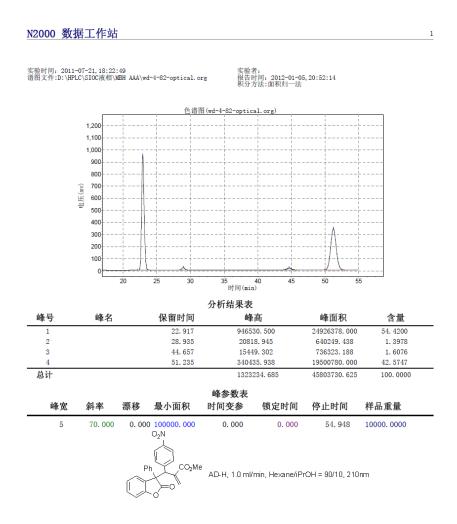


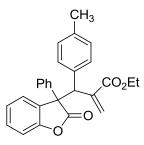


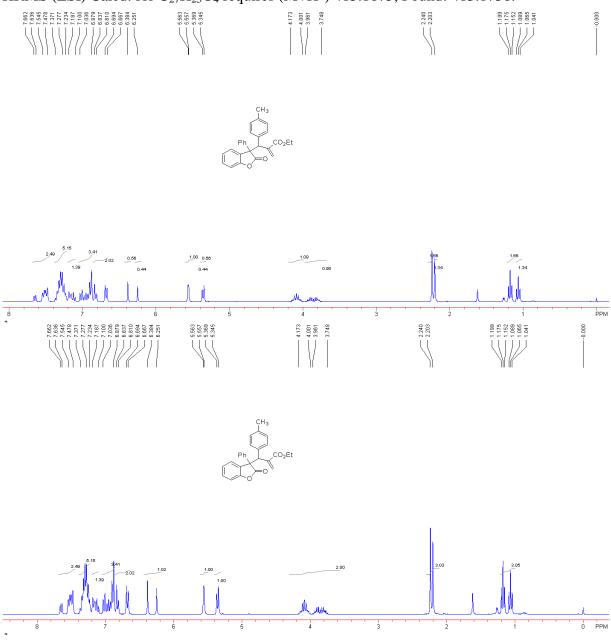

No. P	eakNo	R.	Time	PeakHeight	PeakArea	PerCent	
1	1	45.	677	490629.7	29350434.7	41.2325	
2	2	50.	477	28455.6	1880540.9	2.6418	
3	3	55.	027	498557.1	38037851.3	53.4368	
4	4	61.	327	22560.2	1914022.8	2.6889	
Total				1040202.6	71182849.7	100.0000	
					Me		
			Í			nl/min, Hexane/iPrC	DH = 93/7, 230nm

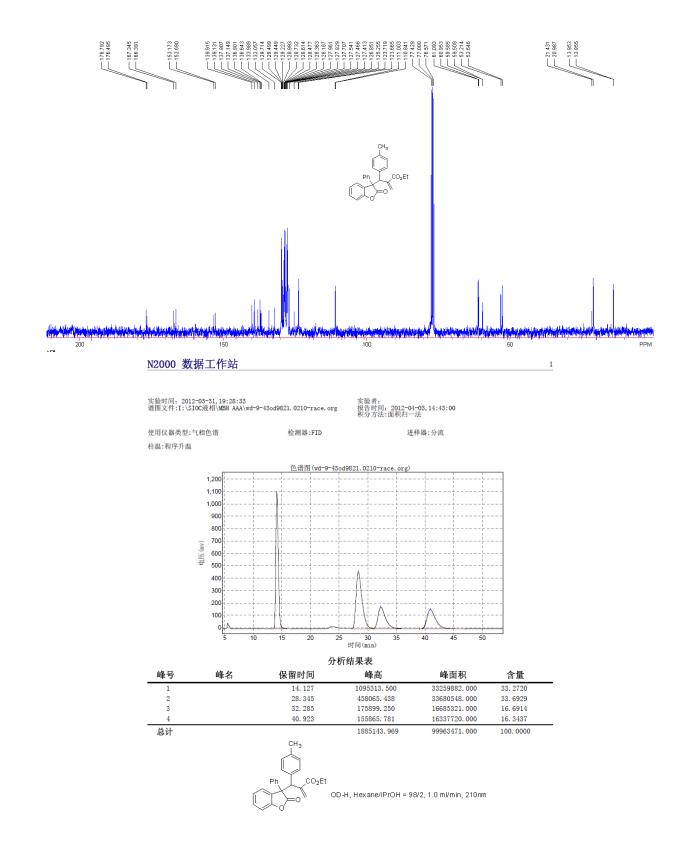

Methyl 2-((4-fluorophenyl)(2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-yl)methyl)acrylate **3g** A white solid, this is a known compound,⁵ 93% yield, 37 mg (*syn:anti* = 64:36); $[\alpha]^{20}_{D}$ = -228.7 (c 1.85, CHCl₃) for 92% ee (*syn*) and 89% ee (*anti*); Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/ⁱPrOH = 97/3, 0.5 mL/min, 210 nm, for *syn* product *t_{major}* = 17.460 min, *t_{minor}* = 31.167 min; for *anti* product *t_{major}* = 26.322 min, *t_{minor}* = 43.432 min; ¹H NMR (400 MHz, CDCl₃, TMS): δ 3.46 (s, 1.08H, CH₃), 3.66 (s, 1.92H, CH₃), 5.34 (s, 0.64H, =CH₂), 5.38 (s, 0.36H, =CH₂), 5.57 (d, *J* = 1.2 Hz, 0.36H, =CH₂), 5.65 (s, 0.64H, =CH₂), 6.27 (s, 0.36H, CH), 6.40 (s, 0.64H, CH), 6.76-6.80 (m, 3H, Ar), 6.92-6.96 (m, 1H, Ar), 6.99-7.16 (m, 2H, Ar), 7.23-7.35 (m, 5H, Ar), 7.46-7.51 (m, 2H, Ar); ¹⁹F NMR (CDCl₃, 376 MHz, CFCl₃): δ \Box -114.83, -114.69.

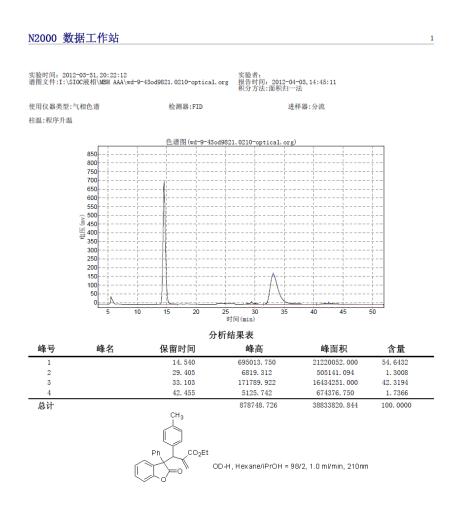



Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/PrOH = 97/3, 0.5 mL/min, 210 nm, for *syn* product t_{major} = 17.460 min, t_{minor} = 31.167 min; for *anti* product t_{major} = 26.322 min, t_{minor} = 43.432 min;

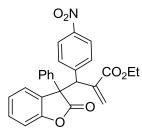

Methyl 2-((4-nitrophenyl)(2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-yl)methyl)acrylate **3h** A white solid, this is a known compound,⁵ 98% yield, 42 mg (*syn:anti* = 58:42); $[\alpha]^{20}_{D}$ = -171.4 (c 2.8, CHCl₃) for 95% ee (syn) and 92% ee (anti); Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/ⁱPrOH = 90/10, 1.0 mL/min, 210 nm, for *syn* product t_{major} = 22.917 min, t_{minor} = 28.935 min; for *anti* product t_{major} = 51.235 min, t_{minor} = 44.657 min; ¹H NMR (400 MHz, CDCl₃, TMS): δ 3.49 (s, 1.26H, CH₃), 3.66 (s, 1.74H, CH₃), 5.45 (s, 0.58H, =CH₂), 5.52 (s, 0.42H, =CH₂), 5.65 (d, *J* = 1.2 Hz, 0.42H, =CH₂), 5.75 (s, 0.58H, =CH₂), 6.37 (s, 0.42H, CH), 6.49 (s, 0.58H, CH), 6.95-7.05 (m, 3H, Ar), 7.15-7.19 (m, 1H, Ar), 7.22-7.25 (m, 1H, Ar), 7.29-7.38 (m, 4H, Ar), 7.44-7.49 (m, 2H, Ar), 7.95-7.97 (m, 2H, Ar).

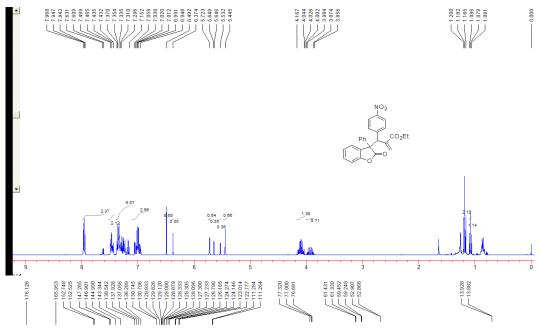

Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/¹PrOH = 90/10, 1.0 mL/min, 210 nm, for *syn* product $t_{major} = 22.917$ min, $t_{minor} = 28.935$ min; for *anti* product $t_{major} = 51.235$ min, $t_{minor} = 44.657$ min

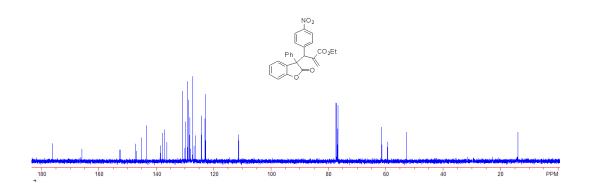



Ethyl 2-((2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-yl)(p-tolyl)methyl)acrylate 3i

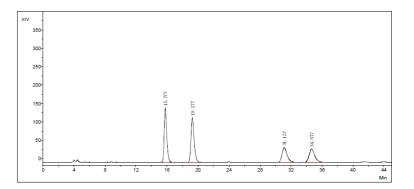
A colorless oil, 85% yield, 35 mg (*syn:anti* = 56:44); $[\alpha]^{20}{}_{D}$ = -187.7 (c 1.2, CHCl₃) for 95% ee (*syn*) and 92% ee (*anti*); Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, 210 nm, for *syn* product t_{major} = 14.540 min, t_{minor} = 29.405 min; for *anti* product t_{major} = 33.103 min, t_{minor} = 42.455 min; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.07 (t, J = 9.6 Hz, 1.32H, CH₃), 1.18 (t, J = 9.6 Hz, 1.68H, CH₃), 2.20 (s, 1.32H, CH₃), 2.24 (s, 1.68H, CH₃), 3.75-3.96 (m, 0.88H, CH₂), 4.00-4.17 (m, 1.12H,

