Modification in the side chain of solomonsterol A: discovery of cholestan

disulfate as a potent pregnane-X-receptor agonist

Valentina Sepe, Raffaella Ummarino, Maria Valeria D'Auria, Gianluigi Lauro, Giuseppe Bifulco, Claudio

D'Amore, Barbara Renga, Stefano Fiorucci, and Angela Zampella*

Table of contents	page S1
¹ H-NMR spectrum of 2	page S2
¹ H-NMR spectrum of 3	page S3
13 C-NMR spectrum of 3	page S4
¹ H-NMR spectrum of 4	page S5
¹³ C-NMR spectrum of 4	page S6
¹ H-NMR spectrum of 5	page S7
¹³ C-NMR spectrum of 5	page S8
¹ H-NMR spectrum of 6	page S9
13 C-NMR spectrum of 6	page S10
¹ H-NMR spectrum of 7	page S11
¹³ C-NMR spectrum of 7	page S12
¹ H-NMR spectrum of 8	page S13
¹³ C-NMR spectrum of 8	page S14
¹ H-NMR spectrum of 9	page S15
¹ H-NMR spectrum of 10	page S16
HPLC trace of 2 and 3	page S17
HPLC trace of 4 , 5 , 6 and 7	page S18
HPLC trace of 8 , 9 and 10	page S19
HPLC trace of 11	page S20

¹H NMR (400 MHz, CD_3OD) of **4**

¹H NMR (400 MHz, CD_3OD) of **6**

HPLC trace of **2** on a Nucleodur 100-5 C18 (5 μ m; 4.6 mm i.d. x 250 mm) with MeOH:H₂O

(34:66) as eluent (flow rate 1.5 mL/min) t_R =3.6 min.

HPLC trace of **3** on a Nucleodur 100-5 C18 (5 μ m; 4.6 mm i.d. x 250 mm) with MeOH:H₂O (30:70) as eluent (flow rate 1.5 mL/min) t_R=3.6 min.

HPLC trace of **4**, **5** and **6** on a Nucleodur 100-5 C18 (5 μ m; 4.6 mm i.d. x 250 mm) with MeOH:H₂O (30:70) as eluent (flow rate 1.5 mL/min) t_R=3.4 min.

HPLC trace of 7 on a Nucleodur 100-5 C18 (5 $\mu m;$ 4.6 mm i.d. x 250 mm) with MeOH:H_2O

(32:68) as eluent (flow rate 1.5 mL/min) t_R =3.2 min.

HPLC trace of $\boldsymbol{8}$ on a Nucleodur 100-5 C18 (5µm; 4.6 mm i.d. x 250 mm) with MeOH:H_2O

(87:13) as eluent (flow rate 1.5 mL/min) $t_R=2.6$ min.

HPLC trace of **9** and **10** on a Nucleodur 100-5 C18 (5 μ m; 4.6 mm i.d. x 250 mm) with MeOH:H₂O (25:75) as eluent (flow rate 1.5 mL/min) t_R=2.4 min).

HPLC trace of 11 on a Nucleodur 100-5 C18 (5µm; 4.6 mm i.d. x 250 mm) with MeOH:H₂O

(87:13) as eluent (flow rate 1.5 mL/min) t_R =2.6 min.

