Suplementary information

$\label{eq:alpha} \mbox{4-Methylpseudoproline derived from α-methylserine-synthesis and conformational studies}$

Joanna Katarzynska, Adam Mazur, Wojciech M. Wolf, Simon J. Teat, Stefan Jankowski,

Miroslaw T. Leplawy and Janusz Zabrocki

Contents:

Figure S2. ¹H NMR spectra of dipeptides 3a and 3b recorded in CDCl₃ at 700 MHz.

Figure S1. ¹H NMR spectra of tripeptides 6a and 6b recorded in CDCl₃ at 700 MHz.

Figure S3. COSY spectrum of peptide 6a in CDCl₃ (700 MHz).

Figure S4. ¹H NMR spectrum of tripeptide **1b** recorded in CDCl₃ at 700 MHz.

Figure S5. COSY spectrum of peptide 6b in CDCl₃ (700 MHz).

Figure S6. Temperature effect on NH chemical shifts for peptide **6a**. Spectra were recorded every 5K starting from 300 K (bottom) to 320 K (top).

Figure S7. Temperature effect on NH chemical shifts for peptide **6b**. Spectra were recorded every 5K starting from 300 K (bottom) to 320 K (top).

Figure S8. FTIR absorption spectra in the NH stretching region $(3600 - 3300 \text{ cm}^{-1})$ and in the CO stretching region $(1850 - 1600 \text{ cm}^{-1})$ for 2 mM samples of **6a** (top) and **6b** (bottom) in CDCl₃.

Figure S9. Superposition of the two symmetrically independent molecules **a** and **b** of the Fmoc-Ala-(R)- α MeSer(Ψ Pro)-Ala-OBu^t (**6a**).

Figure S10. Packing diagram with hydrogen bonds indicated with dashed lines.

Table S1. Main chain torsion angles (°) defining the peptide conformation of the two symmetrically independent molecules **a** (first entry) and **b** (second entry) of Fmoc-Ala-(R)-(α Me)Ser(Ψ Pro)-Ala-OBu^t (**6a**).

Table S2 Intra- and Intermolecular Hydrogen Bond Parameters for the Fmoc-Ala-(R)-(α MeSer)(Ψ Pro)-Ala-OBu^t (**6a**). Distances and angles are in (Å) and (°), respectively.

Table S3 Endocyclic 1,3-oxazolidine torsion angles (°) for each symmetrically independent molecule **a** (upper section) and **b** (lower section) of Fmoc-Ala-(R)- α MeSer(Ψ Pro)-Ala-OBu^t (6a) accompanied by the three lowest asymmetry parameters (°).

Figure S1. ¹H NMR spectra of dipeptides **3a** and **3b** recorded in CDCl₃ at 700 MHz.

Figure S2. ¹H NMR spectrum of tripeptide 6a recorded in CDCl₃ at 700 MHz.

Figure S3. COSY spectrum of peptide 6a in CDCl₃ (700 MHz).

Figure S4. ¹H NMR spectrum of tripeptide 6b recorded in CDCl₃ at 700 MHz.

Figure S5. COSY spectrum of peptide 6b in CDCl₃ (700 MHz).

Figure S6. Temperature effect on NH chemical shifts for peptide **6a**. Spectra were recorded at 5 K intervals from 300 K (bottom) to 320 K (top).

Figure S7. Temperature effect on NH chemical shifts for peptide **6b**. Spectra were recorded at 5K intervals from 300 K (bottom) to 320 K (bottom).

Figure S8. FTIR absorption spectra in the NH stretching region $(3600 - 3300 \text{ cm}^{-1})$ and in the CO stretching region $(1850 - 1600 \text{ cm}^{-1})$ for 2 mM samples of **6a** (top) and **6b** (bottom) in CDCl₃.

Figure S9. Superposition of the two symmetrically independent molecules **a** and **b** of the Fmoc-Ala-(R)- α MeSer(Ψ Pro)-Ala-OBu^t (**6a**). Only distances between the respective main chain atoms were minimized. The root mean square displacement of the fit was 0.19 Å.