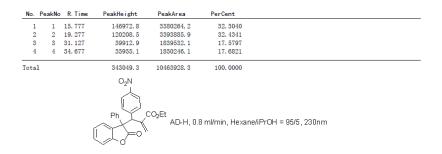

CH₂), 5.35 (s, 0.56H, =CH₂), 5.37 (s, 0.44H, =CH₂), 5.55 (s, 0.44H, =CH₂), 5.56 (s, 0.56H, =CH₂), 6.25 (s, 0.44H, CH), 6.38 (s, 0.56H, CH), 6.67-6.84 (m, 2H, Ar), 6.88-7.04 (m, 3H, Ar), 7.23-7.37 (m, 5H, Ar), 7.48-7.66 (m, 2H, Ar); ¹³C NMR (CDCl₃, 100 MHz): δ □ 13.86, 13.95, 20.99, 21.43, 52.65, 53.21, 59.51, 59.59, 60.95, 61.09, 110.84, 111.00, 123.67, 123.72, 125.26, 126.85, 127.41, 127.47, 127.54, 127.71, 127.83, 127.96, 128.19, 128.36, 128.48, 128.61, 128.73, 128.99, 129.23, 129.45, 129.50, 129.71, 132.06, 133.99, 136.64, 136.90, 137.15, 137.91, 139.13, 139.92, 152.69, 153.17, 166.39, 167.35, 176.50, 176.79; IR (neat) v 2980, 1796, 1712, 1460, 1232, 1127, 1061, 734, 696 cm⁻¹; MS (ESI) *m/z* 413.1 (M+H⁺, 100). HRMS (ESI) Calcd. for C₂₇H₂₅O₄ requires (M+H⁺) 413.1675, Found: 413.1738.



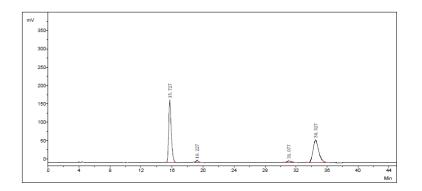


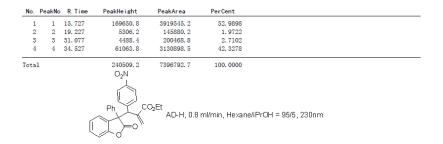
Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/PrOH = 98/2, 1.0 mL/min, 210 nm, for *syn* product t_{major} = 14.540 min, t_{minor} = 29.405 min; for *anti* product t_{major} = 33.103 min, t_{minor} = 42.455 min

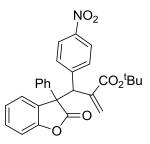

Ethyl 2-((4-nitrophenyl)(2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-yl)methyl)acrylate **3j** A yellowish solid, 95% yield, 42 mg, m.p. 65-67 °C, (*syn:anti* = 55:45); $[\alpha]^{20}_{D}$ = -229.1 (c 2.0, CHCl₃) for 93% (*syn*) and 88% (*anti*) ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/ⁱPrOH = 95/5, 0.8 mL/min, 230 nm, for *syn* product *t_{major}* = 15.727 min, *t_{minor}* = 19.227 min; for *anti* product *t_{major}* = 34.527 min, *t_{minor}* = 31.077 min; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.08 (t, *J* = 6.8 Hz, 1.35H, CH₃), 1.18 (t, *J* = 6.8 Hz, 1.65H, CH₃), 3.86-4.00 (m, 0.90H, CH₂), 4.03-4.17 (m, 1.10H, CH₂), 5.45 (s, 0.55H, =CH₂), 5.53 (s, 0.45H, =CH₂), 5.65 (d, *J* = 1.2 Hz, 0.45H, =CH₂), 5.72 (s, 0.55H, =CH₂), 6.37 (s, 0.45H, CH), S28 6.49 (s, 0.55H, CH), 6.95-7.06 (m, 3H, Ar), 7.15-7.37 (m, 6H, Ar), 7.43-7.49 (m, 2H, Ar), 7.61-7.97 (m, 2H,Ar); ¹³C NMR (CDCl₃, 100 MHz): $\delta \Box$ 13.88, 13.93, 52.87, 52.91, 59.25, 59.45, 61.34, 61.43, 111.26, 111.28, 122.78, 123.01, 124.15, 124.27, 126.19, 126.79, 127.23, 127.30, 128.10, 128.31, 128.33, 128.88, 129.00, 129.12, 129.83, 129.93, 130.71, 130.75, 136.29, 137.06, 137.93, 138.54, 143.34, 144.99, 146.90, 147.27, 152.53, 152.75, 165.95, 176.13; IR (neat) v 2981, 1800, 1716, 1597, 1521, 1347, 1065, 757, 699 cm⁻¹; MS (ESI) *m/z* 466.4 (M+Na⁺, 100). HRMS (ESI) Calcd. for C₂₆H₂₁NO₆Na requires (M+Na⁺) 466.1268, Found: 466.1261.



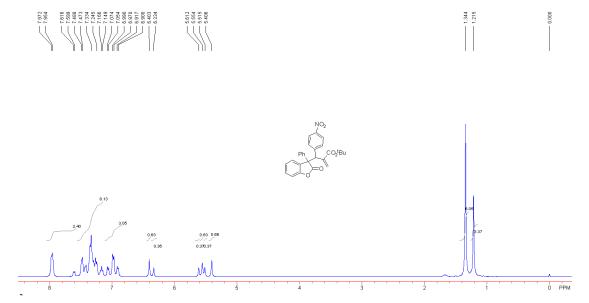
HPLC REPORT

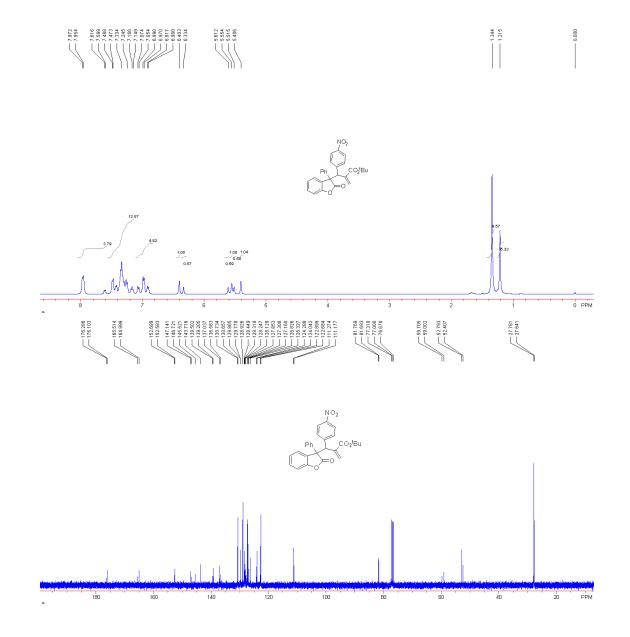


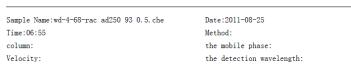


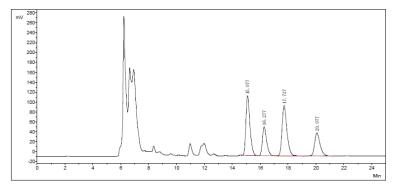


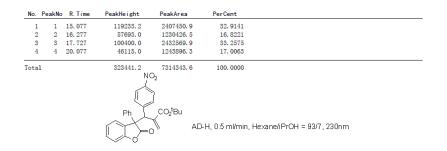
HPLC REPORT


Sample Name:wd-4-95-A.che Time:13:39 column: Velocity: Date:2011-08-22 Method: the mobile phase: the detection wavelength:

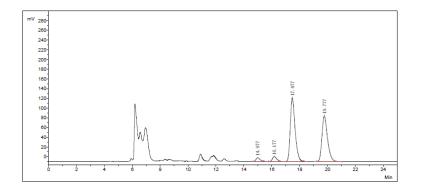


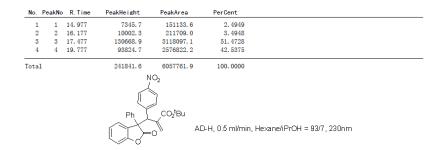



Tert-butyl 2-((4-nitrophenyl)(2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-yl)methyl)acrylate **3k** A white solid, 87% yield, 41 mg, m.p. 147-149 °C, (*syn:anti* = 54:46); $[\alpha]^{20}_{D}$ = -119.7 (c 1.8, CHCl₃) for 91% ee (*syn*) and 85% ee (*anti*); Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/ⁱPrOH = 93/7, 0.5 mL/min, 230 nm, for *syn* product t_{major} = 17.477 min, t_{minor} = 14.977 min; for *anti* product t_{major} = 19.777 min, t_{minor} = 16.177 min; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.22 (s, 4.14H, ^tBu), 1.34 (s, 4.86H, ^tBu), 5.41 (s, 0.54H, =CH₂), 5.52 (s, 0.46H, =CH₂), 5.55 (s, 0.54H, =CH₂), 5.61 (s, 0.46H, =CH₂), 6.33 (s, 0.46H, CH), 6.40 (s, 0.54H, CH), 6.90-7.07 (m, 3H, Ar), 7.15-7.49 (m, 8H, Ar), 7.96 (d, *J* = 7.2 Hz, 2H, Ar); ¹³C NMR (CDCl₃, 100 MHz): δ □27.64, 27.78, 52.41, 52.79, 59.00, 59.71, 81.69, 81.77, 111.18, 111.27, 122.68, 122.90, 124.04, 124.29, 126.33, 126.83, 127.16, 127.31, 127.85, 128.13, 128.25, 128.32, 128.45, 128.93, 129.77, 129.87, 130.66, 130.73, 136.58, 137.04, 139.21, 139.50, 143.72, 145.52, 146.72, 147.14, 152.58, 152.69, 165.00, 165.51, 176.10, 176.29; IR (neat) v 2978, 1801, 1709, 1604, 1524, 1347, 1146, 1065, 757 cm⁻¹; MS (ESI) *m*/z 494.5 (M+Na⁺, 100). HRMS (MALDI) Calcd. for C₂₈H₂₅NO₆Na requires (M+Na⁺) 494.1579, Found: 494.1574.

