Supporting information

Asymmetric [3+2] Annulation of N-protected Isatins with But-3-yn-2-one Catalyzed by DIOP: Facile Creation of Enantioenriched Spiro[furan-2,3'-indoline]-2',4(5H)-dione

Zhong Lian,^a Min Shi^{a*}

^aState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032 China. <u>Mshi@mail.sioc.ac.cn</u>

Contents:

1. General methods	S2
2. General procedure for the synthesis of 3 (Figure S1)	S3-S4
3. References	S5
4. Characterization and spectra charts containing HPLC traces for products	S6-S47

1. General Methods: ¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz or 300 and 75 MHz, respectively. Low- and high-resolution mass spectra were recorded by EI, ESI or MALDI/DHB method. The used organic solvents were dried by standard methods if it was necessary. Optical rotations were determined at 589 nm (sodium D line) by using a Perkin-Elmer-341 MC digital polarimeter; $[\alpha]_D$ -values are given in unit of 10 deg⁻¹ cm² g⁻¹. Chiral HPLC was performed on a SHIMADZU SPD-10A *vp* series with chiral columns (Chiralpak AD-H, OD-H and IC-H columns 4.6 x 250 mm, (Daicel Chemical Ind., Ltd.)). Commercially obtained reagents were used without further purification. All these reactions were monitored by TLC with silica-gel-coated plates. Flash column chromatography was carried out by using silica gel at increased pressure.

Cat. 1, Cat. 2, Cat. 4, Cat. 5, Cat. 7, Cat. 8, Cat. 9, Cat. 11, Cat. 12, Cat. 13 were purchased from J&K Chemical Ltd. and used directly without further purification. Cat. 3,¹ Cat. 6,² Cat. 10,³ were prepared according to the previously reported procedures.

2. General procedure for Cat. 13-catalyzed [3+2] annulation of N-protected isatins 1 with but-3-yn-2-one: N-protected isatin 1 (0.1 mmol), but-3-yn-2-one 2 (0.15 mmol), Cat. 13 (0.02 mmol), and Et₂O (0.5 mL) were added into a Schlenk tube. The reaction mixture was stirred at -20 $^{\circ}$ C for 24 h. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (PE/EA = 10/1~5/1).

The reactions were initially carried out on a 0.1 mmol scale with 20 mol% chiral phosphine catalysts under Ar in THF (0.5 mL) at room temperature for 24 h and the ratio of 1a/2 was 1.0/1.5 (Figure S1). First, chiral bidentate phosphine catalysts Cat. 1, Cat. 4, Cat. 5, Cat. 7, Cat. 8, Cat. 12 were tested in this asymmetric [3+2] cycloaddition of 1a with 2. We found that Cat. 1 led to the formation of the desired products **3a** in moderate yield along with 6% ee value and **Cat. 4**, **Cat.** 5, Cat. 7, Cat. 8, Cat. 12 had no catalytic activity in this reaction. Using monodentate chiral phosphine such as the eight-membered spirocyclic phosphine Cat. 2 as the catalyst, the reaction also nearly could not proceed. We then turned to test some bifunctional phosphine catalysts involving some substitutes, such as OH group, NH group, which could provide good opportunity to form a hydrogen bond. Chiral binaphthyl-derived bifunctional thiourea-phosphine catalysts Cat. 6, Cat. 9 and Cat. 11 did not promote the reaction either. L-valine-derived bifunctional thiourea-phosphine Cat. 10 was also examined, but giving the desired product in 13% ee value. Subsequently, D-threonine-L-tert-leucine-derived bifunctional phosphine Cat. 3 developed by Lu's group³ was examined, giving **3a** in 52% yield and 20% ee within 24 h. Gratifyingly, we found that Cat. 13 (named as DIOP) was the most effective catalyst in this reaction, giving 3a in 84% yield and 43% ee within 24 h.

Figure SI-1. Screening of Chiral Phosphine Catalysts for the Asymmetric [3+2] Cycloaddition.

3. References

1. (a) Y.-L. Yang, C.-K. Pei, M. Shi, Org. Biomol. Chem. 2011, 9, 3349. (b) Y.-L. Shi, M. Shi, Adv. Synth. Catal. 2007, 349, 2129. (c) H.-P. Deng, Y. Wei, M. Shi, Eur. J. Org. Chem. 2011, 1956.

