Supporting Information to

First Total Synthesis of Dioxepine Bastadin 3†

Santiago Pérez-Rodríguez, a Raquel Pereira-Cameselle, a and Ángel R. de Lera**

^aDepartamento de Química Orgánica, Facultade de Química, Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain.

Fax: +34 986 811940; Tel: +34 986 812316; E-mail:qolera@uvigo.es

Index

1. General synthetic methods.

Solvents were dried according to published methods and distilled before use. HPLC grade solvents were used for HPLC purification. All other reagents were commercial compounds of the highest purity available. All reactions were carried out under argon atmosphere, and those not involving aqueous reagents were carried out in oven-dried glassware. Analytical thin layer chromatography (TLC) was performed on aluminium plates with Merck Kieselgel 60F₂₅₄ and visualized by UV irradiation (254 nm) or by staining with a solution of phosphomolybdic acid. Flash column chromatography was carried out using Merck Kieselgel 60 (230-400 mesh) under pressure. Infrared spectra were obtained on a JASCO FTIR 4200 spectrophotometer, from a thin film deposited onto a NaCl glass plate. ¹H-NMR spectra were recorded in CDCl₃, CD₃OD, DMSO-d₆ and (CD₃)₂CO at ambient temperature on a Bruker AMX-400 spectrometer at 400 MHz with residual protic solvent as the internal reference (CDCl₃, δ_H = 7.26 ppm; (CD₃)₂CO, δ_H = 2.05 ppm; CD₃OD, $\delta_{\rm H}$ = 3.31; DMSO- d_6 , $\delta_{\rm H}$ = 2.50); chemical shifts (δ) are given in parts per million (ppm), and coupling constants (J) are given in Hertz (Hz). The proton spectra are reported as follows: δ (multiplicity, coupling constant J, number of protons, assignment). ¹³C-NMR spectra were recorded in CDCl₃ CD₃OD, DMSO-d₆ and (CD₃)₂CO at ambient temperature on the same spectrometer at 100 MHz, with the central peak of CDCl₃ ($\delta_C = 77.0$ ppm), CD₃OD ($\delta_C = 49.0 \text{ ppm}$), DMSO- d_6 ($\delta_C = 39.4 \text{ ppm}$) or (CD₃)₂CO ($\delta_C = 30.8 \text{ ppm}$) as the internal reference. The DEPT135 pulse sequence was used to aid in the assignment of signals in the ¹³C NMR spectra. Melting points were determined on a Stuart SMP10 apparatus. Elemental analyses were determined on a Carlo Erba EA 1108 analyzer. Mass Spectra were obtained on an instrument operating at 70 eV by electron ionisation. Data acquisition and data processing were performed using the XMASS software, version 6.1.2 (Bruker Daltonics). FAB experiments were performed on a VG AutoSpec instrument, using 3-nitrobenzylalcohol or glycerol as matrices. ESI experiments were performed on an microTOF (Focus) mass spectrometer (Bruker Daltonics). Ions were generated using an Apollo II (ESI) source. Ionization was achieved by electrospray, using a voltage of 4500 V applied to the capillary. Samples were prepared by adding a spray solution of 97:3 (v/v) acetone/water or 70:30 (v/v) methanol/water with a 0.1% of formic acid to a solution of the sample in CH₂Cl₂ at a v/v ratio of 1 to 5% to give the best signal-to-noise ratio. Data for adquisition was performed using the microTOFControl software version 2.1, and data processing was performed using the data Analysis software, version 3.4, both from Bruker Daltonics. Irradiation with microwaves was performed using a CEM DISCOVER apparatus.

2. Additional experiments described in the text.

Table 1. Attempted formation of the dioxepine moiety in product 12.

Entry	Reaction conditions	T (°C)	t (h)	yield of 16 (%)
1	CH ₂ I ₂ , K ₂ CO ₃ , DMF	70	12	51
2	CH ₂ I ₂ , K ₂ CO ₃ , DMF, Microwave irradiation	90	0.33	a
3	CH ₂ I ₂ , Cs ₂ CO ₃ , DMF	25	2	78
4	CH ₂ I ₂ , Cs ₂ CO ₃ , acetone	25	18	b
5	CH ₂ I ₂ , Cs ₂ CO ₃ , DMF	0	2	b
6	ICH ₂ Br, Cs ₂ CO ₃ , DMF	25	2	28

^a Degradation. ^b Starting material was recovered.