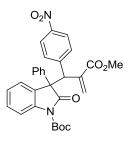


HPLC REPORT

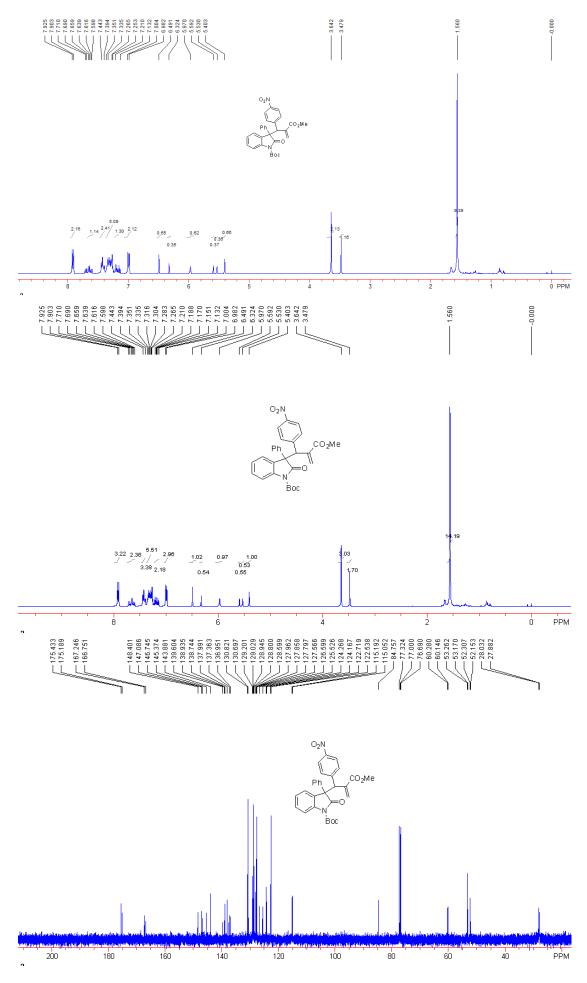


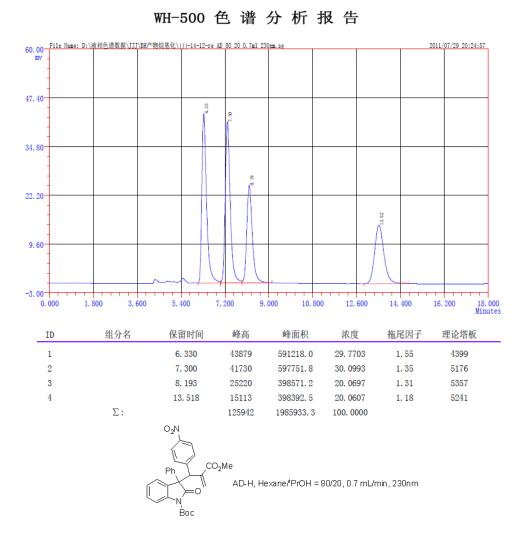


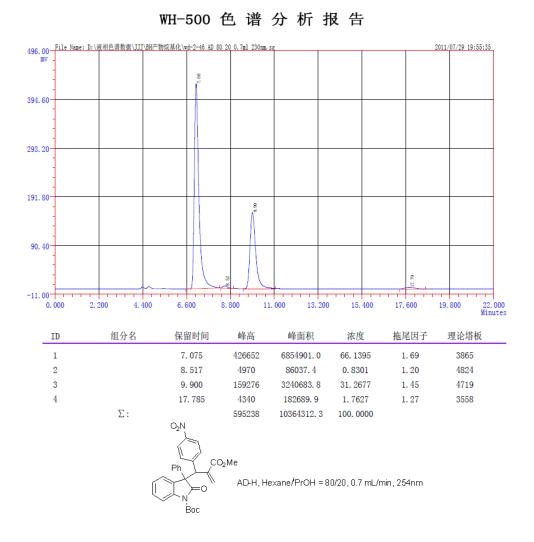
HPLC REPORT


Sample Name:wd-4-68 ad250 93 0.5.che	
Time:07:42	
column:	
Velocity:	

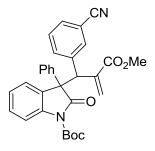
Date:2011-08-25 Method: the mobile phase: the detection wavelength:

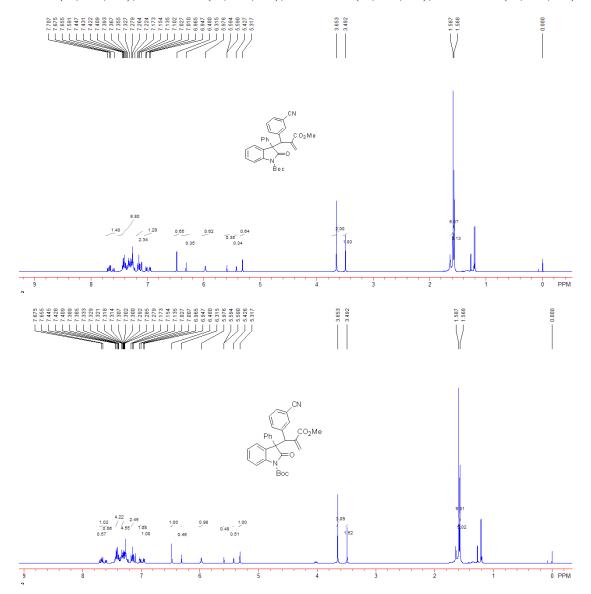


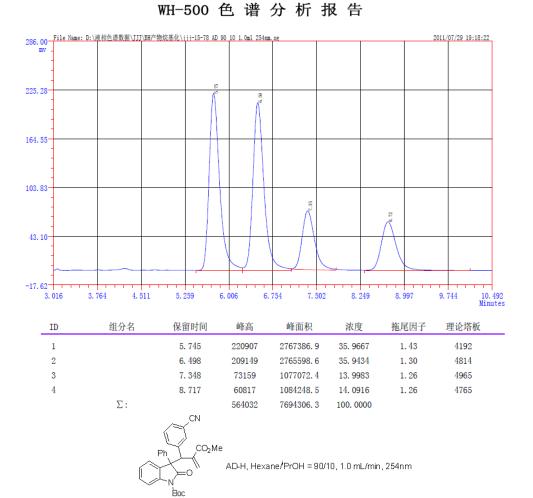

5. Characterization and spectra charts containing HPLC traces for products 5a-k.

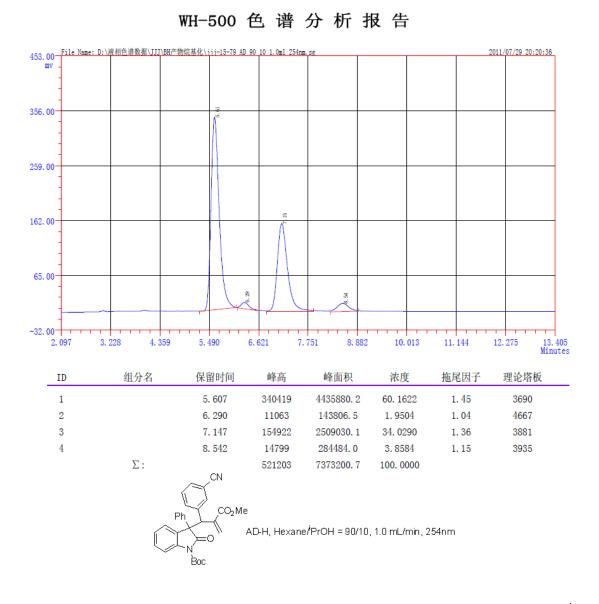


Tert-butyl

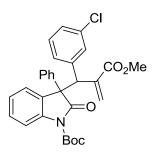

3-(2-(methoxycarbonyl)-1-(4-nitrophenyl)allyl)-2-oxo-3-phenylindoline-1-carboxylate 5a A white solid, 91% yield, 48 mg, m.p. 90-92 °C, (*anti:syn* = 67:33); $[\alpha]_{D}^{20} = -200.0$ (c 0.1, CHCl₃) for 98% ee (anti) and 89% ee (syn); Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/ⁱPrOH = 80/20, 0.7 mL/min, 230 nm, for *anti* product $t_{major} = 7.057 \text{ min}, t_{minor} = 8.517 \text{ min}; \text{ for syn product } t_{major} = 9.900 \text{ min}, t_{minor} = 17.785 \text{ min}; {}^{1}\text{H}$ NMR (400 MHz, CDCl₃, TMS): δ 1.56 (s, 9.00H, for syn and anti, Boc), 3.48 (s, 0.99H, CH₃), 3.64 (s, 2.01H, CH₃), 5.40 (s, 0.67H, =CH₂), 5.53 (s, 0.33H, =CH₂), 5.59 (s, 0.33H, =CH₂), 5.97 (s, 0.67H, =CH₂), 6.32 (s, 0.33H, CH), 6.49 (s, 0.67H, CH), 6.99 (d, J = 8.8 Hz, 2H, Ar), 7.13-7.21 (m, 1H, Ar), 7.25-7.35 (m, 5H, Ar), 7.39-7.44 (m, 2H, Ar), 7.60-7.66 (m, 1H, Ar), 7.91 (d, J = 8.8 Hz, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃): δ 27.88, 28.03, 52.15, 52.31, 53.17, 53.26, 60.15, 60.28, 84.76, 115.05, 115.19, 122.54, 122.72, 124.17, 124.27, 125.53, 126.60, 127.57, 127.80, 127.86, 127.96, 128.60, 128.80, 128.95, 129.03, 129.20, 130.70, 130.82, 136.95, 137.36, 137.99, 138.74, 138.94, 139.60, 143.88, 145.37, 146.75, 147.09, 148.40, 166.75, 167.25, 175.19, 175.43; IR (neat) v 2982, 1793, 1762, 1719, 1604, 1522, 1251, 1147, 738 cm⁻¹; MS (ESI) *m/z* 551.4 (M+Na⁺, 100). HRMS (ESI) Calcd. for C₃₀H₂₈N₂O₇Na requires (M+Na⁺) 551.1797, Found: 551.1789.