2. J.-J. Gong, K. Yuan, X.-Y. Wu, Tetrahedron: Asymmetry 2009, 20, 2117.

3. X. Han, Y. Wang, F. Zhong, Y. Lu, J. Am. Chem. Soc. 2011, 133, 1726.

4. Characterization and spectra charts containing HPLC traces for products.

1'-(anthracen-9-ylmethyl)-5-methylene-3H-spiro[furan-2,3'-indoline]-2',4(5H)-dione (3a). 28 mg, 67% yield. mp. 299-301 °C (the racemate of compound **3a**. mp. 295-300 °C); ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.83 (d, 1H, J = 18.4 Hz, CH₂), 3.04 (d, 1H, J = 18.4 Hz, CH₂), 4.79 (d, 1H, J = 2.4 Hz, =CH₂), 5.21 (d, 1H, J = 2.4 Hz, =CH₂), 5.79 (d, 1H, J = 15.6 Hz, CH₂), 6.01 (d, 1H, J = 15.6 Hz, CH₂), 6.28-6.30 (m, 1H, ArH), 6.82-6.90 (m, 2H, ArH), 7.21-7.23 (m, 1H, ArH), 7.49-7.53 (m, 2H, ArH), 7.59-7.62 (m, 2H, ArH), 8.04 (d, 2H, J = 8.4 Hz, ArH), 8.37 (d, 2H, J = 8.4 Hz, ArH), 8.49 (s, 1H, ArH); ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 37.7, 43.0, 80.0, 90.0, 111.0, 123.3, 123.8, 124.9, 125.2, 126.0, 126.5, 127.1, 129.2, 129.7, 130.8, 131.0, 131.3, 143.2, 152.7, 174.2, 196.2; IR (CH₂Cl₂): v 2925, 2854, 1772, 1721, 1641, 1614, 1525, 1486, 1468, 1365, 1269, 1200, 1170, 1065, 981, 891, 784, 736, 704 cm⁻¹; MS (%) (ESI) *m/z* 428.1 [M + Na]⁺ (100); HRMS (ESI) Calcd. for C₂₇H₁₉NNaO₃ [M + Na]⁺ requires 428.1257, Found: 428.1276. [α]²⁰_D = -52.5 (c 0.5, CH₂Cl₂, 82% ee). Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 70/30, 0.5 mL/min, 230 nm, *t_{minor}* = 22.19 min, *t_{major}* = 32.85min).

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	22.714	15868168	49.92	435517
2	2	33.057	15921743	50.08	308144

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	22.190	417957	6.75	10253
2	2	32.859	5777613	93.25	101468

1'-(anthracen-9-ylmethyl)-5'-fluoro-5-methylene-3H-spirol[furan-2,3'-indoline]-2',4(5H)-dion e (3b). 20 mg, 46% yield. mp. 305-308 °C (the racemate of **3b**. mp. 307-309 °C); ¹H NMR (d₆-DMSO, 400 MHz, TMS) δ 2.95 (d, 1H, J = 18.4 Hz, CH₂), 3.39 (d, 1H, J = 18.4 Hz, CH₂), 4.76 (s 1H, =CH₂), 5.00 (s, 1H, =CH₂), 5.88 (d, 1H, J = 16.0 Hz, CH₂), 5.94 (d, 1H, J = 16.0 Hz, CH₂), 6.26-6.29 (m, 1H, ArH), 6.88-6.92 (m, 1H, ArH), 7.54-7.66 (m, 5H, ArH), 8.15 (d, 2H, J =8.4 Hz, ArH), 8.42 (d, 2H, J = 8.4 Hz, ArH), 8.69 (s, 1H, ArH); ¹³C NMR (d₆-DMSO, 100 MHz, TMS) δ 37.4, 41.6, 79.9, 88.5, 111.1 (d, J = 7.1 Hz), 113.4 (d, J = 35.1 Hz), 117.1 (d, J = 24.5 Hz), 123.5, 125.3 (d, J = 4.9 Hz), 127.0, 127.4 (d, J = 7.7 Hz), 128.8, 129.4, 130.3, 130.8, 139.6, 152.6, 158.0 (d, J = 238.9 Hz), 173.7, 196.5; ¹⁹F NMR (d₆-DMSO, 282 MHz, CFCl₃) δ -118.3; IR (CH₂Cl₂): v 2946, 2920, 2835, 1744, 1716, 1480, 1446, 1291, 1160, 775 cm⁻¹; MS (MALDI/DHB) m/z (%): 423.1 [M]⁺ (100); MS (MALDI/DHB) Calcd. for C₂₇H₁₈FNNaO₃ [M + Na]⁺ requires 446.1163, Found: 446.1156. [α]²⁰_D = -37.6 (c 0.5, CH₂Cl₂, 69% ee) Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 80/20, 0.5 mL/min, 230 nm, $t_{minor} = 43.35$ min, $t_{maior} = 47.85$ min).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	42.194	879576	50.08	11620
2	2	46.772	876700	49.92	11396