Figure S10. Packing diagram of Fmoc-Ala-(*R*)- α MeSer(Ψ Pro)-Ala-OBu^t (**6a**) with hydrogen bonds indicated with dashed lines.

Table S1. Main chain torsion angles (°) defining the peptide conformation of the two symmetrically independent molecules **a** (first entry) and **b** (second entry) of Fmoc-Ala-(R)-(α Me)Ser(Ψ Pro)-Ala-OBu^t (**6a**).

φ(1)	C(15)-N(1)-C(16)-C(18)	-57.4(3)
	C(45)-N(4)-C(46)-C(48)	-58.8(3)
ψ(1)	N(1)-C(16)-C(18)-N(2)	139.5(2)
	N(4)-C(46)-C(48)-N(5)	129.1(2)
ω(1)	O(1)-C(15)-N(1)-C(16)	179.0(3)
	O(8)-C(45)-N(4)-C(46)	-179.6(3)
φ (2)	C(18)-N(2)-C(21)-C(23)	78.8(3)
	C(48)-N(5)-C(51)-C(53)	69.6(3)
ψ(2)	N(2)-C(21)-C(23)-N(3)	1.4(3)
	N(5)-C(51)-C(53)-N(6)	10.4(3)
ω(2)	C(16)-C(18)-N(2)-C(21)	176.0(2)
	C(46)-C(48)-N(5)-C(51)	178.2(2)
φ (3)	C(23)-N(3)-C(24)-C(26)	-124.5(3)
	C(53)-N(6)-C(54)-C(56)	-131.9(3)
ψ(3)	N(3)-C(24)-C(26)-O(6)	-16.8(4)
	N(6)-C(54)-C(56)-O(14)	59.5(3)
ω(3)	C(21)-C(23)-N(3)-C(24)	177.6(2)
	C(51)-C(53)-N(6)-C(54)	171.9(2)

Table S2 Intra- and Intermolecular Hydrogen Bond Parameters for the Fmoc-Ala-(R)-(α MeSer)(Ψ Pro)-Ala-OBu^t (**6a**). Distances and angles are in (Å) and (°), respectively.

D-H A	D-H	H A	D A D-	H A	Symmetry code	
N(1)-H(1) O(3) 0.88	1.96	2.841(4)	177	3/2- <i>x</i> ,1/2+ <i>y</i> ,1- <i>z</i>	
N(3)-H(31) O((2) 0.88	8 2.29	3.095(4)	152	<i>x</i> , <i>y</i> , <i>z</i>	
N(4)-H(4) O(1	0) 0.88	8 2.03	2.897(4)	169	1/2- <i>x</i> ,y-1/2,- <i>z</i>	
N(6)-H(6) O(9) 0.88	2.06	2.903(4)	161	<i>x,y,z</i>	

Table S3 Endocyclic 1,3-oxazolidine torsion angles (°) for each symmetrically independent molecule **A** (upper section) and **B** (lower section) of Fmoc-Ala-(R)- α MeSer(Ψ Pro)-Ala-OBu^t (6a) accompanied by the three lowest asymmetry parameters (°).

Independent molecule	Torsion angle (°)	
Α	O(4)-C(19)-N(2)-C(21)	4.7(3)
	C(19)-N(2)-C(21)-C(20)	18.1(3)
	N(2)-C(21)-C(20)-O(4)	-34.9(3)
	C(21)-C(20)-O(4)-C(19)	40.8(3)
	C(20)-O(4)-C(19)-N(2)	-28.1(3)
	$\Delta C_{s}^{C(20)} = 8.2(3) \Delta C_{2}^{N(2)} = 10.6$	$5(3) \Delta C_s^{O(4)} = 23.2(3)$
В	O(11)-C(49)-N(5)-C(51)	14.1(3)
	C(49)-N(5)-C(51)-C(50)	10.7(3)
	N(5)-C(51)-C(50)-O(11)	-32.1(3)
	C(51)-C(50)-O(11)-C(49)	43.4(3)
	C(50)-O(11)-C(49)-N(5)	-35.4(3)
	$\Delta C_2^{N(5)} = 3.3(3) \Delta C_s^{O(11)} = 14.0$	$\Delta C_s^{C(50)} = 23.2(3)$