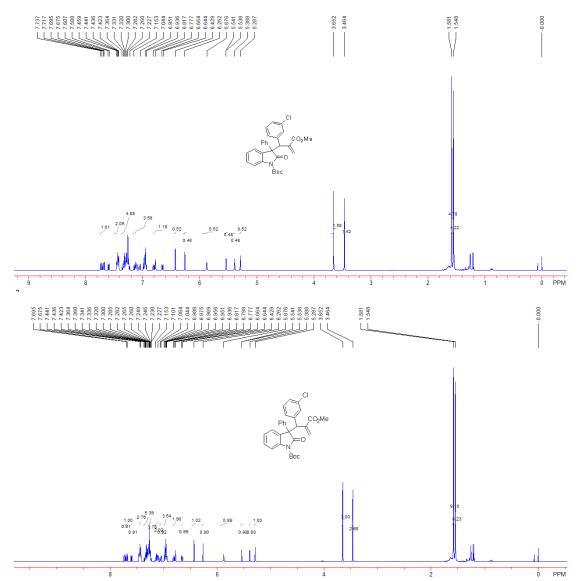

Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/ⁱPrOH = 80/20, 0.7 mL/min, 230 nm, for *anti* product $t_{major} = 7.057$ min, $t_{minor} = 8.517$ min; for *syn* product $t_{major} = 9.900$ min, $t_{minor} = 17.785$ min

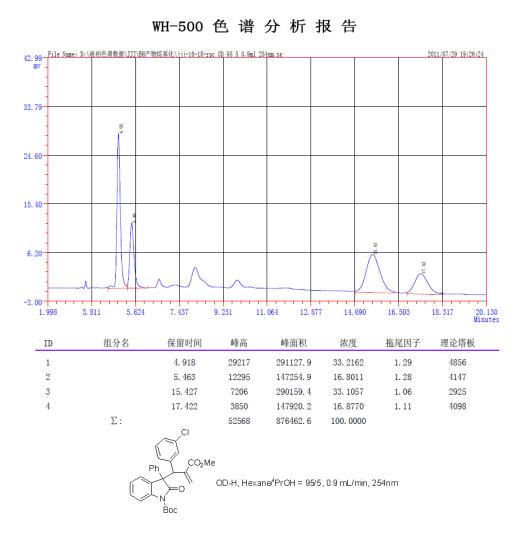

Tert-butyl

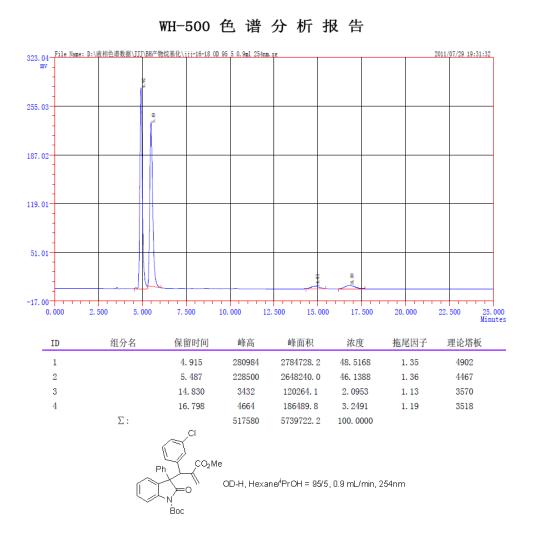
3-(1-(3-cyanophenyl)-2-(methoxycarbonyl)allyl)-2-oxo-3-phenylindoline-1-carboxylate **5b** A white solid, this is a known compound.⁶ 86% yield, 43 mg (*anti:syn* = 62:38); $[\alpha]^{20}_{D}$ = -98.0 (c 0.15, CHCl₃) for 94% ee (anti) and 80% ee (syn); Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 90/10, 1.0 mL/min, 254 nm, for *anti* product t_{major} = 5.607 min, t_{minor} = 6.290 min; for *syn* product t_{major} = 7.147 min, t_{minor} = 8.542 min; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.57 (s, 3.42H, Boc), 1.59 (s, 5.58H, Boc), 3.49 (s, 1.14H, CH₃), 3.65 (s, 1.86H, CH₃), 5.32 (s, 0.62H, =CH₂), 5.43 (s, 0.38H, =CH₂), 5.59 (d, *J* = 1.6 Hz, 0.38H, =CH₂), 5.98 (s, 0.62H, =CH₂), 6.32 (s, 0.38H, CH), 6.48 (s, 0.62H, CH), 6.95-7.03 (m, 1H, Ar), 7.10-7.17 (m, 2H, Ar), 7.22-7.45 (m, 9H, Ar), 7.59-7.71 (m, 1H, Ar).



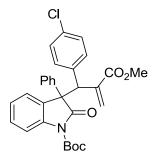
S39

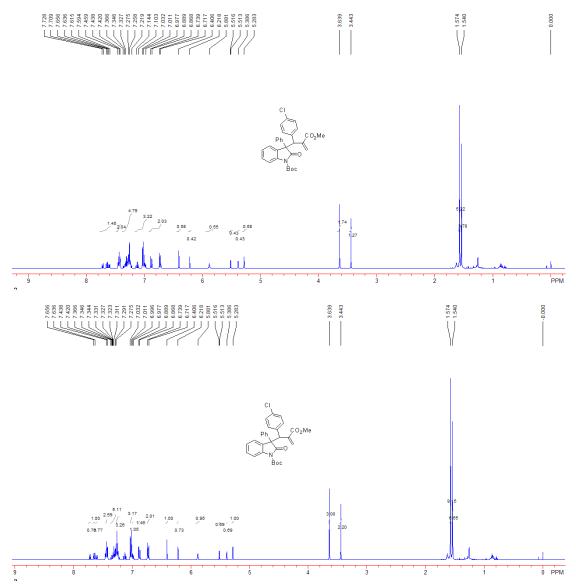



Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 90/10, 1.0 mL/min, 254 nm, for *anti* product $t_{major} = 5.607$ min, $t_{minor} = 6.290$ min; for *syn* product $t_{major} = 7.147$ min, $t_{minor} = 8.542$ min

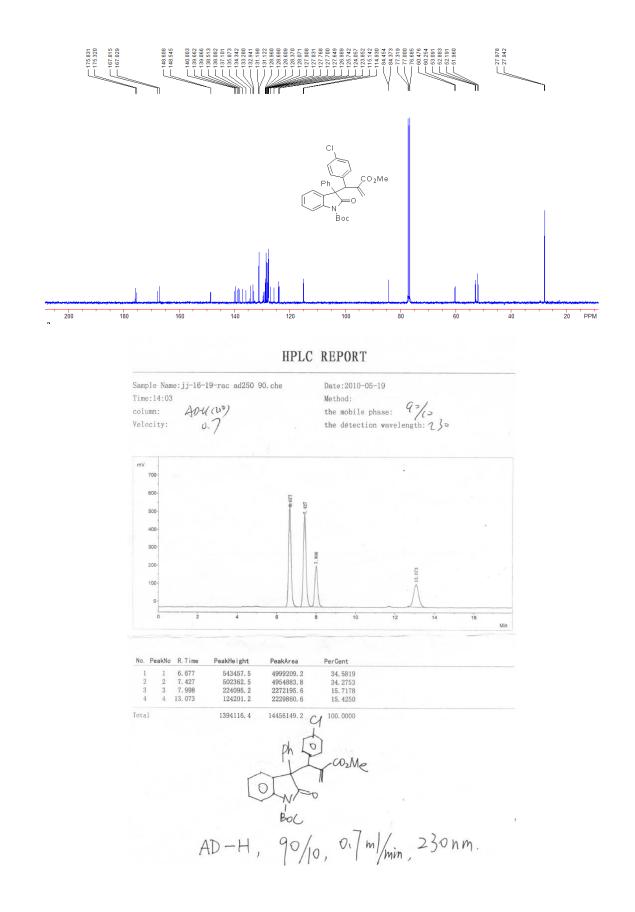


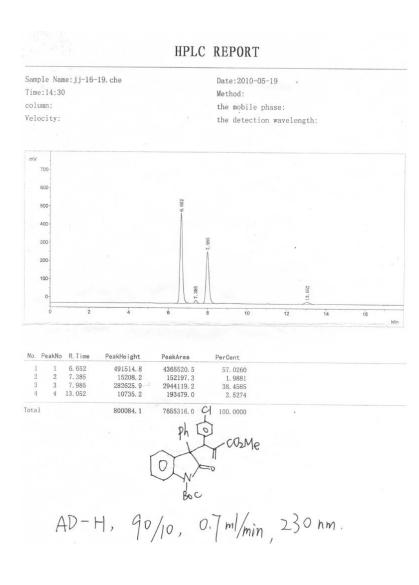
Tert-butyl

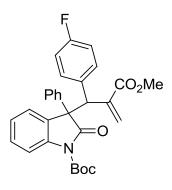

3-(1-(3-chlorophenyl)-2-(methoxycarbonyl)allyl)-2-oxo-3-phenylindoline-1-carboxylate **5c** A white solid, this is a known compound.⁶ 93% yield, 48 mg (*anti:syn* = 51:49); $[\alpha]_{D}^{20} =$ -254.6 (c 1.85, CHCl₃) for 92% ee (*anti*) and 87% ee (*syn*); Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/ⁱPrOH = 95/5, 0.9 mL/min, 254 nm, for *anti* product t_{major} = 4.915 min, t_{minor} = 14.830 min; for *syn* product t_{major} = 5.487 min, t_{minor} = 16.798 min; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.55 (s, 4.41H, Boc), 1.58 (s, 4.78H, Boc), 3.46 (s, 1.47H, CH₃), 3.65 (s, 1.53H, CH₃), 5.29 (s, 0.51H, =CH₂), 5.39 (s, 0.49H, =CH₂), 5.54 (d, *J* = 1.2 Hz, 0.49H, =CH₂), 5.88 (s, 0.51H, =CH₂), 6.26 (s, 0.49H, CH), 6.43 (s, 0.51H, CH), 6.64-6.82 (m, 1H, Ar), 6.94-7.15 (m, 4H, Ar), 7.23-7.36 (m, 5H, Ar), 7.42-7.46 (m, 2H, Ar), 7.59-7.74 (m, 1H, Ar).



