Organic & Biomolecular Chemistry

www.rsc.org/obc

Supplementary Information

*O***4-Alkyl-2'-deoxythymidine Cross-linked DNA to Probe Recognition and Repair by** *O***6-Alkylguanine-DNA Alkyltransferases**

Francis P. McManus, Derek K. O'Flaherty, Anne M. Noronha and Christopher J. Wilds*

Contents

Supplementary Figure 1 -	500 MHz ¹ H NMR spectrum of compound (1a) (in CDCl ₃)	S-2		
Supplementary Figure 2 -	500 MHz ¹ H NMR spectrum of compound (1b) (in CDCl ₃)	S-3		
Supplementary Figure 3 -	500 MHz ¹ H NMR spectrum of compound (2a) (in CDCl ₃)	S-4		
Supplementary Figure 4 -	500 MHz ¹ H NMR spectrum of compound (2b) (in CDCl ₃)	S-5		
Supplementary Figure 5 -	500 MHz ¹ H NMR spectrum of compound (3a) (in CDCl ₃)	S-6		
Supplementary Figure 6 -	500 MHz ¹ H NMR spectrum of compound (3b) (in CDCl ₃)	S-7		
Supplementary Figure 7 -	500 MHz ¹ H NMR spectrum of compound (4a) (in d ₆ -acetone)	S-8		
Supplementary Figure 8 -	500 MHz ¹ H NMR spectrum of compound (4b) (in d ₆ -acetone)	S-9		
Supplementary Figure 9 -	500 MHz ¹ H NMR spectrum of compound (5a) (in CDCl ₃)	S-10		
Supplementary Figure 10 -	500 MHz ¹ H NMR spectrum of compound (5b) (in CDCl ₃)	S-11		
Supplementary Figure 11 -	500 MHz ¹ H NMR spectrum of compound (6a) (in CDCl ₃)	S-12		
Supplementary Figure 12 -	500 MHz ¹ H NMR spectrum of compound (6b) (in CDCl ₃)	S-13		
Supplementary Figure 13 -	500 MHz ¹ H NMR spectrum of compound (7a) (in d ₆ -acetone)	S-14		
Supplementary Figure 14 -	500 MHz ¹ H NMR spectrum of compound (7b) (in d ₆ -acetone)	S-15		
Supplementary Figure 15 -	202.3 MHz ³¹ P NMR spectrum of compound (4a) (in d ₆ -acetone)	S-16		
Supplementary Figure 16 -	202.3 MHz ³¹ P NMR spectrum of compounds (4b) (in d ₆ -acetone)	S-17		
Supplementary Figure 17 -	202.3 MHz $^{31}_{21}$ P NMR spectrum of compounds (7a) (in d ₆ -acetone)	S-18		
Supplementary Figure 18 -	202.3 MHz ³¹ P NMR spectrum of compounds (7b) (in d ₆ -acetone)	S-19		
Supplementary Figure 19 -	ESI MS of oligonucleotide XLTT4	S-20		
Supplementary Figure 20 -	ESI MS of oligonucleotide XLTT7	S-21		
Supplementary Figure 21 -	C-18 RP HPLC profile of digested cross-linked duplex XLTT4	S-22		
Supplementary Figure 22 -	C-18 RP HPLC profile of digested cross-linked duplex XLTT7 S			
Supplementary Figure 23 -	ESI MS of oligonucleotide S4 S			
Supplementary Figure 24 -	ESI MS of oligonucleotide S7 S			
Supplementary Figure 25 -	C-18 RP HPLC profile of digested oligonucleotide S4 S			
Supplementary Figure 26 -	C-18 RP HPLC profile of digested oligonucleotide S7 S			
Supplementary Figure 27 -	Thermodynamic data of Control, XLTT4 and XLTT7 DNA S-			
Supplementary Figure 28 -	T_m curves of the various O ⁴ -alkyl-dT mono-adducts in DNA duplexes S -			
Supplementary Figure 29 -	CD curves of the various O ⁴ -alkyl-dT mono-adducts in DNA duplexes S			
Supplementary Figure 30 -	Repair gel of O ⁴ MeT, S4 and S7 DNA by hAGT, Ada-C and OGT S			
Supplementary Figure 31 -	Repair of O^4 MeT, S4 and S7 by hAGT (red), OGT (green) and			
	Ada-C (blue)	S-31		
Supplementary Table 1 -	Nucleoside Ratio of the Various Modified Oligonucleotides	S-32		
Supplementary Table 2 -	K_d and stoichiometry of hAGT binding with XLTT4 , XLTT7			
	and control duplex	S-32		
Supplementary Table 3 -	Approximate K_d of hAGT binding to 5' CGAAAXTTTCG	S-32		
Supplementary Table 4 -	K_{d} of hAGT binding to duplexes containing various			
	O ⁴ -Alkyl-dT mono-adducts and O ⁶ MeG	S-33		