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	43.356	519144	15.71	7025
2	2	47.853	2785555	84.29	34068

1'-(anthracen-9-ylmethyl)-5'-chloro-5-methylene-3H-spiro[furan-2,3'-indoline]-2',4(5H)-dion e (3c). 20 mg, 45% yield. mp. 309-311 °C (the racemate of **3c**. mp. 313-315 °C); ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.82 (d, 1H, *J* = 18.0 Hz, CH₂), 3.05 (d, 1H, *J* = 18.0 Hz, CH₂), 4.82 (d, 1H, *J* = 2.4 Hz, =CH₂), 5.23 (d, 1H, *J* = 2.4 Hz, =CH₂), 5.80 (d, 1H, *J* = 15.2 Hz, CH₂), 6.02 (d, 1H, *J* = 15.2 Hz, CH₂), 6.17 (d, 1H, *J* = 8.8 Hz, ArH), 6.80 (dd, 1H, *J*₁ = 2.0 Hz, *J*₂ = 8.8 Hz, ArH), 7.19 (d, 1H, *J* = 2.0 Hz, ArH), 7.50-7.62 (m, 4H, ArH), 8.06 (d, 2H, *J* = 8.8 Hz, ArH), 8.33 (d, 2H, *J* = 8.8

Hz, ArH), 8.51 (s, 1H, ArH); ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 37.8, 42.9, 79.7, 90.4, 114.9, 123.1, 124.1, 124.7, 125.0, 125.2, 125.3, 126.1, 127.3, 129.5, 129.8, 130.8, 131.3, 144.4, 152.5, 174.0, 195.6; IR (CH₂Cl₂): v 2957, 2924, 2853, 1748, 1652, 1489, 1456, 1281, 1249, 772, 755 cm⁻¹; MS (MALDI/DHB) m/z (%): 462.0 [M + Na]⁺ (100); MS (MALDI/DHB) Calcd. for C₂₇H₁₈ClNNaO₃ [M + Na]⁺ requires 462.0867, Found: 462.0881. [α]²⁰_D = -27.7 (c 0.5, CH₂Cl₂, 77% ee) Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 50/50, 0.5 mL/min, 230 nm, *t_{minor}* = 49.35 min, *t_{major}* = 58.73 min).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	50.649	569671	49.88	6165
2	2	60.169	572447	50.12	5331

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	49.358	457970	11.21	4691
2	2	58.736	3625691	88.79	32530

1'-(anthracen-9-ylmethyl)-5'-bromo-5-methylene-3H-spiro[furan-2,3'-indoline]-2',4(5H)-dio ne (3d). 23 mg, 47% yield. mp. 310-311 °C (the racemate of **3d**. mp. 315-316 °C); ¹H NMR (d₆-DMSO, 400 MHz, TMS) δ 2.94 (d, 1H, J = 18.4 Hz, CH₂), 3.45 (d, 1H, J = 18.4 Hz, CH₂), 4.78 (s, 1H, =CH₂), 4.99 (s, 1H, =CH₂), 5.90-5.93 (m, 2H, CH₂), 6.26 (d, 1H, J = 8.0 Hz, Ar), 7.23 (d, 1H, J = 8.0 Hz, ArH), 7.56-7.64 (m, 4H, ArH), 7.87 (s, 1H, ArH), 8.15 (d, 2H, J = 8.0 Hz, ArH), 8.40 (d, 2H, J = 8.0 Hz, ArH), 8.69 (s, 1H, ArH); ¹³C NMR (d₆-DMSO, 100 MHz, TMS) δ 38.0,

42.1, 80.2, 89.1, 112.5, 115.5, 124.0, 125.8, 125.9, 127.6, 128.6, 129.1, 129.4, 130.0, 130.9, 131.4, 134.1, 143.3, 153.2, 174.0, 197.0; IR (CH₂Cl₂): v 2957, 2920, 2851, 1748, 1717, 1480, 1451, 1277, 1249, 772, 755 cm⁻¹; MS (MALDI/DHB) m/z (%): 483.2 [M]⁺ (100); MS (MALDI/DHB) Calcd. for C₂₇H₁₈BrNNaO₃ [M + Na]⁺ requires 506.0362, Found: 506.0355. $[\alpha]^{20}_{D} = -45.0$ (c 0.5, CH₂Cl₂, 80% ee) Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 80/20, 0.5 mL/min, 230 nm, $t_{minor} = 36.67 \text{ min}, t_{major} = 44.06 \text{ min}$).