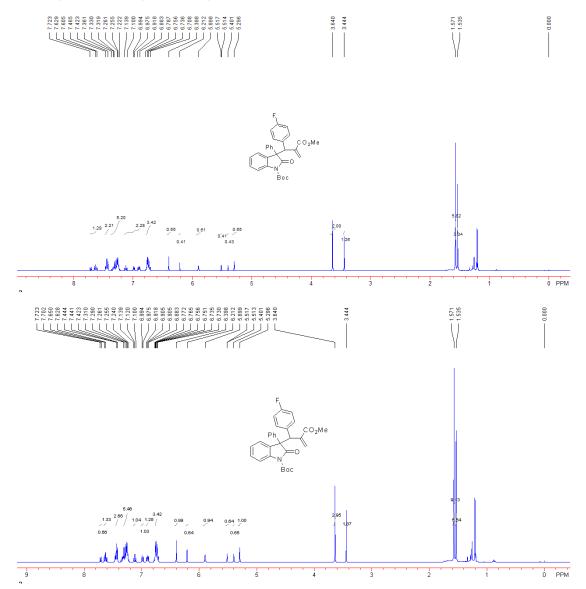
Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/ⁱPrOH = 95/5, 0.9 mL/min, 254 nm, for *anti* product $t_{major} = 4.915$ min, $t_{minor} = 14.830$ min; for *syn* product $t_{major} = 5.487$ min, $t_{minor} = 16.798$ min

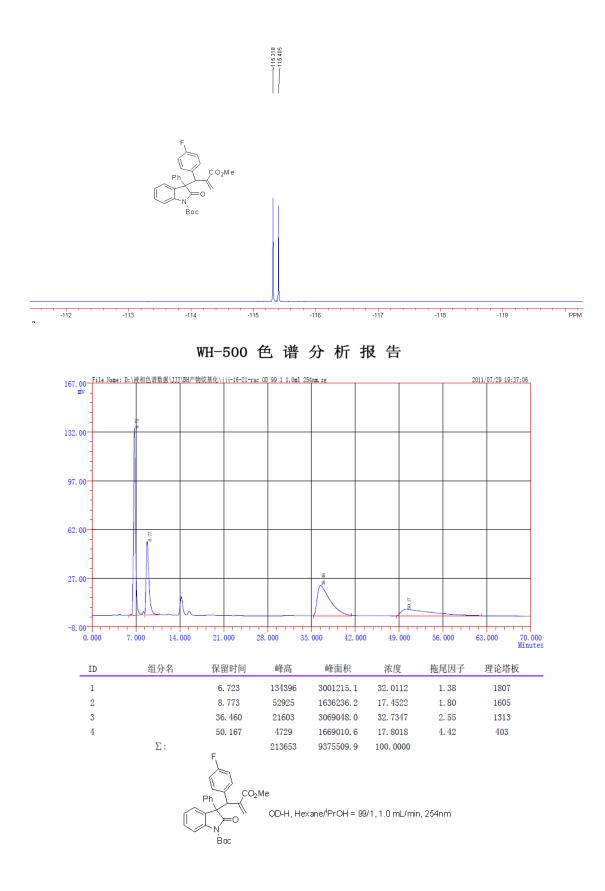


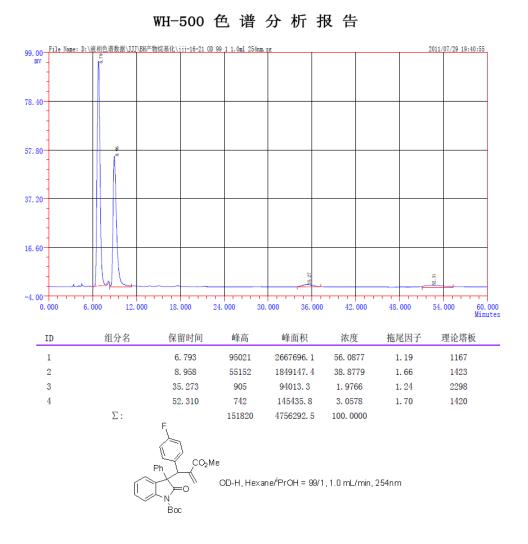

Tert-butyl


3-(1-(4-chlorophenyl)-2-(methoxycarbonyl)allyl)-2-oxo-3-phenylindoline-1-carboxylate **5d** A white solid, this is a known compound.⁶ 92% yield, 47 mg, m.p. 134-136 °C, (*anti:syn* = 59:41); $[\alpha]^{20}{}_{D}$ = -203.0 (c 0.1, CHCl₃) for 93% ee (*anti*) and 88% ee (*syn*); Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/ⁱPrOH = 90/10, 0.7 mL/min, 230 nm, for *anti* product t_{major} = 6.652 min, t_{minor} = 7.385 min; for *syn* product t_{major} = 7.985 min, $t_{minor} = 13.052$ min; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.54 (s, 3.69H, Boc), 1.57 (s, 5.31H, Boc), 3.44 (s, 1.23H, CH₃), 3.64 (s, 1.77H, CH₃), 5.28 (s, 0.59H, =CH₂), 5.39 (s, 0.41H, =CH₂), 5.51 (d, J = 1.2 Hz, 0.41H, =CH₂), 5.88 (s, 0.59H, =CH₂), 6.22 (s, 0.41H, CH), 6.41 (s, 0.59H, CH), 6.72-6.89 (m, 2H, Ar), 6.98-7.14 (m, 3H, Ar), 7.22-7.37 (m, 5H, Ar), 7.42-7.46 (m, 2H, Ar), 7.59-7.73 (m, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃): δ 27.94, 27.98, 51.96, 52.19, 52.88, 53.09, 60.25, 60.48, 84.37, 84.45, 114.93, 115.14, 123.85, 124.06, 125.74, 126.99, 127.65, 127.70, 127.77, 127.83, 127.91, 128.07, 128.37, 128.61, 128.69, 128.96, 131.12, 131.20, 132.94, 133.28, 134.34, 135.87, 137.10, 138.08, 138.51, 139.07, 139.66, 140.00, 148.55, 148.61, 167.03, 167.82, 175.32, 175.83; IR (neat) v 2927, 1793, 1762, 1735, 1491, 1368, 1287, 1148, 738 cm⁻¹; MS (ESI) *m*/*z* 494.5 (M+Na⁺, 100). HRMS (ESI) Calcd. for C₃₀H₂₈ClNO₅Na requires (M+Na⁺) 540.1563, Found: 540.1548.

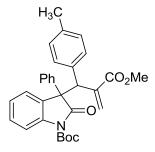
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012



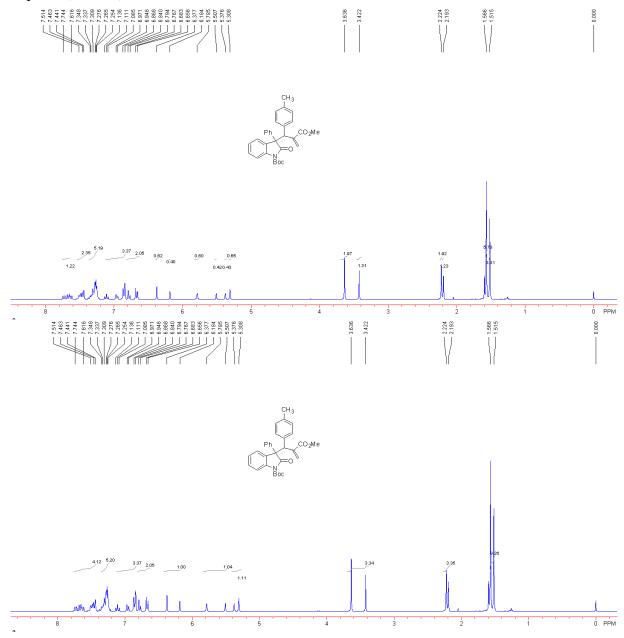



Tert-butyl

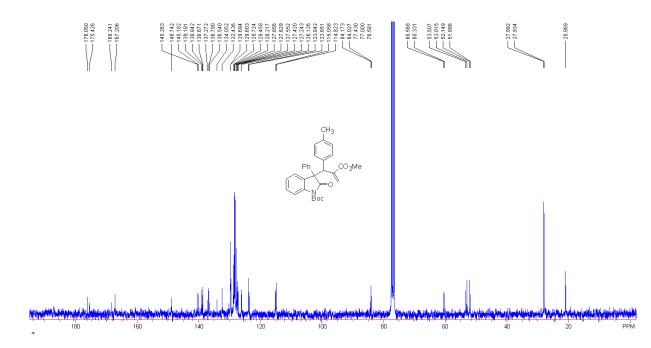
3-(1-(4-fluorophenyl)-2-(methoxycarbonyl)allyl)-2-oxo-3-phenylindoline-1-carboxylate **5e** A white solid, this is a known compound.⁶ 86% yield, 43 mg (*anti:syn* = 58:42); $[\alpha]^{20}_{D}$ = -236.0 (c 1.9, CHCl₃) for 93% ee (*anti*) and 85% ee (*syn*); Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 99/1, 1.0 mL/min, 254 nm, for *anti* product t_{major} = 6.793 min, t_{minor} = 35.273 min; for *syn* product t_{major} = 8.958 min, t_{minor} = 52.310 min; ¹H NMR (400MHz, CDCl₃, TMS) δ 1.54 (s, 3.78H, Boc), 1.57 (s, 5.22H, Boc), 3.44 (s, 1.26H, CH₃), 3.64 (s, 1.74H, CH₃), 5.30 (s, 0.58H, =CH₂), 5.40 (s, 0.42H, =CH₂), 5.52 (d, *J* = 1.2 Hz, 0.42H, =CH₂), 5.90 (s, 0.58H, =CH₂), 6.21 (s, 0.42H, CH), 6.40 (s, 0.58H, CH), 6.71-6.79 (m, 3H, Ar), 6.88-7.14 (m, 2H, Ar), 7.22-7.36 (m, 5H, Ar), 7.42-7.47 (m, 2H, Ar), 7.61-7.72 (m, 1H, Ar).



Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

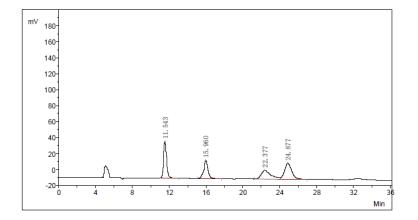


Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/ⁱPrOH = 99/1, 1.0 mL/min, 254 nm, for *anti* product $t_{major} = 6.793$ min, $t_{minor} = 35.273$ min; for *syn* product $t_{major} = 8.958$ min, $t_{minor} = 52.310$ min



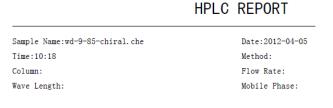
Tert-butyl 3-(2-(methoxycarbonyl)-1-(p-tolyl)allyl)-2-oxo-3-phenylindoline-1-carboxylate **5f** A white solid, 81% yield, 39 mg, m.p. 82-84 °C, (*anti:syn* = 60:40); $[\alpha]^{20}{}_{\rm D}$ = -89.5 (c 1.2, CHCl₃) for 95% ee (*anti*) and 91% ee (*syn*); Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column, Hexane/ⁱPrOH = 90/10, 0.7 mL/min, 214 nm, for *anti* product t_{major} = 11.627 min, t_{minor} = 25.043 min; for *syn* product t_{major} = 15.877 min, t_{minor} = 22.543 min; ¹H NMR (300 MHz, CDCl₃, TMS): δ 1.52 (s, 3.60H, Boc), 1.57 (s, 5.40H, Boc), 2.19 (s,

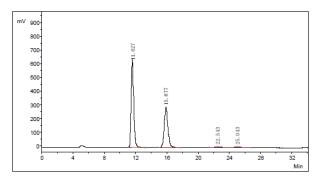
1.20H, CH₃), 2.22 (s, 1.80H, CH₃), 3.42 (s, 1.20H, CH₃), 3.64 (s, 1.80H, CH₃), 5.31 (s, 0.60H, =CH₂), 5.38 (s, 0.40H, =CH₂), 5.51 (s, 0.40H, =CH₂), 5.79 (s, 0.60H, =CH₂), 6.18 (s, 0.37H, CH), 6.38 (s, 0.63H, CH), 6.66-6.79 (m, 2H, Ar), 6.84-7.14 (m, 3H, Ar), 7.25-7.34 (m, 5H, Ar), 7.35-7.51 (m, 2H, Ar), 7.62-7.74 (m, 1H, Ar); ¹³C NMR (CDCl₃, 75 MHz): $\delta \Box$ 20.97, 27.93, 27.99, 51.89, 52.15, 53.02, 53.51, 60.33, 60.57, 84.03, 84.17, 114.82, 115.06, 123.65, 123.84, 126.13, 127.24, 127.42, 127.55, 127.63, 127.86, 128.22, 128.46, 128.72, 129.60, 129.69, 132.44, 134.05, 136.54, 136.79, 137.27, 138.67, 138.84, 139.18, 140.18, 140.26, 148.74, 167.21, 168.24, 175.43, 176.05; IR (neat) v 2981, 1759, 1724, 1463, 1345, 1287, 1146, 1098, 734, 697 cm⁻¹; MS (ESI) *m/z* 520.2 (M+Na⁺, 100). HRMS (ESI) Calcd. for C₃₁H₃₁O₅Na requires (M+Na⁺) 520.2202, Found: 520.2086.



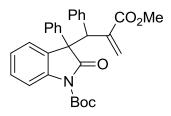
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

HPLC REPORT

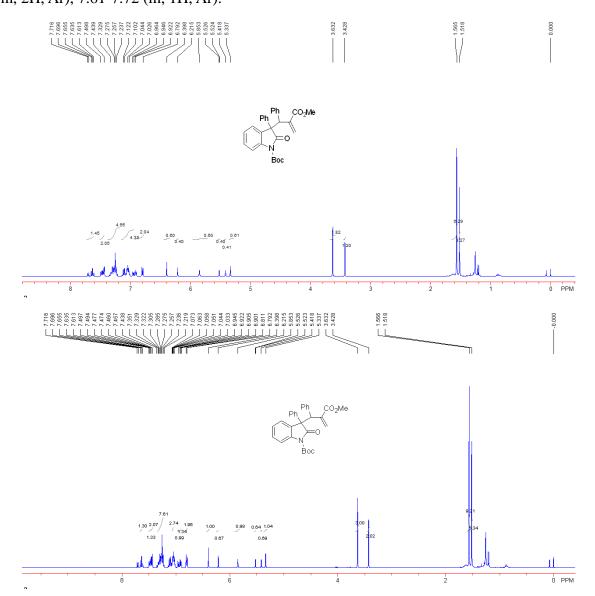

Sample Name:wd-9-85-rac-ic-9-1-0.7-214.che Time:09:41 Column: Wave Length: Date:2012-04-05 Method: Flow Rate: Mobile Phase:

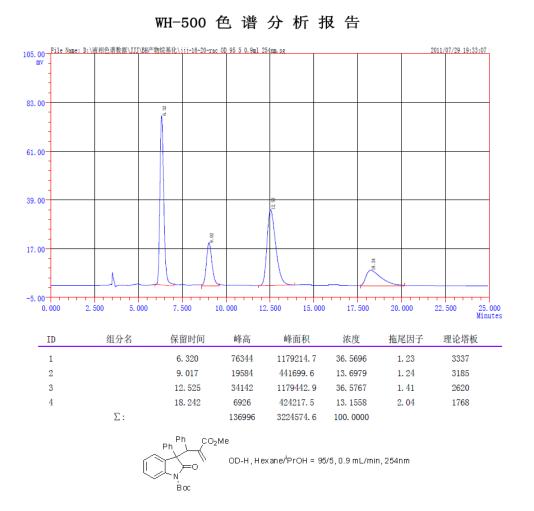


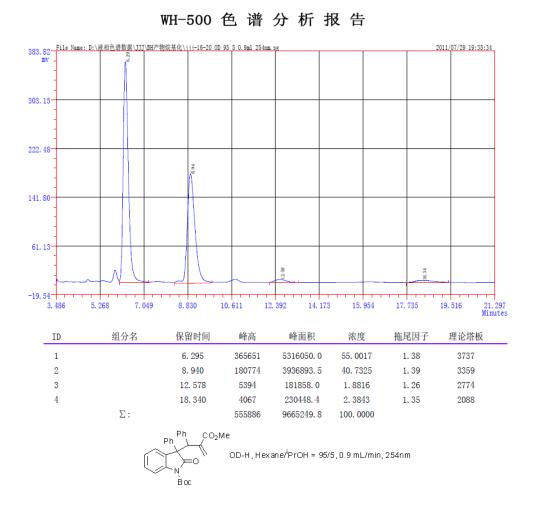
No.	PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	11.543	45343.0	1064361.9	29.1625
2	2	Unknown	15.960	22489.6	733796.2	20.1053
3	3	Unknown	22.377	10783.5	781395.6	21.4095
4	4	Unknown	24.877	19691.6	1070208.9	29.3227
otal			Me	98307.7	3649762.6	100.0000
			\bigtriangleup			



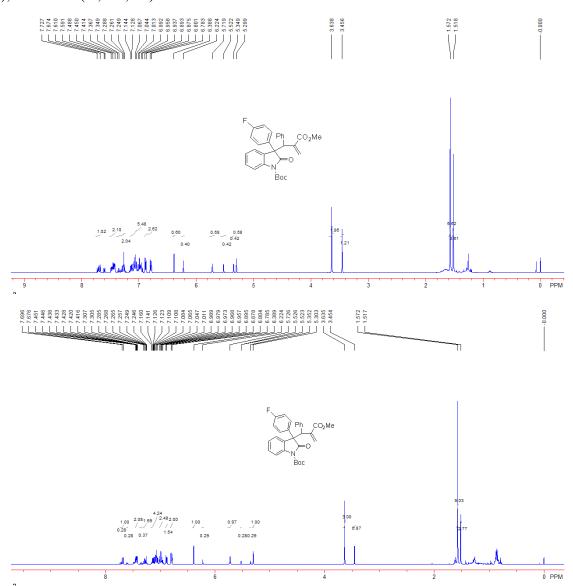
IC-H, Hexane/iPrOH = 90/10, 0.7 ml/min, 214 nm

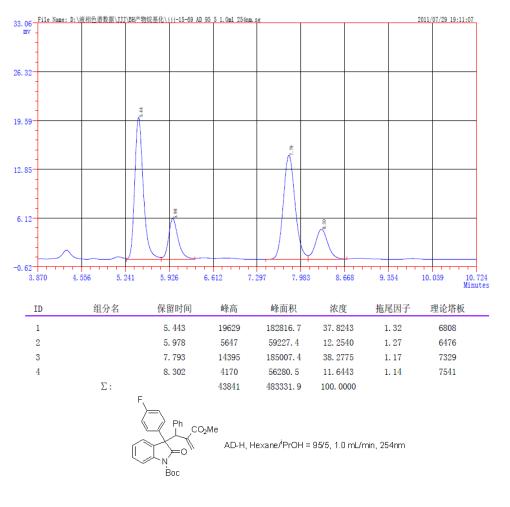


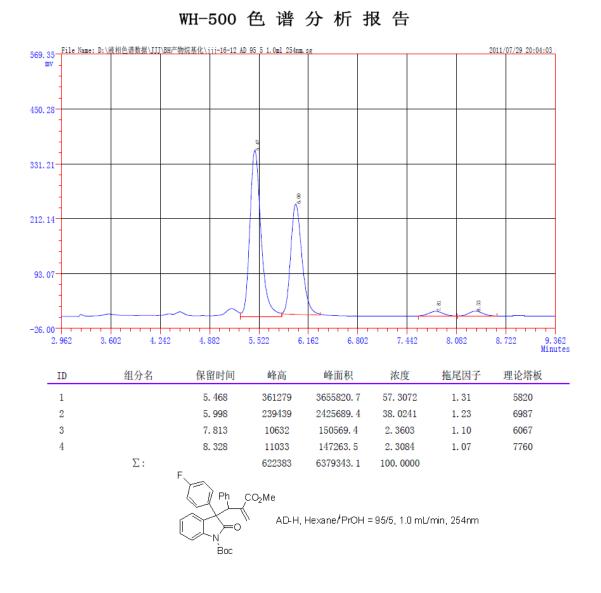



No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent			
1	1	Unknown	11.627	618571.0	14727940.9	58.7947			
2	2	Unknown	15.877	291572.9	9527367.0	38.0337			
3	3	Unknown	22.543	5898.0	425616.2	1.6991			
4	4	Unknown	25.043	6737.6	368857.5	1.4725			
lotal	L	Me		922779.3	25049781.6	100.0000			
	Ć	Ph CO ₂ Me IC-H, Hexane/iPrOH = 90/10, 0.7 ml/min, 214 nm Boc							

