Supporting Information for A multicomponent synthetic strategy for two-carbon-tethered 1,3-oxathiole/indole pairs

Jia-Yan Liu, Hao Zhang, Bao-Ming Feng, Bo Jiang,* Shu-Liang Wang, and Shu-Jiang Tu*

School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Jiangsu, P.R. China.

E-mail: jiangchem@jsnu.edu.cn (B. Jiang); laotu@jsnu.edu.cn (S.-J. Tu)

Table of Contents

General	S2
General Procedure for the Synthesis of Compounds 4	"S2
Characterization Data of Compounds 4a-4y	S3-S11
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 4a-4y	S12-S34

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012 Experimental

General

Melting points were determined in open capillaries and were uncorrected. IR spectra were taken on a FT-IR-Tensor 27 spectrometer in KBr pellets and reported in cm⁻¹. ¹H NMR spectra were measured on a Bruker DPX 400 MHz spectrometer in DMSO- d_6 with chemical shift (δ) given in ppm relative to TMS as internal standard [(s = singlet, d = doublet, t = triplet, brs = broad singlet, m = multiplet), coupling constant (Hz)]. HRMS (ESI) was determined by using microTOF-Q II HRMS/MS instrument (BRUKER). X-Ray crystallographic analysis was performed with a Siemens SMART CCD and a Siemens P4 diffractometer.

General procedure for the synthesis of compounds 4

Preparation of compounds 4

β-oxopropanenitriles (**1**, 1.0 mmol,) was introduced in a 20-mL reaction vial, carbon disulfide (**2**, 2.0 mmol), α-bromo ketones (**3**, 1.1 mmol), K₂CO₃ (2.5 mmol), and DMF (8 mL) were then successively added. Subsequently, the reaction vial was capped and then stirred at room temperature for a given time until TLC (petroleum ether : acetone 4:1) revealed that conversion of the starting material **1** was complete. The reaction mixture was diluted with cold water (50 ml) and then extracted by acetic ester. Next, the organic phase was concentrated by vacuum distillation and dissolved in EtOH (95%) to afford the desired pure 1,3-oxathioles **4**

(2Z) - 3 - (1H-indol - 3 - yl) - 2 - (4 - methyl - 5 - phenyl - 1, 3 - oxathiol - 2 - ylidene) - 3 - oxopropanenitrile (4a)

Pale yellow solid, mp: 281-282 °C

¹H NMR (400 MHz, DMSO-*d*₆) δ: 12.05 (s, 1H, NH), 8.54 (d, J = 3.2 Hz, 1H, Ar-H), 8.30 (d, J = 7.2 Hz, 1H, Ar-H), 7.70 (d, J = 7.2 Hz, 2H, Ar-H), 7.60 (t, J = 7.2 Hz, 2H, Ar-H), 7.54 (d, J = 7.2 Hz, 2H, Ar-H), 7.28-7.20 (m, 2H, Ar-H), 2.42 (s, 3H, CH₃).

¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm): 178.6, 172.0, 145.0, 135.7, 131.2, 129.6, 129.0, 127.1, 126.8, 126.3, 123.0, 122.3, 121.8, 117.1, 115.1, 114.2, 112.0, 10.6,

IR (KBr, v, cm⁻¹): 3314, 2209, 1560, 1514, 1407, 1221, 729

HRMS (ESI): m/z calcd for: C₂₂H₁₆N₂O₂S, 357.0698, found: 357.0689

(2Z)-3-(1*H*-indol-3-yl)-2-(4-methyl-5-*p*-tolyl-1,3-oxathiol-2-ylidene)-3-oxopropanenitrile (4b)

Pale yellow solid, mp: 295-296 °C;

¹H NMR (400 MHz, DMSO- d_6) δ : 12.04 (s, 1H, NH), 8.54 (d, J = 3.2 Hz, 1H, Ar-H), 8.29 (d, J = 7.2 Hz, 1H, Ar-H), 7.59 (d, J = 8.0 Hz, 2H, Ar-H), 7.54 (d, J = 8.0 Hz, 1H, Ar-H), 7.40 (d, J = 8.0 Hz, 2H, Ar-H), 7.26-7.22 (m, 2H, Ar-H), 2.40 (s, 3H, CH₃), 2.39 (s, 3H, CH₃).

¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm): 192.3, 153.6, 143.2, 136.9, 135.8, 135.2, 133.3, 130.9, 128.2, 127.9, 127.2, 125.4, 119.8, 104.6, 52.8, 25.4, 10.7.

IR (KBr, v, cm⁻¹): 3320, 2215, 1565, 1519, 1411, 1226, 728

HRMS (ESI): m/z calcd for: C₂₂H₁₆N₂O₂S, 371.0853, found: 371.0857.

(2Z)-2-(5-(4-bromophenyl)-4-methyl-1,3-oxathiol-2-ylidene)-3-(1*H*-indol-3-yl)-3-oxopropanenit rile (4c)

Pale yellow solid, mp: >300 °C;

¹H NMR (400 MHz, DMSO-*d*₆) δ: 12.07 (s, 1H, NH), 8.54 (d, J = 3.2 Hz, 1H, Ar-H), 8.29 (d, J = 7.6 Hz, 1H, Ar-H), 7.81 (d, J = 8.4 Hz, 2H, Ar-H), 7.65 (d, J = 8.4 Hz, 2H, Ar-H), 7.54 (d, J = 8.0 Hz, 1H, Ar-H), 7.29 – 7.20 (m, 2H, Ar-H), 2.42 (s, 3H, CH₃).

¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm): 180.8, 178.5, 144.0, 135.9, 135.2, 132.0, 131.4, 128.6, 126.3, 123.0, 121.7, 119.2, 117.0, 116.0, 114.2, 112.1, 10.8.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012 IR (KBr, v, cm⁻¹): 3220, 2206, 1558, 1421, 1379, 838; HRMS (ESI): m/z calcd for: $C_{21}H_{13}BrN_2O_2S$, 436.9778, found: 436.9792.

(2Z)-3-(5-bromo-1*H*-indol-3-yl)-2-(4-methyl-5-phenyl-1,3-oxathiol-2-ylidene)-3-oxopropanenitr ile (4d)

Pale yellow solid, mp: 291-293 °C;

¹H NMR (400 MHz, DMSO-*d*₆) δ: 12.21 (s, 1H, NH), 8.57 (s, 1H, Ar-H), 8.45 (s, 1H, Ar-H), 7.71 (d, *J* = 7.2 Hz, 2H, Ar-H), 7.60 (t, *J* = 7.2 Hz, 2H, Ar-H), 7.56-7.50 (m, 2H, Ar-H), 7.39 (d, *J* = 8.0Hz, 1H, Ar-H), 2.44 (s, 3H, CH₃).

¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm): 178.4, 153.2, 145.2, 138.9, 132.3, 128.9, 127.0, 125.9, 124.1, 120.9, 114.9, 114.7, 114.0, 113.8, 105.3, 87.4, 10.8.

IR (KBr, v, cm⁻¹): 3316, 2209, 1563, 1516, 1417, 1221, 725

HRMS (ESI): m/z calcd for: C₂₂H₁₆N₂O₂S, 436.9778, found: 436.9773.

(2Z)-3-(5-bromo-1*H*-indol-3-yl)-2-(4-methyl-5-*p*-tolyl-1,3-oxathiol-2-ylidene)-3-oxopropanenitri le (4e)

Pale yellow solid, mp: 297-298 °C;

¹H NMR (400 MHz, DMSO-*d*₆) δ :12.20 (s, 1H, NH), 8.56 (d, *J* = 3.2 Hz, 1H, Ar-H), 8.44 (s, 1H, Ar-H), 7.59 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.52 (d, *J* = 8.4 Hz, 1H, Ar-H), 7.39-7.32(m, 3H, Ar-H), 2.41 (s, 3H, CH₃), 2.39 (s, 3H, CH₃).