Supplementary Figure 2 - 500 MHz ¹H NMR spectrum of compound (1b) (in CDCl₃)

Supplementary Figure 3 - 500 MHz ¹H NMR spectrum of compound (2a) (in CDCl₃)

,ODMT DMTO OTBDMS TBDMSO 8 7 6 5 4 3 2 1 ppm

Supplementary Figure 4 - 500 MHz ¹H NMR spectrum of compound (2b) (in CDCl₃)

ODMT DMTO OTBDMS TBDMSO 8 Ż 2 6 5 4 3 1 ppm

Supplementary Figure 5 - 500 MHz ¹H NMR spectrum of compound (3a) (in CDCl₃)

ODMT. DMTQ ż 6 5 3 4 2 ppm

Supplementary Figure 6 - 500 MHz ¹H NMR spectrum of compound (**3b**) (in CDCl₃)

Supplementary Figure 7 - 500 MHz ¹H NMR spectrum of compound (4a) (in d₆-acetone)

Supplementary Figure 8 - 500 MHz ¹H NMR spectrum of compound (**4b**) (in d₆-acetone)

Supplementary Figure 16 - 202.3 MHz ³¹P NMR spectrum of compound (4b) (in d₆-acetone)

Supplementary Figure 21 - C-18 HPLC profile of digested cross-linked duplex **XLTT4**. The column was eluted with a linear gradient of 0-60% buffer B over 30 min (buffer A: 2% ACN, 50 mM sodium phosphate, pH 5.8 and buffer B: 50 mM sodium phosphate, pH 5.8, 50% acetonitrile).

Supplementary Figure 22 - C-18 HPLC profile of digested cross-linked duplex **XLTT7**. The column was eluted with a linear gradient of 0-60% buffer B over 30 min (buffer A: 2% ACN, 50 mM sodium phosphate, pH 5.8 and buffer B: 50 mM sodium phosphate, pH 5.8, 50% acetonitrile).

Supplementary Figure 23 - ESI MS of oligonucleotide **S4** containing mono-adduct *O*⁴-butyl-4-ol-dT.

Supplementary Figure 24 - ESI MS of oligonucleotide **S7** containing mono-adduct O⁴-heptyl-7-ol-dT.

Supplementary Figure 25 - C-18 RP HPLC profile of digested oligonucleotide **S4** containing mono-adduct O⁴-butyl-4-ol-dT. The column was eluted with a linear gradient of 0-60% buffer B over 30 min (buffer A: 2% ACN, 50 mM sodium phosphate, pH 5.8 and buffer B: 50 mM sodium phosphate, pH 5.8, 50% acetonitrile).

Supplementary Figure 26 - C-18 RP HPLC profile of digested oligonucleotide **S7** containing mono-adduct O⁴-heptyl-7-ol-dT. The column was eluted with a linear gradient of 0-60% buffer B over 30 min (buffer A: 2% ACN, 50 mM sodium phosphate, pH 5.8 and buffer B: 50 mM sodium phosphate, pH 5.8, 50% acetonitrile).

	Control (T-A)			XLTT4		XLTT7		
Trial	0.585 uM	2.719 uM	12.57 uM	58.46 uM	0.585 uM	2.95 uM	0.585 uM	2.95 uM
1	38.0°C	42.0°C	47.0°C	52.0°C	66.5°C	66.0°C	52.0°C	52.0°C
2	38.0°C	43.0°C	48.0°C	52.0°C	65.0°C	67.0°C	53.5°C	51.0°C
3	39.0°C	43.0°C	49.0°C	50.0°C	66.0°C	66.0°C	51.0°C	53.0°C
Avg	38.3°C	42.7°C	48.0°C	51.3°C	65.8°C	66.3°C	52.2°C	52.0°C
StdDev	0.5°C	0.5°C	0.8°C	0.9°C	0.6°C	0.5°C	1.0°C	0.8°C