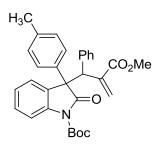
Tert-butyl 3-(2-(methoxycarbonyl)-1-phenylallyl)-2-oxo-3-phenylindoline-1-carboxylate **5g** A white solid, this is a known compound.⁶ 89% yield, 42 mg (*anti:syn* = 57:43); $[\alpha]^{20}_{D}$ = -196.0 (c 0.1, CHCl₃) for 93% ee (*anti*) and 89% ee (*syn*); Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 95/5, 0.9 mL/min, 254 nm, for *anti* product t_{major} = 6.295 min, t_{minor} = 12.578 min; for *syn* product t_{major} = 8.940 min, t_{minor} = 18.340 min; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.52 (s, 3.87H, Boc), 1.57 (s, 5.13H, Boc), 3.43 (s, 1.29H, CH₃), 3.63 (s, 1.71H, CH₃), 5.34 (s, 0.57H, =CH₂), 5.42 (s, 0.43H, =CH₂), 5.53 (d, *J* = 0.8 Hz, 0.43H, =CH₂), 5.85 (s, 0.57H, =CH₂), 6.22 (s, 0.43H, CH), 6.40 (s, S52 0.57H, CH), 6.79-6.92 (m, 2H, Ar), 6.95-7.12 (m, 4H, Ar), 7.24-7.33 (m, 5H, Ar), 7.44-7.50 (m, 2H, Ar), 7.61-7.72 (m, 1H, Ar).

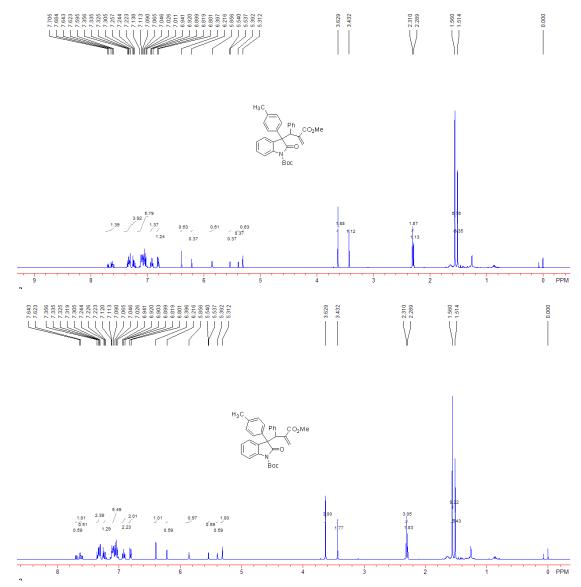


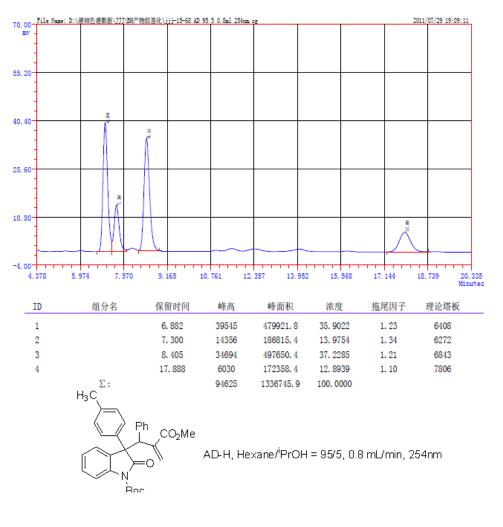

Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/ⁱPrOH = 95/5, 0.9 mL/min, 254 nm, for *anti* product $t_{major} = 6.295$ min, $t_{minor} = 12.578$ min; for *syn* product $t_{major} = 8.940$ min, $t_{minor} = 18.340$ min


Tert-butyl

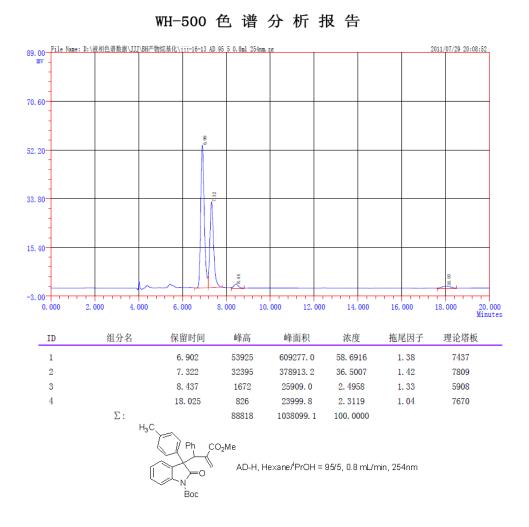
3-(4-fluorophenyl)-3-(2-(methoxycarbonyl)-1-phenylallyl)-2-oxoindoline-1-carboxylate **5h** A white solid, this is a known compound.⁶ 82% yield, 41 mg (*anti:syn* = 60:40); $[\alpha]^{20}_{D}$ = -147.7 (c 1.1, CHCl₃) for 92% ee (*anti*) and 89% ee (*syn*); Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 1.0 mL/min, 254 nm, for *anti* product t_{major} = 5.468 min, t_{minor} = 7.813 min; for *syn* product t_{major} = 5.998 min, $t_{minor} = 8.328 \text{ min;} {}^{1}\text{H} \text{ NMR} (400 \text{ MHz, CDCl}_3, \text{TMS}): \delta 1.52 (s, 3.38H, Boc), 1.57 (s, 5.62H, Boc), 3.46 (s, 1.20H, CH_3), 3.64 (s, 1.80H, CH_3), 5.30 (s, 0.60H, =CH_2), 5.35 (s, 0.40H, =CH_2), 5.52 (s, 0.40H, =CH_2), 5.72 (s, 0.60H, =CH_2), 6.22 (s, 0.40H, CH), 6.39 (s, 0.60H, CH), 6.78-6.89 (m, 3H, Ar), 6.94-7.14 (m, 5H, Ar), 7.25-7.37 (m, 2H, Ar), 7.41-7.49 (m, 2H, Ar), 7.59-7.73 (m, 1H, Ar).$



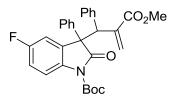

WH-500 色 谱 分 析 报 告



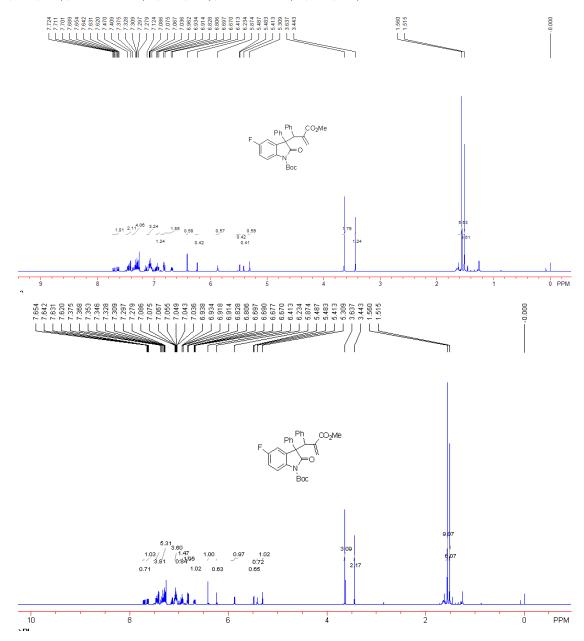
Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 1.0 mL/min, 254 nm, for *anti* product $t_{major} = 5.468$ min, $t_{minor} = 7.813$ min; for *syn* product $t_{major} = 5.998$ min, $t_{minor} = 8.328$ min

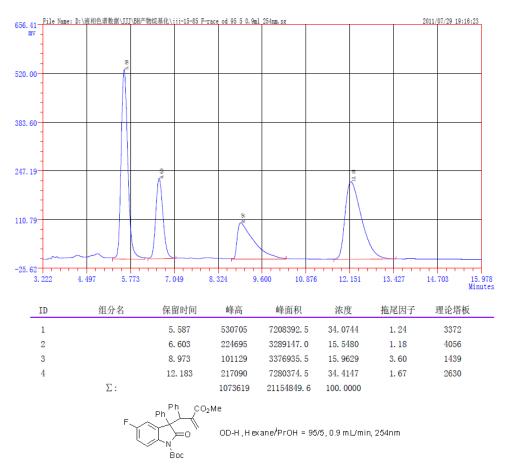


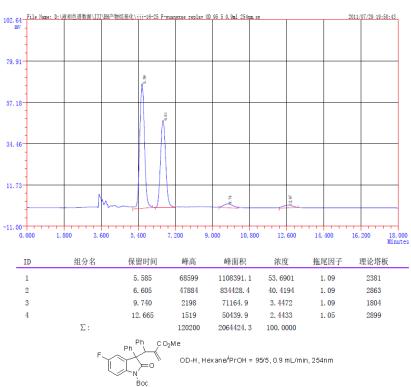
Tert-butyl 3-(2-(methoxycarbonyl)-1-phenylallyl)-2-oxo-3-(p-tolyl)indoline-1-carboxylate **5i** A white solid, this is a known compound.⁶ 76% yield, 38 mg (*anti:syn* = 61:39); $[\alpha]^{20}_{D}$ = -177.8 (c 1.85, CHCl₃) for 92% ee (*anti*) and 88% ee (*syn*); Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 0.8 mL/min, 254 nm, for *anti* product $t_{major} = 6.902$ min, $t_{minor} = 8.437$ min; for *syn* product $t_{major} = 7.322$ min, $t_{minor} = 18.025$ min; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.51 (s, 3.51H, Boc), 1.56 (s, 5.49H, Boc), 2.29 (s, 1.13H, CH₃), 2.31 (s, 1.87H, CH₃), 3.43 (s, 1.17H, CH₃), 3.63 (s, 1.83H, CH₃), 5.31 (s, 0.61H, =CH₂), 5.39 (s, 0.39H, =CH₂), 5.54 (d, J = 1.2 Hz, 0.39H, =CH₂), 5.86 (s, 0.61H, =CH₂), 6.22 (s, 0.39H, CH), 6.40 (s, 0.61H, CH), 6.81 (d, J = 7.2 Hz, 1H, Ar), 6.92 (t, J = 8.4 Hz, 1H, Ar), 7.01-7.14 (m, 6H, Ar), 7.22-7.36 (m, 4H, Ar), 7.60-7.71 (m, 1H, Ar).