IR (KBr, v, cm⁻¹): 3319, 2211, 1561, 1518, 1409, 1223, 732

HRMS (ESI): m/z calcd for: C₂₂H₁₅BrN₂O₂S, 450.9935, found: 450.9928.

(2Z)-3-(5-bromo-1*H*-indol-3-yl)-2-(5-(4-bromophenyl)-4-methyl-1,3-oxathiol-2-ylidene)-3-oxopr opanenitrile (4f)

Pale yellow solid, mp: 292-293 °C;

¹H NMR (400 MHz, DMSO-*d*₆) δ: 12.19 (s, 1H, NH), 8.55 (s, 1H, Ar-H), 8.43 (s, 1H, Ar-H), 7.79 (d, *J* = 7.2 Hz, 2H, Ar-H), 7.62 (d, *J* = 7.2 Hz, 2H, Ar-H), 7.50 (d, *J* = 7.6 Hz, 1H, Ar-H), 7.37 (d, *J* = 7.6 Hz, 1H, Ar-H), 2.40 (s, 3H, CH₃).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012 IR (KBr, v, cm⁻¹): 3225, 2209, 1558, 1423, 1379, 835 HRMS (ESI): m/z calcd for: $C_{21}H_{12}Br_2N_2O_2S$, 514.8883, found: 514.8883

(2Z)-3-(5-methoxy-1*H*-indol-3-yl)-2-(4-methyl-5-phenyl-1,3-oxathiol-2-ylidene)-3-oxopropaneni trile (4g)

Pale yellow solid, mp: 271-273 °C;

¹H NMR (400 MHz, DMSO-*d*₆) δ: 11.94 (s, 1H, NH), 8.50 (d, *J* = 3.2 Hz, 1H, Ar-H), 7.82 (d, *J* = 2.0 Hz, 1H, Ar-H), 7.70 (d, *J* = 7.2 Hz, 2H, Ar-H), 7.60 (t, *J* = 7.2 Hz, 2H, Ar-H), 7.54 (d, *J* = 7.2 Hz, 1H, Ar-H), 7.43 (d, *J* = 8.8 Hz, 1H, Ar-H), 6.89 (m, 1H, Ar-H), 3.81 (s, 3H, OCH₃), 2.42 (s, 3H, CH₃). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm): 180.8, 178.5, 155.4, 144.9, 131.5, 130.7, 129.5, 129.0, 127.2, 126.8, 117.1, 115.0, 114.1, 113.1, 112.8, 103.2, 81.0, 55.1, 10.8.

IR (KBr, v, cm⁻¹): 3318, 2209, 1565, 1514, 1404, 1224, 722

HRMS (ESI): m/z calcd for: $C_{22}H_{16}N_2O_3S$, 387.0803 , found: 387.0803

(2Z)-3-(5-methoxy-1*H*-indol-3-yl)-2-(4-methyl-5-*p*-tolyl-1,3-oxathiol-2-ylidene)-3-oxopropaneni trile (4h)

Pale yellow solid, mp: 292-293 °C;

¹H NMR (400 MHz, DMSO-*d*₆) δ :11.95 (s, 1H, NH), 8.49 (d, J = 3.2 Hz, 1H, Ar-H), 7.81 (d, J = 2.0 Hz, 1H, Ar-H), 7.59 (d, J = 8.0 Hz, 2H, Ar-H), 7.44 - 7.39 (m, 3H, Ar-H), 6.91 - 6.86 (m, 1H, Ar-H), 3.81 (s, 3H, OCH₃), 2.40 (s, 3H, CH₃), 2.39 (s, 3H, CH₃).

¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm): 180.9, 178.5, 155.4, 145.2, 139.4, 131.5, 130.7, 129.6, 127.2, 126.7, 124.4, 121.7, 116.5, 114.1, 113.1, 112.9, 103.2, 55.1, 21.0, 10.7.

IR (KBr, v, cm⁻¹): 3269, 2207, 1586, 1474, 1431, 846

HRMS (ESI): m/z calcd for: C₂₃H₁₈N₂O₃S, 401.0950, found: 401.0943.

(2Z)-2-(5-(4-bromophenyl)-4-methyl-1,3-oxathiol-2-ylidene)-3-(5-methoxy-1*H*-indol-3-yl)-3-oxo propanenitrile (4i)

Pale yellow solid, mp: 295-297 °C;

¹H NMR (400 MHz, DMSO-*d*₆) δ: 11.81 (s, 1H, NH), 8.50 (d, *J* = 3.2 Hz, 1H, Ar-H), 7.85 (d, *J* = 2.4 Hz, 1H, Ar-H), 7.71 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.59 (d, *J* = 8.4 Hz, 2H, Ar-H), 7. 37 (d, *J* = 8.8 Hz, 1H, Ar-H), 6.85 (dd, *J* = 8.8 Hz, 2.4Hz, 1H, Ar-H), 3.84 (s, 3H, OCH₃), 2.41 (s, 3H, CH₃). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm): 180.8, 178.6, 145.2, 139.3, 135.9, 131.2, 129.4, 126.6, 126.4, 122.8, 121.8, 121.6, 117.0, 114.3, 113.8, 112.0, 81.1, 21.0, 10.7.

IR (KBr, v, cm⁻¹): 3265, 2203, 1579, 1477, 1421, 827

HRMS (ESI): m/z calcd for: C₂₂H₁₅BrN₂O₃S, 466.9884, found: 466.9888.

(2Z)-3-(2-methyl-1*H*-indol-3-yl)-2-(4-methyl-5-phenyl-1,3-oxathiol-2-ylidene)-3-oxopropanenitr ile (4j)

Pale yellow solid, mp: 251-252 °C;

¹H NMR (400 MHz, DMSO-*d*₆) δ: 11.79 (s, 1H, NH), 7.72 (d, J = 7.2Hz, 2H, Ar-H), 7.66 (d, J = 7.6 Hz, 1H, Ar-H), 7.60 (t, J = 7.2 Hz, 2H, Ar-H), 7.55 (d, J = 7.2 Hz, 1H, Ar-H), 7.37 (d, J = 7.6 Hz, 1H, Ar-H), 7.15-7.07 (m, 2H, Ar-H), 2.58 (s, 3H, CH₃), 2.44 (s, 3H, CH₃).

IR (KBr, v, cm⁻¹): 3265, 2203, 1579, 1477, 1421, 827

IR (KBr, v, cm⁻¹): 3314, 2208, 1561, 1513, 1407, 1223, 726

HRMS (ESI): m/z calcd for: C₂₂H₁₆N₂O₂S, 371.0853, found: 371.0853.

(2Z)-3-(2-methyl-1*H*-indol-3-yl)-2-(4-methyl-5-*p*-tolyl-1,3-oxathiol-2-ylidene)-3-oxopropanenitr ile (4k)

Pale yellow solid, mp: 263-265 °C;

¹H NMR (400 MHz, DMSO- d_6) δ : 12.00 (s, 1H, NH), 8.55 (d, J = 3.2 Hz, 1H, Ar-H), 7.56 (d, J = 8.0 Hz, 2H, Ar-H), 7.52 (d, J = 8.0 Hz, 1H, Ar-H), 7.42 (d, J = 8.0 Hz, 2H, Ar-H), 7.26-7.22 (m, 2H, Ar-H), 2.56 (s, 3H, CH₃), 2.40 (s, 3H, CH₃), 2.39 (s, 3H, CH₃).

¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm): 182.0, 181.5, 178.8, 142.3, 138.2, 134.8, 129.0, 126.5, 126.2, 121.8, 120.6, 120.0, 117.5, 112.7, 112.5, 111.2, 99.6, 96.9, 57.5, 20.7, 13.8, 10.0.

IR (KBr, v, cm⁻¹): 3265, 2203, 1579, 1477, 1421, 827

HRMS (ESI): m/z calcd for: C₂₃H₁₈N₂O₂S, 385.1010, found: 385.1003.

(2Z)-2-(5-(4-bromophenyl)-4-methyl-1,3-oxathiol-2-ylidene)-3-(2-methyl-1*H*-indol-3-yl)-3-oxop ropanenitrile (4l)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Pale yellow solid, mp: 265-266 °C;

¹H NMR (400 MHz, DMSO-*d*₆) δ: 11.79 (s, 1H, NH), 7.80 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.66 (d, *J* = 8.0 Hz, 3H, Ar-H), 7.37 (d, *J* = 7.6 Hz, 1H, Ar-H), 7.16 – 7.06 (m, 2H, Ar-H), 2.58 (s, 3H, CH₃), 2.43 (s, 3H, CH₃).

¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm): 182.7, 181.1, 144.2, 140.4, 134.9, 132.1, 128.7, 126.1, 121.5, 119.9, 115.8, 112.5, 111.0, 84.5, 13.8, 10.8.

IR (KBr, v, cm⁻¹): 3263, 2207, 1578, 1473, 1437, 800

HRMS (ESI): m/z calcd for: C₂₂H₁₅BrN₂O₂S, 450.9928, found: 450.9928.

(2Z)-2-(4-methyl-5-p-tolyl-1,3-oxathiol-2-ylidene)-3-oxo-3-phenylpropanenitrile (4m)

Pale yellow solid, mp: 189-190 °C;

¹H NMR (400 MHz, DMSO- d_6) δ : 7.78 (d, J = 7.2 Hz, 1H, Ar-H), 7.69-7.62 (m, 1H, Ar-H), 7.55 (d, J = 6.4 Hz, 1H, Ar-H), 7.29 (d, J = 8.0 Hz, 1H, Ar-H), 2.34 (s, 3H, CH₃), 1.19 (s, 3H, CH₃).

¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm): 186.0, 185.5, 183.9, 138.3, 137.0, 134.5, 133.9, 132.2, 128.9, 128.2, 127.9, 126.4, 117.6, 100.7, 57.7, 20.7, 9.7.

IR (KBr, v, cm⁻¹): 3262, 2207, 1579, 1475, 1432, 805

HRMS (ESI): m/z calcd for: C₂₀H₁₅NO₂S, 332.0744, found: 332.0747.

(2Z)-2-(5-(4-bromophenyl)-4-methyl-1,3-oxathiol-2-ylidene)-3-oxo-3-phenylpropanenitrile (4n)

Pale yellow solid, mp: 186-188 °C;

¹H NMR (400 MHz, DMSO- d_6) δ 7.79 (d, J = 7.6 Hz, 2H, Ar-H), 7.74 (s, 1H, Ar-H), 7.70 (t, J = 7.6 Hz, 3H, Ar-H), 7.63 (d, J = 8.0 Hz, 1H, Ar-H), 7.55 (d, 2H, J = 8.0 Hz, Ar-H), 1.20 (s, 3H, CH₃),

¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm): 186.0, 185.6, 183.7, 137.0, 132.3, 131.4, 131.3, 128.8, 128.0, 122.5, 117.5, 100.0, 93.7, 57.5, 9.7.