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	36.040	1111650	50.19	17584
2	2	43.394	1103108	49.81	15321

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	36.670	199936	9.80	3188

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

	2	2	44.067	1840963	90.20	24194
	Lo					
χ						
		\bigcirc				
	\square					
	, in the second					

1'-(anthracen-9-ylmethyl)-5'-iodo-5-methylene-3H-spiro[furan-2,3'-indoline]-2',4(5H)-dione (**3e**). 22 mg, 40% yield. mp. 330-331 °C (the racemate of **3e**. mp. 335-336 °C); ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.74 (d, 1H, J = 18.0 Hz, CH₂), 2.97 (d, 1H, J = 18.0 Hz, CH₂), 4.74 (d, 1H, J = 2.4 Hz, =CH₂), 5.15 (d, 1H, J = 2.4 Hz, =CH₂), 5.73 (d, 1H, J = 15.2 Hz, CH₂), 5.75 (d, 1H, J = 15.2 Hz, CH₂), 6.10 (d, 1H, J = 8.4 Hz, ArH), 6.74 (dd, 1H, $J_1 = 2.0$ Hz, $J_2 = 8.4$ Hz, ArH), 7.12 (d, 1H, J = 2.0 Hz, ArH), 7.43-7.57 (m, 4H, ArH), 7.98 (d, 2H, J = 8.4 Hz, ArH), 8.26 (d, 2H, J = 8.4 Hz, ArH), 8.44 (s, 1H, ArH); ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 37.8, 43.0, 79.8, 90.5, 112.1, 123.1, 124.4, 125.3, 127.3, 128.2, 128.4, 128.8, 129.4, 129.8, 130.8, 130.9, 131.3, 141.6, 152.4, 173.8, 195.5; IR (CH₂Cl₂): v 2923, 2851, 1748, 1713, 1412, 1400, 1277, 1249, 776, 755 cm⁻¹; MS (MALDI/DHB) m/z (%): 531.0 [M]⁺ (100); MS (MALDI/DHB) Calcd. for C₂₇H₁₈INNaO₃ [M + Na]⁺ requires 554.0224, Found: 554.0211. [α]²⁰_D = -34.2 (c 0.2, CH₂Cl₂, 66% ee) Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 80/20, 0.5 mL/min, 230 nm, *t_{minor}* = 34.51min, *t_{major}* = 46.38 min).

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	32.656	4065371	49.96	69295
2	2	43.595	4071134	50.04	54906

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	34.516	538702	16.46	9028
2	2	46.382	2733228	83.54	34322

1'-(anthracen-9-ylmethyl)-5'-methyl-5-methylene-3H-spiro[furan-2,3'-indoline]-2',4(5H)-dio ne (3f). 37 mg, 85% yield. mp. 301-302 °C (the racemate of **3f**. mp. 305-307 °C); ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.20 (s, 3H, CH₃), 2.66 (d, 1H, *J* = 18.0 Hz, CH₂), 2.72 (d, 1H, *J* = 18.0 Hz, CH₂), 4.58 (d, 1H, *J* = 2.4 Hz, =CH₂), 4.97 (d, 1H, *J* = 2.4 Hz, =CH₂), 5.95 (d, 1H, *J* = 16.0 Hz, CH₂), 6.02 (d, 1H, *J* = 16.0 Hz, CH₂), 6.79 (s, 1H, ArH), 6.94 (s, 1H, ArH), 7.19 (s, 1H, Ar), 7.34-7.41 (m, 4H, ArH), 7.93 (d, 2H, *J* = 8.0 Hz, ArH), 8.09 (d, 2H, *J* = 8.0 Hz, ArH), 8.37 (s, 1H, ArH); ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 19.9, 42.0, 43.0, 79.6, 89.7, 120.7, 122.9, 123.4, 124.8, 126.5 126.7 127.9, 128.5 129.5, 130.4 131.4 133.5, 135.7, 139.6, 152.7, 175.1, 196.2; IR (CH₂Cl₂): v 2952, 2923, 2845, 1748, 1713, 1412, 1409, 1270, 1249, 776, 757 cm⁻¹; MS (MALDI/DHB) m/z (%): 419.1 [M]⁺ (100); MS (MALDI/DHB) Calcd. for C₂₈H₂₁NNaO₃ [M + Na]⁺ requires 442.1414, Found: 442.1421. [α]²⁰_D = -51.9 (c 0.5, CH₂Cl₂, 68% ee) Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 70/30, 0.5 mL/min, 230 nm, *t_{minor}* = 24.08 min, *t_{major}* = 35.72min).