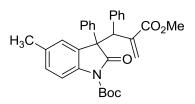
WH-500 色谱分析报告




Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/ⁱPrOH = 95/5, 0.8 mL/min, 254 nm, for *anti* product $t_{major} = 6.902$ min, $t_{minor} = 8.437$ min; for *syn* product $t_{major} = 7.322$ min, $t_{minor} = 18.025$ min

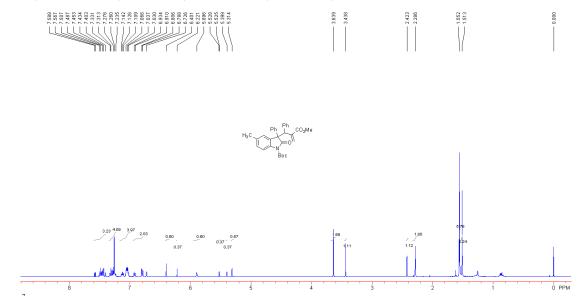

Tert-butyl

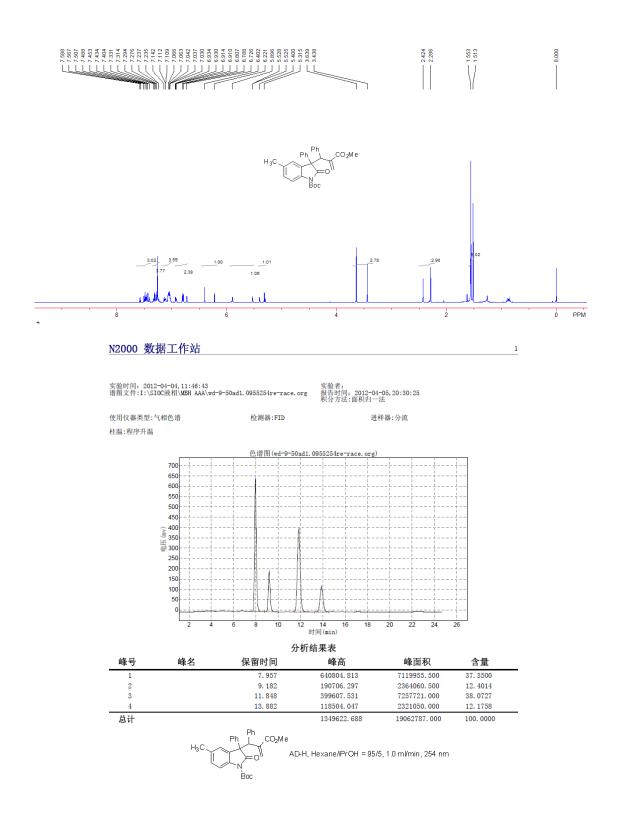
5-fluoro-3-(2-(methoxycarbonyl)-1-phenylallyl)-2-oxo-3-phenylindoline-1-carboxylate **5j** A white solid, this is a known compound.⁶ 82% yield, 41 mg (*anti:syn* = 56:44); $[\alpha]^{20}_{D}$ = -155.0 (c 0.25, CHCl₃) for 97% ee (*anti*) and 84% ee (*syn*); Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 95/5, 0.9 mL/min, 254 nm, for *anti* product t_{major} = 5.585 min, t_{minor} = 12.665 min; for *syn* product t_{major} = 6.605 min, t_{minor} = 9.740 min; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.52 (s, 3.96H, Boc), 1.56 (s, 5.04H, Boc), 3.44 (s, 1.32H, CH₃), 3.64 (s, 1.68H, CH₃), 5.31 (s, 0.56H, =CH₂), 5.41 (s, 0.44H, =CH₂), 5.49 (d, *J* = 1.6 Hz, 0.44H, =CH₂), 5.87 (s, 0.56H, =CH₂), 6.23 (s, 0.44H, CH), 6.41 (s, 0.56H, CH), 6.67-6.83 (m, 2H, Ar), 6.91-6.96 (m, 1H, Ar), 7.04-7.12 (m, 3H, Ar), 7.28-7.38 (m, 4H, Ar), 7.41-7.47 (m, 2H, Ar), 7.62-7.72 (m, 1H, Ar).

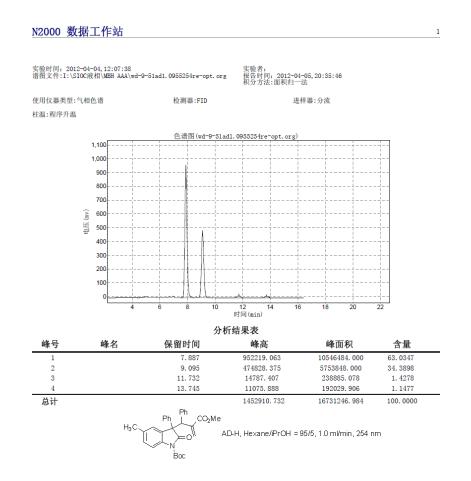


WH-500 色 谱 分 析 报 告

WH-500 色谱分析报告

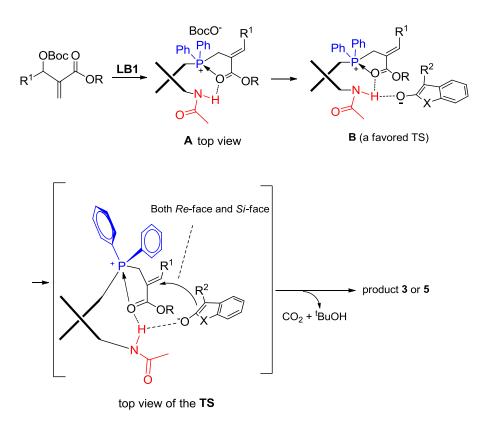

Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/ⁱPrOH = 95/5, 0.9 mL/min, 254 nm, for *anti* product $t_{major} = 5.585$ min, $t_{minor} = 12.665$ min; for *syn* product $t_{major} = 6.605$ min, $t_{minor} = 9.740$ min




Tert-butyl

3-(2-(methoxycarbonyl)-1-phenylallyl)-5-methyl-2-oxo-3-phenylindoline-1-carboxylate 5k

A colorless oil, this is a known compound.⁶ 78% yield, 38 mg (*anti:syn* = 64:36); $[\alpha]^{20}_{D}$ = -32.7 (c 0.25, CHCl₃) for 96% ee (*anti*) and 94% ee (*syn*); Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/ⁱPrOH = 95/5, 1.0 mL/min, 254 nm, for *anti* product t_{major} = 7.887 min, t_{minor} = 11.732 min; for *syn* product t_{major} = 9.095 min, t_{minor} = 13.745 min; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.51 (s, 3.24H, Boc), 1.55 (s, 5.78H, Boc), 2.29 (s, 1.92H, CH₃), 2.42 (s, 1.08H, CH₃), 3.44 (s, 1.08H, CH₃), 3.64 (s, 1.92H, CH₃), 5.31 (s, 0.64H, =CH₂), 5.40 (s, 0.36H, =CH₂), 5.53 (d, *J* = 1.2 Hz, 0.36H, =CH₂), 5.90 (s, 0.64H, =CH₂), 6.22 (s, 0.36H, CH), 6.40 (s, 0.64H, CH), 6.73-6.93 (m, 2H, Ar), 7.03-7.14 (m, 4H, Ar), 7.24-7.33 (m, 4H, Ar), 7.40-7.59 (m, 3H, Ar).



Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 95/5, 1.0 mL/min, 254 nm, for *anti* product $t_{major} = 7.887$ min, $t_{minor} = 11.732$ min; for *syn* product $t_{major} = 9.095$ min, $t_{minor} = 13.745$ min

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

6. A plausible reaction mechanism

Scheme SI-1

A plausible mechanism for this asymmetric reaction is outlined in Scheme SI-1. As proposed by Krische,⁷ the treatment of MBH carbonate with **LB1** produces an electrophile-nucleophile ion pair **A** stabilized by an intramolecular H-bonding, which reacts with the 3-substituted benzofunan or oxindole anion generated from BocO⁻ and 3-substituted benzofunan or oxindole to give intermediate **B**. Intermediate **B** is favored through intermolecular hydrogen-bonding, providing the addition product **3** or **5** from both Re-face or Si-face attacking via the transition state **TS** shown in Scheme SI-1.

7. References

- 1. Y.-Q. Jiang, Y.-L. Shi, M. Shi, J. Am. Chem. Soc. 2008, 130, 7202.
- 2. J. Feng, X. Lu, A. Kong, X. Han, Tetrahedron 2007, 63, 6035.
- 3. A. Padwa, D. Dehm, T. Oine, G. A. Lee, J. Am. Chem. Soc. 1975, 97, 1837.
- a) H. Yamashima, T. Suzuki, H. Takano, Y. Simura and M. Sodeoka, J. Am. Chem. Soc.
 2005, 127, 10164; b) T. Ishimaru, N. Shibata, J. Nagai, S. Nakamura, T. Toru, S. Kanemasa,
 J. Am. Chem. Soc. 2006, 128, 16488.
- 5. K. Jiang, J. Peng, H.-L. Cui, Y.-C. Chen, Chem. Commun. 2009, 3955.
- C. Liu, B.-X. Tan, J.-L. Jin, Y.-Y. Zhang, N. Dong, X. Lin, J.-P. Cheng, J. Org. Chem. 2011, 76, 5838.
- 7. (a) C.-W. Cho, M. J. Krische, *Angew. Chem. Int. Ed.*, 2004, 43, 6689 and references therein;
 (b) C.-W. Cho, J.-R. Kong, M. J. Krische, *Org. Lett.*, 2004, 6, 1337; (c) L.-C. Wang, A. L.Luis, K. Agapiou, H.-Y. Jang, M. J. Krische, *J. Am. Chem. Soc.*, 2002, 124, 2402; (d) P. K. Koech, M. J. Krische, *J. Am. Chem. Soc.*, 2004, 126, 5350.