Supporting Information

A polyoxapolyaza macrobicyclic receptor for the recognition of zwitterions

Pedro Mateus,^a Rita Delgado,^a Paula Brandão^b and Vítor Félix^c

^a Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal. ^b Departamento de Química, CICECO, Universidade de Aveiro, 3810–193 Aveiro, Portugal.^c Departamento de Química, CICECO, and Secção Autónoma de Ciências da Saúde, Universidade de Aveiro, 3810-193 Aveiro, Portugal.

Contents		Page
Experimen	tal Section	S2
Table S1	Crystal data and refinement details of btpN ₄ O ₃ .	S6
Table S2	Overall and stepwise protonation constants of $btpN_4O_3$ and of the studied amino acids in MeOH/H ₂ O.	S7
Table S3	Overall and stepwise association constants for the indicated equilibria between the H_n btpN ₄ O ₃ ⁿ⁺ receptor and Hgly, Hbala, Htau, Hgaba, H ₂ amp and H ₂ aep substrates in MeOH/H ₂ O.	S7
Figure S1	¹ H NMR spectrum of the tripodal trialdehyde (3) in CDCl ₃ .	S 8
Figure S2	13 C NMR spectrum of the tripodal trialdehyde (3) in CDCl ₃ .	S 8
Figure S3	¹ H NMR spectrum btpN ₄ O ₃ in CDCl ₃ .	S9
Figure S4	¹³ C NMR spectrum of btpN ₄ O ₃ in CDCl ₃ .	S9
Figure S5	HMQC spectrum of btpN ₄ O ₃ in CDCl ₃ .	S10
Figure S6	COSY spectrum of btpN ₄ O ₃ in CDCl ₃ .	S10
Figure S7	NOESY spectrum of btpN ₄ O ₃ in CDCl ₃ .	S11
Figure S8	ESI mass spectrum of btpN ₄ O ₃ in MeOH.	S11
References		S12

Experimental Section

General considerations All solvents and chemicals were commercially purchased reagent quality and supplied without further purification. grade used (4as 1,3,5-tris(bromomethyl)-2,4,6-triethylbenzene diethoxymethylphenyl)methanol and were prepared according to literature methods.^{1,2} Tetramethylammonium *p*-toluenesulfonate (NMe₄TsO) was prepared by the neutralization of HTsO with NMe₄OH in water, followed by recrystallization from acetone. NMR spectra used for characterization of products were recorded on a 400 MHz instrument. TMS was used as reference for the ¹H-NMR measurements in CDCl₃. Peak assignments are based on peak integration and multiplicity for 1D ¹H spectra and on 2D COSY, NOESY and HMQC experiments (Figs. S1-S8). Microanalyses were carried out by the ITQB Microanalytical Service.

Syntheses

Tripodal trialdehyde (3). To a solution of (4-diethoxymethylphenyl)methanol (2.40 g, 11.4 mmol) in dry DMSO (30 cm³) was added NaH (60% dispersion in oil) (456 mg, 11.4 mmol) under nitrogen. The temperature was raised to 90 °C and left stirring until bubbling ceased and a clear brown solution was obtained. Then 1,3,5-tris(bromomethyl)-2,4,6-triethylbenzene (1.640 g, 3.7 mmol) was added in one portion and the solution was left stirring at 90 °C for 3 hours. The solution was allowed to cool to r.t., poured into water (80 cm³) and extracted with CHCl₃ (5×50 cm³). The organic portions were collected in an Erlenmeyer flask, dried over anhydrous sodium sulfate, filtered and evaporated to dryness. The solid was dissolved in CH₂Cl₂ (25 cm³) to which water (25 cm³) and CF₃COOH 99% (25 cm³) was added. The mixture was vigorously stirred overnight.