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	24.121	2206923	50.21	43903
2	2	36.212	2188833	49.79	31973

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

1	1	24.088	715639	16.74	15578
2	2	35.729	3559200	83.26	55533

1'-(anthracen-9-ylmethyl)-5'-methylene-3H-spiro[furan-2,3'-indoline]-2',4(5H)-di one (3g). 29 mg, 64% yield. mp. 305-307 °C (the racemate of **3g**. mp. 310-312 °C); ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.80 (d, 1H, *J* = 18.0 Hz, CH₂), 3.05 (d, 1H, *J* = 18.0 Hz, CH₂), 3.59 (s, 3H, CH₃), 4.81 (d, 1H, *J* = 2.4 Hz, =CH₂), 5.21 (d, 1H, *J* = 2.4 Hz, =CH₂), 5.78 (d, 1H, *J* = 15.0 Hz, CH₂), 6.01 (d, 1H, *J* = 15.0 Hz, CH₂), 6.17 (d, 1H, *J* = 8.4 Hz, ArH), 6.35 (dd, 1H, *J_I* = 2.4 Hz, *J₂* = 8.4 Hz, ArH), 6.81 (d, 1H, *J* = 2.4 Hz, ArH), 7.49-7.64 (m, 4H, ArH), 8.04-8.07 (m, 2H, ArH), 8.36-8.50 (m, 3H, ArH); ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 37.7, 43.2, 55.6, 80.3, 90.1, 110.9, 111.7, 115.3, 123.3, 123.9, 125.2, 126.5, 127.1, 129.2, 129.7, 130.8, 131.3, 136.3, 152.7, 156.2, 173.9, 196.1; IR (CH₂Cl₂): v 2957, 2923, 2852, 1749, 1639, 1450, 1423, 1281, 1249, 779, 755 cm⁻¹; MS (MALDI/DHB) m/z (%): 436.1 [M + H]⁺ (100); MS (MALDI/DHB) Calcd. for $C_{28}H_{21}NNaO_4$ [M + Na]⁺ requires 458.1362, Found: 458.1379. [*α*]²⁰_D = -47.6 (c 0.4, CH₂Cl₂, 84% ee) Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 80/20, 0.5 mL/min, 230 nm, *t_{minor}* = 48.53 min, *t_{major}* = 64.07 min).

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	49.993	3766104	49.74	44582
2	2	66.120	3805799	50.26	36789

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	48.535	305175	8.52	3524
2	2	64.070	3277179	91.48	31210

1'-(anthracen-9-ylmethyl)-6'-chloro-5-methylene-3H-spiro[furan-2,3'-indoline]-2',4(5H)-dion e (3h). 27 mg, 60% yield. mp. 315-317 °C (the racemate of **3h**. mp. 319-320 °C); ¹H NMR (d₆-DMSO, 400 MHz, TMS) δ 2.93 (d, 1H, J = 18.4 Hz, CH₂), 3.42 (d, 1H, J = 18.4 Hz, CH₂), 4.74 (s, 1H, =CH₂), 4.98 (s, 1H, =CH₂), 5.89-5.92 (m, 2H, CH₂), 6.25 (d, 1H, J = 8.0 Hz, Ar), 7.22 (d, 1H, J = 8.0 Hz, ArH), 7.54-7.65 (m, 4H, ArH), 7.86 (s, 1H, ArH), 8.14 (d, 2H, J = 8.0 Hz, ArH), 8.39 (d, 2H, J = 8.0 Hz, ArH), 8.68 (s, 1H, ArH); ¹³C NMR (d₆-DMSO, 100 MHz, TMS) δ 37.4, 41.5, 79.6, 88.5, 111.9, 114.9, 123.4, 125.2, 125.3, 127.0, 128.0, 128.5, 128.8, 129.4, 130.3, 130.8, 133.5, 142.7, 152.6, 173.4, 196.4; IR (CH₂Cl₂): v 2952, 2923, 2851, 1712, 1638, 1490, 1172, 1041, 755 cm⁻¹; MS (MALDI/DHB) m/z (%): 439.1 [M]⁺ (100); MS (MALDI/DHB) Calcd. for C₂₇H₁₈CINNaO₃ [M + Na]⁺ requires 462.0867, Found: 462.0851. [α]²⁰_D = -39.6 (c 0.4, CH₂Cl₂, 82% ee) Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 80/20, 0.5 mL/min, 230 nm, *t_{minor}* = 22.31 min, *t_{major}* = 34.17min).

