Supporting information

Tetrahydroindazolone substituted 2-aminobenzamides as fluorescent probes: switching metal ion selectivity from zinc to cadmium by interchanging the amino and carbamoyl groups on the fluorophore

Jia Jia, Qin-chao Xu, Ri-chen Li, Xi Tang, Ying-fang He, Meng-yu Zhang, Yuan Zhang and Guo-wen Xing*

Deapartment of Chemistry, Beijing Normal University, Beijing 100875, China

Contents	Pages
Figure S1. X-ray crystallographic structure of 8b .	S1
Figure S2. Fluorescence emission spectra of CdABA.	S2
Figure S3. Selectivity of CdABA towards various metal ions.	S2
Figure S4. A Job's plot of (a) CdABA' and Cd^{2+} , (b) CdABA and Cd^{2+} , and (c) ZnABA' and Zn^{2+} .	S3
Figure S5. Fluorescence emission spectra of (a) CdABA, CdABA with Zn^{2+} and CdABA with Cd^{2+} , (b)	S4
CdABA', CdABA' with Zn ²⁺ and CdABA' with Cd ²⁺ , (c) ZnABA', ZnABA' with Zn ²⁺ and ZnABA'	
with Cd ²⁺ in aqueous solution.	
Figure S6. ESI-Mass spectrum of CdABA' + 1.0 equiv Zn^{2+} in methanol.	S5
2-bromo-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-1-yl)benzonitrile (3a): ¹ H-NMR and	S6-7
¹³ C-NMR spectra	
2-({2-[bis(pyridin-2-ylmethyl)amino]ethyl}amino)-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-1-	S8-9
yl)benzonitrile (5): ¹ H-NMR and ¹³ C-NMR spectra	
2-({2-[bis(pyridin-2-ylmethyl)amino]ethyl}amino)-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-1-	S10-11
yl)benzamide (CdABA): ¹ H-NMR and ¹³ C-NMR spectra	
2-bromo-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-2-yl)benzonitrile (3b): ¹ H-NMR and	S12-13
¹³ C-NMR spectra	
2-({2-[bis(pyridin-2-ylmethyl)amino]ethyl}amino)-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-2-	S14
yl) benzonitrile (6): ¹ H-NMR spectrum	
2-({2-[bis(pyridin-2-ylmethyl)amino]ethyl}amino)-5-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-2-	S15-16
yl)benzamide (CdABA'): ¹ H-NMR and ¹³ C-NMR spectra	
2-bromo-4-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-2-yl)benzonitrile (8b): ¹ H-NMR and	S17-18
¹³ C-NMR spectra	
2-({2-[bis(pyridin-2-ylmethyl)amino]ethyl}amino)-4-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-2-	S19
yl) benzonitrile (9): ¹ H-NMR	
2-({2-[bis(pyridin-2-ylmethyl)amino]ethyl}amino)-4-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydroindazol-2-	S20-21
yl) benzamide (ZnABA'): ¹ H-NMR and ¹³ C-NMR spectra	

Table of Contents

Figure S1. X-ray crystallographic structure of 8b.

Figure S2. Fluorescence emission spectra ($\lambda_{ex} = 260 \text{ nm}$) of CdABA (10 μ M, 25mM HEPES buffer, 0.1 M NaClO₄, pH = 7.4, *I* = 0.1) upon addition of Cd²⁺ [added as Cd(ClO₄)₂, 0-20 μ M].

Figure S3. Selectivity of CdABA towards various metal ions. Experimental conditions: CdABA (10 μ M, 25mM HEPES buffer, 0.1 M NaClO₄, pH = 7.4, *I* = 0.1), 10 μ M Ba²⁺, Ca²⁺, Co²⁺, Cr³⁺, Cu²⁺, Fe³⁺, Mg²⁺, Mn²⁺, Ni²⁺, Pb²⁺, Cd²⁺ and Zn²⁺, $\lambda_{ex} = 260$ nm, $\lambda_{em} = 454$ nm.

Figure S4. A Job's plot of (a) CdABA' and Cd²⁺, (b) CdABA and Cd²⁺, and (c) ZnABA' and Zn²⁺. The total concentrations of sensors and Zn^{2+}/Cd^{2+} are 10 μ M. The experiments were measured at room temperature in buffer solution (HEPES buffer, 25 mM, 0.1 M NaClO₄, pH = 7.4, *I* = 0.1).

Figure S5. Fluorescence emission spectra of (a) CdABA, CdABA with Zn^{2+} and CdABA with Cd^{2+} , (b) CdABA', CdABA' with Zn^{2+} and CdABA' with Cd^{2+} , (c) ZnABA', ZnABA' with Zn^{2+} and ZnABA' with Cd^{2+} in aqueous solution (10 μ M, 25mM HEPES buffer, 0.1 M NaClO₄, pH = 7.4, *I* = 0.1). All the metal ions are 1 equiv., and the excitation wavelengths are at 260nm.

Figure S6. ESI-Mass spectrum of CdABA' + 1.0 equiv Zn^{2+} in methanol.