The mixture was transferred to a separating funnel and the aqueous phase was rejected. The organic portion was then washed with NaHCO₃ saturated solution (3×30 cm³), dried over anhydrous sodium sulfate, filtered and evaporated to dryness to give the crude tripodal trialdehyde as a yellow viscous oil which solidified after drying in a vacuum line. The product was purified by dissolving a minimum amount in boiling ethyl acetate, and then n-hexane was added until the solution became turbid. After cooling the precipitate formed was filtered and dried in vacuum, yielding pure tripodal trialdehyde (**3**) (1.413 g, 61%). $\delta_{\rm H}$ (400 MHz; CDCl₃; 298 K; TMS): 1.07 (t, ³*J* (H,H) = 8.0 Hz, 9 H; bzCH₂CH₃), 2.73 (q, ³*J* (H,H) = 8.0 Hz, 6 H; bzCH₂CH₃), 4.51 (s, 6 H; CH₂bz), 4.63 (6 H, s, CH₂p-xylyl), 7.47 (6 H, d, ³*J* (H,H) = 8.0 Hz, *H2/H6* of *p*-xylyl), 7.79 (6 H, d, ³*J* (H,H) = 8.0 Hz, *H3/H5* of *p*-xylyl) and 9.94 (3 H, s, *H*C=O) ppm; $\delta_{\rm C}(100$ MHz; CDCl₃; 298 K; Me4Si) 16.7 ppm (bzCH₂CH₃), 23.0 (bzCH₂CH₃), 67.1

(*C*H₂bz), 77.5 (*C*H₂*p*-xylyl), 128.3 (*C*2/*C*6 of *p*-xylyl), 130.0 (*C*3/*C*5 of *p*-xylyl), 131.9 (*C*2/*C*4/*C*6 of bz), 135.9 (*C*4 of *p*-xylyl), 145.5 (*C*1/*C*3/*C*5 of bz), 145.5 (*C*1 of *p*-xylyl), 192.1 (*C*=O) ppm.

btpN₄O₃. A boiling solution of the tripodal trialdehyde (3) (174 mg, 0.29 mmol) in MeCN (20 cm³) was quickly added to a refluxing solution of tren (44 mg, 0.29 mmol) in MeCN (500 cm³) under nitrogen and left stirring for 1 hour. The solution was concentrated to a third of its volume and MeOH (350 cm³) was added. To this solid NaBH₄ (320 mg, 8.46 mmol) was added in small portions to avoid excessive foaming. After the addition was completed, the mixture was left under stirring at r.t. for 1 hour, and under reflux for 2 hours. The solution was evaporated under vacuum to dryness, then water (20 cm³) was added. The solution was made strongly basic with 6 M KOH and extracted with CHCl₃ (3×50 cm³). The organic portions were collected in an Erlenmeyer flask, dried over anhydrous sodium sulfate, filtered off, evaporated to dryness to give the crude $btpN_4O_3$ (177 mg). The product was purified by flash column chromatography using CHCl₃/MeOH/NH₃(aq.) (90:9:1) as eluent, followed by recrystallization from MeCN to yield pure btpN₄O₃ (80 mg, 40%); mp 173 °C dec; $\delta_{\rm H}$ (400 MHz; CDCl₃; 298 K; TMS): 1.11 (9 H, t, ${}^{3}J$ (H,H) = 8.0 Hz, bzCH₂CH₃), 1.19 (3H, br s, N–H), 2.44 (6 H, t, ${}^{3}J$ (H,H) = 4.0 Hz, NCH₂CH₂NH), 2.52 (6 H, t, ${}^{3}J$ (H,H) = 4.0 Hz, NCH₂CH₂NH), 3.09 (6 H, q, ${}^{3}J$ (H,H) = 8.0 Hz, bzCH₂CH₃), 3.34 (6 H, s, NHCH₂p-xylyl), 4.34 (6 H, s, p-xylylCH₂O), 4.75 (6 H, s, OCH₂bz). 6.64 (6 H, d, ${}^{3}J$ (H,H) = 8.0 Hz, H3/H5 of p-xylyl), 6.78 (6 H, d, ${}^{3}J$ (H,H) = 8.0 Hz, *H2/H6* of *p*-xylyl); δ_C (100 MHz; CDCl₃; 298 K; Me₄Si) 16.9 (bzCH₂CH₃), 22.7 (bzCH₂CH₃), 48.2 (NCH₂CH₂NH), 55.1 (NCH₂CH₂NH), 55.5 (NHCH₂p-xylyl), 65.2 (OCH₂bz), 69.7 (pxylylCH2O), 128.3 (C3/C5 of p-xylyl), 128.4 (C2/C6 of p-xylyl), 131.8 (C2/C4/C6 of bz), 137.3 (C4 of p-xylyl), 139.7 (C1 of p-xylyl), 145.9 (C1/C3/C5 of bz) ppm; m/z (ESI-MS;MeOH) 705.1 $[M+H]^+$; elemental analysis calcd (%) for C₄₅H₆₀N₄O₃: C 76.67, H 8.58, N 7.95; found: C 77.00, H 8.59, N 8.04.

