Supporting Information

Title

author

Index:

General method	S1
¹ H and ¹³ C NMR Spectra of Compound 9	S2-S3
¹ H and ¹³ C NMR Spectra of Compound 11	S4-S5
¹ H and ¹³ C NMR Spectra of Compound 16	S6-S7
¹ H and ¹³ C NMR Spectra of Compound 18	S8-S9
¹ H and ¹³ C NMR Spectra of Compound 3	S10-S11
¹ H and ¹³ C NMR Spectra of Compound 19	S12-S13
¹ H and ¹³ C NMR Spectra of Compound 7	S14-S15
¹ H and ¹³ C NMR Spectra of Compound 20	S16-S17
¹ H and ¹³ C NMR Spectra of Compound 4	S18-S19
¹ H and ¹³ C NMR Spectra of Compound 21	S20-S21
¹ H and ¹³ C NMR Spectra of Compound 5	S22-S23
¹ H and ¹³ C NMR Spectra of Compound 24	S24-S25
¹ H and ¹³ C NMR Spectra of Compound 26	S26-S27
¹ H and ¹³ C NMR Spectra of Compound 27	S28-S29
¹ H and ¹³ C NMR Spectra of Compound 2	S30-S31
¹ H and ¹³ C NMR Spectra of Compound 6	S32-S33
¹ H and ¹³ C NMR Spectra of Compound 6	S32-

General methods:

Unless otherwise noted, all commercially available compounds were used as provided without further purification. Solvents for chromatography were technical grade. Petroleum ether 40-60 °C was used for column chromatography and thin layer chromatography (TLC). NMR spectra were recorded (25 °C) with 500 MHz spectrometer. Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet); coupling constants (J) are given in Hertz (Hz). Chemical shifts are reported relative to internal Me₄Si in CDCl₃ (d 0.0) or HOD for D₂O (d 4.72, 25 °C) for ¹H and Me₄Si in CDCl₃ (d 0.0) or CDCl₃ (d 77.0) for ¹³C. ¹H NMR signals were assigned with the aid of COSY, ¹³C NMR signals using DEPT, gHSQCAD and/or gHMBCAD. Lowand high-resolution mass spectra were in positive and/or negative mode as indicated in each case. TLC was performed on aluminium sheets precoated with silica gel and spots visualized by UV and charring with H₂SO₄-EtOH (1:20), or cerium molybdate. Flash chromatography was carried out with silica gel 60 (0.040-0.630 mm) and using a stepwise solvent polarity gradient correlated with TLC mobility. CH₂Cl₂, MeOH, toluene and THF reaction solvents were used as obtained from a Pure Solv[™] Solvent Purification System. Anhydrous DMF, pyridine, and EtOH were used as purchased.

S3

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