IR (KBr, v, cm⁻¹): 3260, 2257, 1576, 1473, 1432, 799

HRMS (ESI): m/z calcd for: C₁₉H₁₂BrNO₂S, 395.9693, found: 395.9692.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

(2Z)-2-(4-methyl-5-phenyl-1,3-oxathiol-2-ylidene)-3-oxo-3-p-tolylpropanenitrile (40)

Pale yellow solid, mp: 171-173 °C;

¹H NMR (400 MHz, DMSO-*d*₆) δ : 7.81 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.71 (d, *J* = 7.2 Hz, 2H, Ar-H), 7.60 (t, *J* = 7.2 Hz, 2H, Ar-H), 7.57 – 7.53 (m, 1H, Ar-H), 7.37 (d, *J* = 8.0 Hz, 2H, Ar-H), 2.46 (s, 3H, CH₃), 2.40 (s, 3H, CH₃).

¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm): 185.2, 182.8, 177.1, 146.0, 143.6, 142.3, 134.4, 129.8, 129.1, 128.9, 127.9, 126.9, 120.4, 118.5, 117.3, 116.1, 115.6, 21.1, 10.8.

IR (KBr, v, cm⁻¹): 3250, 2255, 1576, 1472, 1433, 800

HRMS (ESI): m/z calcd for: C₂₀H₁₅NO₂S, 332.0744, found: 332.0746

(2Z)-2-(4-methyl-5-*p*-tolyl-1,3-oxathiol-2-ylidene)-3-oxo-3-*p*-tolylpropanenitrile (4p)

Pale yellow solid, mp: 174-176 °C;

¹H NMR (400 MHz, DMSO-*d*₆) δ: 7.81 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.59 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.41 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.36 (d, *J* = 8.0 Hz, 2H, Ar-H), 2.43 (s, 3H ,CH₃), 2.40 (s, 3H ,CH₃), 2.39 (s, 3H ,CH₃).

¹³C NMR (100 MHz, DMSO-d₆) (δ, ppm): 185.3, 182.9, 166.9, 156.1, 142.5, 134.4, 129.2, 129.0, 127.9, 127.0, 115.7, 112.7, 86.5, 55.7, 21.1, 10.8.

IR (KBr, v, cm⁻¹): 3313, 2209, 1561, 1514, 1405, 1221, 725

HRMS (ESI): m/z calcd for: C₂₁H₁₇NO₂S, 346.0901, found: 346.0914.

(2Z)-2-(5-(4-bromophenyl)-4-methyl-1,3-oxathiol-2-ylidene)-3-oxo-3-p-tolylpropanenitrile (4q)

Pale yellow solid, mp: 173-175 °C;

¹H NMR (400 MHz, DMSO- d_6) δ : 7.81 (d, J = 7.2 Hz, 4H, Ar-H), 7.65 (d, J = 8.4 Hz, 2H, Ar-H), 7.37 (d, J = 7.6 Hz, 2H, Ar-H), 2.45 (s, 3H, CH₃), 2.40 (s, 3H, CH₃).

¹³C NMR (100 MHz, DMSO-d₆) (δ, ppm): 185.1, 182.4, 145.0, 142.3, 134.1, 132.2, 128.9, 128.2, 127.8, 125.6, 123.5, 116.3, 115.8, 112.7, 86.5, 82.1, 21.2, 10.9.

IR (KBr, v, cm⁻¹): 3313, 2209, 1561, 1514, 1405, 1221, 725

HRMS (ESI): m/z calcd for: C₂₀H₁₄BrNO₂S, 409.9850, found: 409.9834.

(2Z)-3-(4-methoxyphenyl)-2-(4-methyl-5-phenyl-1,3-oxathiol-2-ylidene)-3-oxopropanenitrile (4r)

Pale yellow solid, mp: 168-169 °C;

¹H NMR (400 MHz, DMSO-*d*₆) δ : 7.84 (d, *J* = 6.8 Hz, 2H, Ar-H), 7.78 (t, *J* = 8.4 Hz, 2H, Ar-H), 7.50-7.43 (m, 3H, Ar-H), 7.08 (d, *J* = 8.8 Hz, 2H, Ar-H), 3.85 (s, 3H, OCH₃), 1.19. (s, 3H, CH₃) IR (KBr, v, cm⁻¹): 3312, 2211, 1563, 1515, 1409, 1220, 727 HRMS (ESI): m/z calcd for: C₂₀H₁₅NO₃S, 348.0695, found: 348.0682.