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	22.502	4443053	50.18	99982
2	2	34.702	4410338	49.82	74440

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	22.311	325472	8.54	5107

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Br ⁄

2	2	34.174	3486561	91.46	45404
Lo					

1'-(anthracen-9-ylmethyl)-6'-bromo-5-methylene-3H-spiro[furan-2,3'-indoline]-2',4(5H)-dio ne (3i). 29 mg, 58% yield. mp. 321-323 °C (the racemate of **3i**. mp. 325-327 °C); ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.71 (d, 1H, J = 18.0 Hz, CH₂), 2.93 (d, 1H, J = 18.0 Hz, CH₂), 4.72 (s, 1H, =CH₂), 5.13 (s, 1H, =CH₂), 5.71 (d, 1H, J = 15.6 Hz, CH₂), 5.94 (d, 1H, J = 15.6 Hz, CH₂), 6.44 (s, 1H, ArH), 6.94-7.00 (m, 2H, ArH), 7.44-7.59 (m, 4H, ArH), 8.00 (d, 2H, J = 8.0 Hz, ArH), 8.28 (d, 2H, J = 8.0 Hz, ArH), 8.46 (s, 1H, ArH); ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 37.8, 42.9, 79.7, 90.4, 114.9, 123.1, 124.1, 124.7, 125.0, 125.2, 125.3, 126.1, 127.3, 129.5, 129.8, 130.8, 131.3, 144.4, 152.5, 174.0, 195.6; IR (CH₂Cl₂): v 2923, 2851, 1748, 1713, 1412, 1400, 1277, 1249, 776, 755 cm⁻¹; MS (MALDI/DHB) m/z (%): 483.0 [M]⁺ (100); MS (MALDI/DHB) Calcd. for C₂₇H₁₈BrNNaO₃ [M + Na]⁺ requires 506.0362, Found: 506.0376. [α]²⁰_D = -34.1 (c 0.4, CH₂Cl₂, 81% ee) Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 80/20, 0.5 mL/min, 230 nm, *t_{minor}* = 23.30 min, *t_{maior}* = 37.02 min).

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	22.919	6608235	50.05	144945
2	2	36.352	6594155	49.95	104802

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight

1	1	23.302	855774	9.46	19289
2	2	37.027	8186120	90.54	130448

1'-(anthracen-9-ylmethyl)-6'-methyl-5-methylene-3H-spiro[furan-2,3'-indoline]-2',4(5H)-dio ne (3j). 27 mg, 62% yield. mp. 305-306 °C (the racemate of **3j**. mp. 309-311 °C); ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.18 (s, 3H, CH₃), 2.73 (d, 1H, J = 18.4 Hz, CH₂), 2.79 (d, 1H, J = 18.4 Hz, CH₂), 4.65 (d, 1H, J = 2.0 Hz, =CH₂), 5.04 (d, 1H, J = 2.0 Hz, =CH₂), 6.02 (d, 1H, J = 15.6 Hz, CH₂), 6.09 (d, 1H, J = 15.6 Hz, CH₂), 6.86 (s, 1H, ArH), 7.01 (s, 1H, ArH), 7.23 (s, 1H, Ar), 7.41-7.46 (m, 4H, ArH), 8.00 (d, 2H, J = 8.0 Hz, ArH), 8.16 (d, 2H, J = 8.0 Hz, ArH), 8.43 (s, 1H, ArH); ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 20.4, 41.9, 42.9, 79.5, 89.6, 120.6, 122.8, 123.3, 124.8, 126.4, 126.6, 127.8, 128.4 129.4, 130.3, 131.3, 133.5, 135.6, 139.5, 152.6, 175.0, 196.2; IR (CH₂Cl₂): v 2962, 2923, 2845, 1749, 1713, 1412, 1409, 1270, 1212, 776, 757 cm⁻¹; MS (MALDI/DHB) m/z (%): 419.1 [M]⁺ (100); MS (MALDI/DHB) Calcd. for C₂₈H₂₁NNaO₃ [M + Na]⁺ requires 442.1414, Found: 442.1423. [α]²⁰_D = -37.6 (c 0.4, CH₂Cl₂, 77% ee) Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 80/20, 0.5 mL/min, 230 nm, *t_{minor}* = 29.28 min, *t_{major}* = 47.46min).