Crystals of btpN₄O₃·MeCN. The cryptand btpN₄O₃ (5.0 mg, 7.1 μ mol) was dissolved in the minimum amount of hot MeCN then the mixture was allowed to slowly cool to r.t. Single colourless crystals suitable for X-ray crystallographic determination were obtained overnight.

Potentiometric measurements

Reagents and solutions. All solutions were prepared in water/methanol (50:50 v/v) mixed solvent. A stock solution of the receptor was prepared at *ca*. 2.0×10^{-3} M. Solutions of the

substrates were prepared at 0.025 M and the concentrations were checked by titration with standard 0.1 M NMe₄OH solutions. Carbonate-free solutions of the titrant NMe₄OH were obtained at *ca*. 0.1 M by treating freshly prepared silver oxide with a 500 cm³ solution of NMe₄I, under nitrogen atmosphere and in appropriate glass apparatus according to the method of Schwarzenbach and Biederman,³ to which 500 cm³ of methanol was added. These solutions were discarded every time carbonate concentration was about 0.5% of the total amount of base. The titrant solutions were standardized (tested by Gran's method).⁴

Equipment and working conditions. The equipment used was described before.⁵ The ionic strength of the experimental solutions was kept at 0.10 ± 0.01 M with NMe₄TsO, and the temperature was maintained at 298.2±0.1 K. Atmospheric CO₂ was excluded from the titration cell during experiments by passing purified nitrogen across the top of the experimental solution. The glass electrode was pre-treated by soaking it in the water–methanol (50:50 v/v) solution over a period of 2 days, in order to prevent erratic responses.

Measurements. The [H⁺] of the solutions was determined by the measurement of the electromotive force of the cell, $E = E^{\circ} + Q \log [H^+] + E_j$. The term pH is defined as $-\log [H^+]$. $E^{\circ\prime}$, Q, $E_{\rm i}$ and $K_{\rm w}$ were determined by titration of a solution of known hydrogen-ion concentration at the same ionic strength, using the acid pH range of the titration. The liquidjunction potential, E_{i} , was found to be negligible under the experimental conditions used. The value of K_w was determined from data obtained in the alkaline range of the titration, considering $E^{o'}$ and Q valid for the entire pH range and found to be equal to $10^{-13.91}$ in our experimental conditions. Before and after each set of titrations the glass electrode was calibrated by titration of 1.00×10^{-3} M standard HCl solution with standard NMe₄OH. The potentiometric equilibrium measurements were carried out using 20.00 cm³ of $\approx 2.00 \times 10^{-3}$ M of the receptor stock solution diluted to a final volume of 40.00 cm³, in the absence of substrates, then in the presence of each amino acid at 1:3 R:A ratios (R = receptor and A =amino acid). In each titration 85 to 140 points were collected, and a minimum of two titration curves were performed. Care has been taken to maintain unaltered the methanol-water ratio in measured solution. The exact concentration of the receptors was obtained by determination of the excess of acid present in a mixture of the receptors and a known amount of standard ptoluenesulfonic acid by titration with standard NMe₄OH solution.