(2Z)-3-(4-methoxyphenyl)-2-(4-methyl-5-*p*-tolyl-1,3-oxathiol-2-ylidene)-3-oxopropanenitrile (4s)

Pale yellow solid, mp: 165-166 °C;

¹H NMR (400 MHz, DMSO-*d*₆) δ: 7.84 (d, *J* = 8.8 Hz, 2H, Ar-H), 7.65 (t, *J* = 8.8 Hz, 2H, Ar-H), 7.28 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.08 (d, *J* = 8.8 Hz, 2H, Ar-H), 3.85 (s, 3H, OCH₃), 2.34 (s, 3H,CH₃), 1.18. (s, 3H, CH₃)

¹³C NMR (100 MHz, DMSO-d₆) (δ, ppm): 184.0, 162.4, 139.7, 138.4, 134.6, 134.1, 130.5, 130.1, 129.7, 129.1, 129.0, 126.9, 126.5, 113.8, 100.4, 57.4, 55.5, 20.7, 9.8.

IR (KBr, v, cm⁻¹): 3315, 2218, 1569, 1513, 1409, 1223, 729

HRMS (ESI): m/z calcd for: C₂₁H₁₇NO₃S, 362.0850, found: 362.0853.

(2Z)-2-(5-(4-bromophenyl)-4-methyl-1,3-oxathiol-2-ylidene)-3-(4-methoxyphenyl)-3-oxopropan enitrile (4t)

Pale yellow solid, mp: 169-171 °C;

¹H NMR (400 MHz, DMSO- d_6) δ : 7.84 (d, J = 8.8 Hz, 2H, Ar-H), 7.75-7.68 (m, 4H, Ar-H), 7.08 (d, J = 8.8 Hz, 2H, Ar-H), 3.85 (s, 3H, OCH₃), 1.18. (s, 3H, CH₃)

¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm): 184.4, 184.0, 182.6, 162.7, 137.0, 136.6, 131.3, 130.5, 130.4, 129.1, 128.7, 122.4, 117.7, 113.6, 99.5, 93.7, 57.4, 55.4, 9.7.

IR (KBr, v, cm⁻¹): 3319, 2209, 1565, 1514, 1409, 1221, 729

HRMS (ESI): m/z calcd for: C₂₀H₁₄BrNO₃S, 425.9799, found: 425.9793.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

(2Z)-3-(4-chlorophenyl)-2-(4-methyl-5-phenyl-1,3-oxathiol-2-ylidene)-3-oxopropanenitrile (4u)

Pale yellow solid, mp: 163-165 °C;

¹H NMR (400 MHz, DMSO- d_6) δ : 7.87 – 7.84 (m, 2H, Ar-H), 7.72 (d, J = 7.2 Hz, 3H, Ar-H), 7.62-7.54 (m, 4H, Ar-H), 2.47 (s, 3H, CH₃).

¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm):185.6, 183.7, 137.0, 136.9, 132.3, 132.2, 131.4, 131.3, 128.8, 128.3, 128.0, 127.9, 122.5, 117.5, 57.5, 9.7.

IR (KBr, v, cm⁻¹): 3314, 2209, 1560, 1514, 1407, 1221, 729

HRMS (ESI): m/z calcd for: C₁₉H₁₂ClNO₂S, 352.0198, found: 352.0183.

(2Z) - 3 - (4 - chlorophenyl) - 2 - (4 - methyl - 5 - p - tolyl - 1, 3 - oxathiol - 2 - ylidene) - 3 - oxopropanenitrile (4v)

Pale yellow solid, mp: 160-162 °C;

¹H NMR (400 MHz, DMSO- d_6) δ : 7.80 – 7.78 (m, 2H, Ar-H), 7.69-7.59 (m, 4H, Ar-H), 7.29 (d, J = 8.0 Hz, 2H, Ar-H), 2.34 (s, 3H, CH₃), 1.20 (s, 3H, CH₃).