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	29.589	1637514	49.79	34177
2	2	48.368	1651376	50.21	21920

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	29.289	315152	11.65	4844
2	2	47.468	2390698	88.35	28397

1'-(anthracen-9-ylmethyl)-5',7'-dimethyl-5-methylene-3H-spiro[furan-2,3'-indoline]-2',4(5H) -**dione (3k)**. 32 mg, 71% yield. mp. 313-315 °C (the racemate of **3k**. mp. 319-321 °C); ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.18 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 2.74 (d, 1H, *J* = 18.4 Hz, CH₂), 2.80 (d, 1H, *J* = 18.4 Hz, CH₂), 4.65 (d, 1H, *J* = 2.4 Hz, =CH₂), 5.04 (d, 1H, *J* = 2.4 Hz, =CH₂), 6.02 (d, 1H, *J* = 16.0 Hz, CH₂), 6.09 (d, 1H, *J* = 16.0 Hz, CH₂), 6.86 (s, 1H, ArH), 7.02 (s, 1H, ArH), 7.41-7.49 (m, 4H, ArH), 7.99-8.02 (m, 2H, ArH), 8.16 (d, 2H, *J* = 8.8 Hz, ArH), 8.44 (s, 1H, ArH); ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 15.2, 24.9, 37.3, 38.3, 74.8, 84.9, 115.9, 118.2, 118.7, 120.1, 121.7, 123.1, 123.7, 124.7, 125.7, 126.6, 128.8, 131.0, 134.8, 147.9, 170.4, 191.5; IR (CH₂Cl₂): v 2952, 2920, 2851, 1748, 1713, 1412, 1409, 1255, 1212, 776, 757 cm⁻¹; MS (MALDI/DHB) m/z (%): 456.1 [M + Na]⁺ (100); MS (MALDI/DHB) Calcd. for C₂₉H₂₃NNaO₃ [M + Na]⁺ requires 456.1570, Found: 456.1562. [α]²⁰_D = -45.1 (c 0.4, CH₂Cl₂, 90% ee) Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 60/40, 0.5 mL/min, 230 nm, *t_{minor}* = 24.67 min, *t_{maior}* = 36.25 min).

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	25.554	1899641	49.75	39123
2	2	37.407	1918617	50.25	28882

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	24.671	169495	4.04	2212
2	2	36.252	4027578	95.96	43177

1'-methyl-5-methylene-3H-spiro[furan-2,3'-indoline]-2',4(5H)-dione (3I). 15 mg, 59% yield. mp. 270-272 °C (the racemate of **3I**. mp. 275-280 °C); ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.88 (d, 1H, J = 18.4 Hz, CH₂), 3.01 (d, 1H, J = 18.4 Hz, CH₂), 3.12 (s, 3H, CH₃), 4.72 (d, 1H, J = 2.0Hz, =CH₂), 5.14 (d, 1H, J = 2.0 Hz, =CH₂), 6.89 (d, 1H, J = 7.6 Hz, ArH), 7.13-7.17 (m, 1H, ArH), 7.36 (d, 1H, J = 7.6 Hz, ArH), 7.41-7.44 (m, 1H, ArH); ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 26.4, 42.4, 80.0, 90.0, 109.0, 123.7, 124.1, 126.5, 131.3, 144.1, 152.5, 173.8, 196.2; IR (CH₂Cl₂): v 2926, 2855, 1727, 1616, 1495, 1471, 1377, 1354, 1311, 1273, 1123, 1098, 996, 752 cm⁻¹; MS (ESI) m/z (%): 229.9 [M]⁺ (100); MS (ESI) Calcd. for C₁₃H₁₁NNaO₃ [M + Na]⁺ requires 252.0631, Found: 252.0630. [α]²⁰_D = -41.5 (c 0.4, CH₂Cl₂, 76% ee) Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 50/50, 0.5 mL/min, 230 nm, *t_{minor}* = 27.78 min, *t_{maior}* = 39.70 min).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	28.215	15510751	49.89	311691
2	2	39.940	15576269	50.11	214443