Supplementary Figure 27 - Thermodynamic data for the non-crosslinked control, XLTT4 and XLTT7 DNA

Supplementary Figure 28 - T_m curves of various O^4 -alkyl-dT mono-adducts in DNA duplexes 5' GGCTXGATCACCAG 3' / 5' CTGGTGATCCAGCC 3' where X is dT (----), O^4 -MedT (.....), O^4 -butyl-4-ol-dT for **S4** (- • -) and O^4 -heptyl-7-ol-dT for **S7** (- - -). Solutions containing a total strand concentration of 2.8 µM for the duplexes in 90 mM sodium chloride, pH = 7.0, 10 mM sodium phosphate, and 1 mM EDTA buffer, were heated at 0.5°C/min.

Supplementary Figure 29 - CD profiles of various O^4 -alkyl-dT mono-adducts in DNA duplexes 5' GGCTXGATCACCAG 3' / 5' CTGGTGATCCAGCC 3' where X is dT (-----), O^4 -MedT (.....), O^4 -butyl-4-ol-dT for **S4** (- • -) and O^4 -heptyl-7-ol-dT for **S7** (- - -). Solutions containing a total strand concentration of 2.8 µM for the duplexes in 90 mM sodium chloride, pH = 7.0, 10 mM sodium phosphate, and 1 mM EDTA buffer.

Supplementary Figure 30 - Repair gel of O^4 MeT, **S4** and **S7** DNA by hAGT, Ada-C and OGT. Denaturing gel of the repair of 2 pmol of DNA by 10 pmol AGT. Lane 1, Control; lane 2, O^4 MeT DNA; lane 3, O^4 MeT DNA + hAGT; lane 4, O^4 MeT DNA + Ada-C, lane 5, O^4 MeT DNA + OGT; lane 6, **S4** DNA; lane 7, **S4** DNA + hAGT; lane 8, **S4** DNA + Ada-C, lane 9, **S4** DNA + OGT; lane 10, **S7** DNA; lane 11, **S7** DNA + hAGT; lane 12, **S7** DNA + Ada-C, lane 13, **S7** DNA + OGT.

Supplementary Figure 31 - Repair of O^4 -MedT, **S4** and **S7** by hAGT (red), OGT (green) and Ada-C (blue).

Supplementary Table 1 - Nucleoside Ratio of the Various Modified Oligonucleotides as Observed by Snake Venom Digestion using RP-HPLC

Oligomer	Nucleoside	Nucleoside ratios		
		Expected Observ		
	dC	4.00	4.00	
	dG	4.00	4.24	
XLTT4	dT	6.00	5.86	
	dA	6.00	6.22	
	dT-butyl-dT	1.00	1.55	
	dC	4.00	4.00	
	dG	4.00	4.18	
XLTT7	dT	6.00	5.84	
	dA	6.00	6.34	
	dT-heptyl-dT	1.00	1.51	
	dC	4.00	3.88	
	dG	4.00	4.00	
S4	dT	2.00	1.98	
	dA	3.00	2.99	
	O ⁴ -butyl-4-ol-dT	1.00	1.06	
	dC	4.00	3.85	
S7	dG	4.00	4.05	
	dT	2.00	2.00	
	dA	3.00	2.90	
	O ⁴ -butyl-7-ol-dT	1.00	1.18	

Supplementary Table 2 - K_d and stoichiometry of hAGT binding with **XLTT4**, **XLTT7** and control duplex

DNA Duplex	K _d (µM)	Stoichiometry
Control	30.57±3.00	1.94 ± 0.03
XLTT4	2.45±0.05	1.90 ± 0.11
XLTT7	2.58±0.67	2.09 ± 0.02

Supplementary Table 3 - K_d of hAGT binding to single stranded 5' CGAAAXTTTCG

Х	<i>K</i> _d approximate (μM)
Т	>30
G	1-10
С	30
А	30

Supplementary Table 4 - K_d of hAGT binding to duplexes containing various O^4 -Alkyl-dT mono adducts and O^6 MeG

DNA Duplex	<i>K</i> _d (μΜ)
Control	6.90 ± 0.04
O ^₄ MeT	2.87 ± 0.19
S4 (<i>O</i> ⁴ -Butyl-4-ol-dT)	3.41 ± 0.28
S7 (<i>O</i> ⁴ -Heptyl-7-ol-dT)	3.68 ± 0.15
O ⁶ MeG	2.86 ± 0.16