IR (KBr, v, cm⁻¹): 3315,2212, 1563, 1515, 1409, 1223, 725

HRMS (ESI): m/z calcd for: C₂₀H₁₄ClNO₂S, 366.0355, found: 366.0343.

(2Z)-2-(5-(4-bromophenyl)-4-methyl-1,3-oxathiol-2-ylidene)-3-(4-chlorophenyl)-3-oxopropanen itrile (4w)

Pale yellow solid; mp: 167-169 °C;

¹H NMR (400 MHz, DMSO- d_6) δ : 7.82 (d, J = 7.2 Hz,2H, Ar-H), 7.74-7.68 (m, 4H, Ar-H), 7.62 (d, J = 6.4 Hz, 2H, Ar-H), 1.20 (s, 3H, CH₃).

¹³C NMR (100 MHz, DMSO-d₆) (δ, ppm): 184.2, 136.9, 136.4, 131.4, 131.3, 129.9, 129.8, 128.7, 128.4, 122.5, 117.4, 112.7, 100.1, 93.5, 57.6, 9.7.

IR (KBr, v, cm⁻¹): 3318 ,2209, 1563, 1517, 1407, 1225, 725

HRMS (ESI): m/z calcd for: C₂₀H₁₄ClNO₂S, 431.9277, found: 431.9255.

(2Z)-2-(4-methyl-5-*p*-tolyl-1,3-oxathiol-2-ylidene)-3-oxo-3-(thiophen-2-yl)propanenitrile (4x)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012 Pale vellow solid, mp: 166-168 °C;

¹H NMR (400 MHz, DMSO-*d*₆) δ: 8.15 (d, *J* = 4.8 Hz, 1H, Ar-H), 8.06 (s, 1H, Ar-H), 7.68-7.63 (m, 2H, Ar-H), 7.28 (d, *J* = 7.6 Hz, 3H, Ar-H), 2.34 (s, 3H, CH₃), 1.18 (s, 3H, CH₃).

¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm): 184.3, 175.6, 142.1, 138.4, 135.3, 134.5, 133.9, 132.5, 129.1, 128.7, 126.5, 117.7, 100.6, 91.9, 57.5, 20.7, 9.7.

IR (KBr, v, cm⁻¹): 3315, 2214, 1565, 1518, 1407, 1226, 735.

HRMS (ESI): m/z calcd for: C₁₈H₁₃NO₂S₂, 338.0309, found:.338.0294

(2Z)-2-(5-(4-bromophenyl)-4-methyl-1,3-oxathiol-2-ylidene)-3-oxo-3-(thiophen-2-yl)propanenit rile (4y)

Pale yellow solid, mp: 159-160 °C;

¹H NMR (400 MHz, DMSO- d_6) δ : 8.21-8.13 (m, 1H, Ar-H), 8.08 (d, J = 4.4 Hz, 1H Ar-H), 7.82-7.59 (m, 4H, Ar-H), 7.30 (d, J = 4.0 Hz, 1H, Ar-H), 1.19 (s, 3H,CH₃).

¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm): 183.9, 175.6, 142.0, 137.0, 135.3, 132.5, 131.4, 131.3, 128.8, 122.4, 117.5, 99.7, 57.4, 9.7.

IR (KBr, v, cm⁻¹): 3312, 2225, 1565, 1514, 1407, 1221, 723

HRMS (ESI): m/z calcd for: C₁₇H₁₀BrNO₂S₂, 401.9257, found: .401.9243.

S14

S15

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

S18

¹H NMR Spectrum of Compound 4k

¹H NMR Spectrum of Compound 4l

¹H NMR Spectrum of Compound 4n

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

S28

¹H NMR Spectrum of Compound 4y

¹³C NMR Spectrum of Compound 4y