1'-allyl-5-methylene-3H-spiro[furan-2,3'-indoline]-2',4(5H)-dione (3m). 14 mg, 55% yield. mp. 270-271 °C (the racemate of **3m**. mp. 275-277 °C); ¹H NMR (CDCl₃, 400 MHz, TMS) δ 2.89 (d, 1H, J = 18.4 Hz, CH₂), 3.07 (d, 1H, J = 18.4 Hz, CH₂), 4.79 (d, 1H, J = 2.4 Hz, =CH₂), 4.84 (d, 1H, J = 15.6 Hz, CH₂), 4.90 (d, 1H, J = 15.6 Hz, CH₂), 5.20 (d, 1H, J = 2.4 Hz, =CH₂), 6.63 (d, 1H, J = 8.0 Hz, =CH), 7.26-7.35 (m, 4H, ArH), 7.40 (dd, 1H, $J_1 = 2.0$ Hz, $J_2 = 8.0$ Hz, =CH₂), 7.48 (d, 1H, J = 2.0 Hz, =CH); ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 42.5, 44.1, 79.8, 90.7, 111.6, 116.3, 127.3, 128.1, 129.1, 134.0, 134.4, 142.2, 152.2, 173.6, 195.4; IR (CH₂Cl₂): v 2955, 2923,

2852, 1772, 1726, 1615, 1489, 1468, 1436, 1375, 1310, 1268, 1189, 1106, 993, 931, 755, 740, 703 cm⁻¹; MS (%) (EI) *m/z* 255 (M⁺, 7.3), 185 (63.3), 91 (100), 71 (42.0), 56 (78.2), 43 (83.1). HRMS (EI) Calcd. for C₁₅H₁₃NO₃ requires 255.0895, Found: 255.0891. $[\alpha]^{20}_{D} = -28.2$ (c 0.4, CH₂Cl₂, 75% ee) Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 70/30, 0.5 mL/min, 230 nm, $t_{minor} = 31.11$ min, $t_{major} = 51.03$ min).

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	31.870	5476595	50.44	74750
2	2	50.834	5381699	49.56	41600

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	31.111	288835	5.66	5834
2	2	51.031	4810282	94.34	68090

1'-benzyl-5-methylene-3H-spiro[furan-2,3'-indoline]-2',4(5H)-dione (3n). 19 mg, 62% yield. mp. 282-283 °C (the racemate of **3n**. mp. 285-289 °C); ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.91 (d, 1H, J = 18.6 Hz, CH₂), 3.07 (d, 1H, J = 18.6 Hz, CH₂), 4.76 (d, 1H, J = 2.4 Hz, =CH₂), 4.85 (d, 1H, J = 15.6 Hz, CH₂), 4.92 (d, 1H, J = 15.6 Hz, CH₂), 5.17 (d, 1H, J = 2.4 Hz, =CH₂), 6.76 (d, 1H, J = 7.2 Hz, ArH), 7.08-7.13 (m, 1H, ArH), 7.26-7.38 (m, 6H, ArH); ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 42.6, 44.0, 80.1, 90.1, 110.1, 123.7, 124.2, 126.5, 127.3, 127.9, 128.9, 131.2, 134.8, 143.3, 152.5, 174.0, 196.1; IR (CH₂Cl₂): v 2950, 2918, 2872, 1733, 1635, 1602, 1496, 1456, 1377, 1356, 1234, 1222, 1185, 1164, 1112, 1030, 790, 740, 645 cm⁻¹; MS (%) (ESI) *m/z* 306.1 [M + H]⁺ (100); HRMS (ESI) Calcd. for C₁₉H₁₆NO₃ [M + H]⁺ requires 306.1125, Found: 306.1131. [α]²⁰_D = -23.5 (c 1.0, CH₂Cl₂, 67% ee) Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 70/30, 0.5 mL/min, 230 nm, *t_{minor}* = 20.94 min, *t_{major}* = 27.10 min).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	23.157	1813610	50.21	43430
2	2	31.550	1798772	49.79	37443

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	20.946	4985804	15.75	78236
2	2	27.102	26677971	84.25	484711