Calculation of equilibrium constants. Overall protonation constants, β_i^{H} , of ligands and anions, were calculated by fitting the potentiometric data obtained for all the performed titrations in the same experimental conditions with the HYPERQUAD program.⁶ All these constants were taken as fixed values to obtain the equilibrium constants of the new species from the experimental data corresponding to all the titrations at 1:3 R:A ratio, also using the HYPERQUAD program. The initial computations were obtained in the form of overall stability constants, $\beta_{H_hL_lA_a}$ values, $\beta_{H_hL_lA_a} = [H_hL_lA_a]/[H]^h[L]^l[A]^a$. The errors quoted are the standard deviations of the overall association constants given directly by the program for the input data, which include all the experimental points of all titration curves. The HYSS program⁷ was used to calculate the concentration of equilibrium species from the calculated constants from which distribution diagrams were plotted. The species considered in a particular model were those that could be justified by the principles of supramolecular chemistry.

Crystallography. The X-ray data of btpN₄O₃ was collected at 150(2) K using graphite monochromatized Mo-K α radiation ($\lambda = 0.71073$ Å). The crystal was positioned at 35 mm from the CCD and the spots were measured using a counting time of 60 s. Data reduction including a multi-scan absorption correction was carried out using the SAINT-NT software package. The structure was solved by a combination of direct methods with subsequent difference Fourier syntheses and refined by full matrix least squares on F^2 using the SHELX-97 suite.⁸ The C–H hydrogen atoms were inserted at geometrical positions while the positions of the hydrogen atoms of the N–H secondary amine groups were taken from the last difference Fourier Maps. Anisotropic thermal parameters were used for all non-hydrogen atoms while the C–H and N–H hydrogen atoms were refined with isotropic parameters equivalent 1.2 times those of the atom to which they are attached. Molecular diagram was drawn with PyMOL software package.⁹ Crystal data and refinement details are summarized in Table S1.

-	
Empirical Formula	$C_{47}H_{63}N_5O_3$
$M_{ m w}$	746.02
Crystal System	Triclinic
Space group	PĪ
<i>a</i> / [Å]	11.9682(3)
<i>b</i> / Å	13.5050(3)
<i>c</i> / Å	14.0716(4)
α/°	91.8620(10)
eta /°	92.1060(10)
γ / ^o	11.1350(10)
$V/\text{\AA}^3$	2117.42(9)
Ζ	2
$D_c /Mg m^{-3}$	1.170
μ /mm ⁻¹	0.073
Reflections collected	51940
Unique reflections, [<i>R</i> _{int}]	11371 [0.0308]
Final <i>R</i> indices	
$R_1, WR_2, [I > 2\sigma I]$	0.0495, 0.1276, [8954]
R_1 , wR_2 (all data)	0.0652, 0.1387

Table S1. Crystal data and refinement details of [btpN₄O₃ CH₃CN].

Equilibrium ^[b]	btpN ₄ O ₃	gly	bala ⁻	tau	gaba	amp ²⁻	aep ²⁻
				$\log \beta_i^{H[c]}$			
$L + H \rightleftharpoons HL$	8.76(1)	9.32(1)	9.68(1)	8.57(1)	9.95(1)	10.05(1)	10.90(1)
$L + 2 H \rightleftharpoons H_2 L$	17.01(1)	12.23(1)	13.81(1)	9.94(1)	14.67(1)	16.24(1)	17.92(1)
$L + 3 H \Rightarrow H_3L$	23.27(1)	_	_	_	_	17.65(1)	19.84(1)
				$\log K_{i}^{H}$			
$L + H \rightleftharpoons HL$	8.65	9.32	9.68	8.57	9.95	10.05	10.90
$HL + H \rightleftharpoons H_2L$	8.25	2.91	4.13	1.37	4.72	6.18	7.02
$H_2L+H \rightleftharpoons H_3L$	6.26	-	_	_	_	1.42	1.92

Table S2 Overall (β_i^{H}) and stepwise protonation (K_i^{H}) constants of btpN₄O₃ and of the studied amino acids in MeOH/H₂O.^[a]

[a] $T = (298.2\pm0.1)$ K; $I = (0.10\pm0.01)$ M in NMe₄TsO. [b] L denote in general the btpN₄O₃ and the amino acids in their deprotonated form, charges where omitted for simplicity. [c] Values in parenthesis are standard deviations in the last significant figures.

Equilibrium ^[c]	gly	bala ⁻	tau	gaba	amp ²⁻	aep ²⁻			
	$\log eta_{\mathrm{H_hL_lA_a}}$								
$5 H + L + A \Rightarrow H_5 LA$	-	_	_	-	42.29(5)	43.89(3)			
$4 H + L + A \rightleftharpoons H_4 LA$	34.51(2)	35.00(3)	34.51(3)	34.85(1)	36.50 (5)	37.81(3)			
$3 H + L + A \Rightarrow H_3LA$	28.41(3)	28.72(3)	28.12(3)	28.68(1)	29.81(5)	30.62(6)			
$2 H + L + A \rightleftharpoons H_2 LA$	20.18(3)	20.65(3)	19.73(4)	20.53(1)	21.46(5)	22.29(3)			
$H + L + A \rightleftharpoons HLA$	11.57(3)	11.89(2)	11.45(3)	11.86(1)	12.63(7)	13.34 (3)			
		$\log K_{\mathrm{H_{h}L_{l}A_{a}}}$							
$H_3L + H_2A \rightleftharpoons H_5LA$	-	_	_	_	2.83(5)	2.69(3)			
$H_2L + H_2A \rightleftharpoons H_4LA$	-	—	-	-	—	2.87(3)			
$H_3L + HA \Rightarrow H_4LA$	1.92(2)	2.02(3)	2.67(3)	1.63(2)	3.21 (5)	_			
$H_2L + HA \Rightarrow H_3LA$	2.09(3)	2.00(3)	2.55(3)	1.73(2)	2.79(5)	2.72(6)			
$HL + HA \Rightarrow H_2LA$	2.11(3)	2.19(3)	2.41(4)	1.83(2)	2.69(5)	2.64(3)			
$L + HA \Rightarrow HLA$	2.26(3)	2.19(2)	_	1.91(1)	2.62(7)	2.44(3)			
$HL + A \rightleftharpoons HLA$	_	_	2.69(3)	_	_	_			

Table S3 Overall (log $\beta_{H_hL_lA_a}$) and stepwise (log $K_{H_hL_lA_a}$) association constants for the indicated equilibria between the $H_nbtpN_4O_3^{n+}$ receptor and Hgly, Hbala, Htau, Hgaba, H₂amp and H₂aep substrates in MeOH/H₂O.^{[a],[b]}

[a] $T = (298.2\pm0.1)$ K; $I = (0.10\pm0.01)$ M in NMe₄TsO. [b] Values in parenthesis are standard deviations in the last significant figures. [c] L denote in general the btpN₄O₃ compound and A the amino acids in their deprotonated form, Charges where omitted for simplicity.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Fig. S2 ¹³C NMR spectrum of the tripodal trialdehyde (3) in CDCl₃.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Fig. S4 ¹³C NMR spectrum of btpN₄O₃ in CDCl₃.

Fig. S7 NOESY spectrum of btpN₄O₃ in CDCl₃.

Fig. S8 ESI mass spectrum of $btpN_4O_3$ in MeOH.

References

- 1 P. Sarri, F. Venturi, F. Cuda and S. Roelens, J. Org. Chem., 2004, 69, 3654–3661.
- 2 K. J. Wallace, R. Hanes, E. V. Anslyn, J. Morey, K. V. Kilway and J. Siegel, *Synthesis*, 2005, 2080–2083.
- 3 G. Schwarzenbach and W. Biederman, *Helv. Chim. Acta*, 1948, **31**, 311–340.
- 4 F. J. Rossotti, H. J. Rossotti, J. Chem. Educ., 1965, 42, 375–378.
- 5 P. Mateus, R. Delgado, P. Brandão, S. Carvalho and V. Félix, *Org. Biomol. Chem.*, 2009, **7**, 4661–4637.
- 6 P. Gans, A. Sabatini and A. Vacca, *Talanta*, 1996, **43**, 1739–1753.
- 7 L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini and A. Vacca, *Coord. Chem. Rev.*, 1999, **184**, 311–318.
- 8 G. M. Sheldrick, Acta Cryst., 2008, A64, 112–122.
- 9 Schrodinger, LLC, The PyMOL Molecular Graphics System, Version 1.3r1. 2010.