Table 2. Attempts at protecting group-free amidation of 13 with 3-bromotyramine 14.

Entry	Reaction conditions	T (°C)	t (h)	Product
1	HOBt, DCC, DMF, Et ₃ N, 14	25	18	Nitrile 15
2	HOBt, EDCI, CH ₂ Cl ₂ , ⁱ Pr ₂ NEt, 14	0	18	Nitrile 15
3	1) HOBt, DCC, DMF	25	18	Nitrile 15
	2) 14 , Et ₃ N	25		
4	1) NHPI, DCC, dioxane	2.5	18	b
4	2) 14 , Et ₃ N	25		
5	WORL DIG DIG 44 FLV	60,	15	c
	HOBt, DIC, DMF, 14, Et ₃ N	MW	min	·
6	1) CH ₂ Cl ₂ , DMF, (COCl) ₂ (20 equiv)	2.5	3	Nitrile 15
	2) 14 , Et ₃ N	25		
7	HATU, Et ₃ N, 14	25	18	b
8	COMU, TMP, 14	25	18	b
9	PyBOP, DMF, DMAP, 14	0 a 25	16	b
10	T3P, N-Methylmorpholine, DMF, 14	25	18	b
11	2-bromophenylboronic acid (0.01 equiv), 4	2.5	40	b
11	Å MS, CH ₂ Cl ₂ /DMF (1:1), 14	25	48	v

^a Except where indicated otherwise, 2.0-3.0 equivalents of the activating agents were used. ^b Degradation.

^c Complex mixture.

3. Comparison of NMR data of synthetic with the natural Bastadin 3 (2) and Dioxepine Bastadin (3)

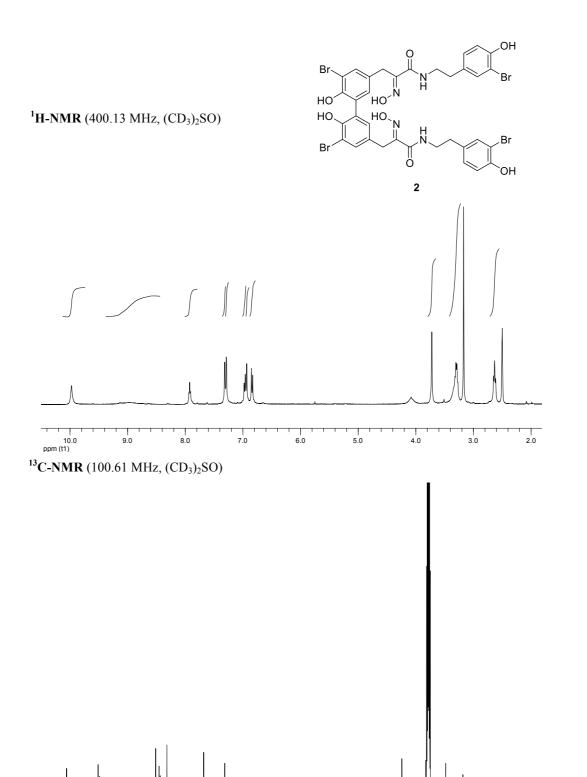
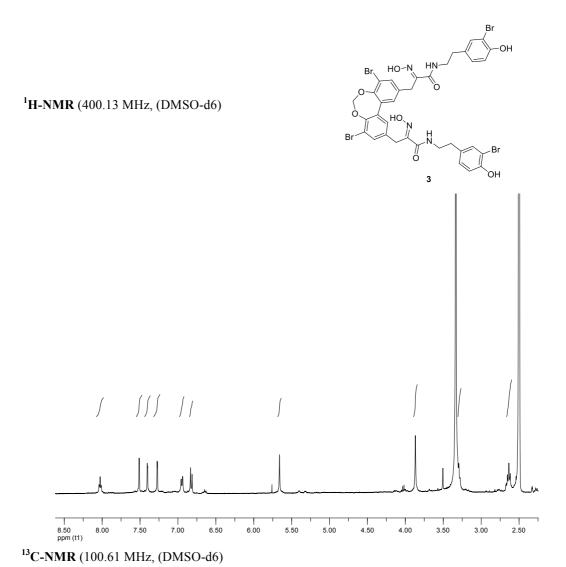

Bastadin-3 (2)

Table 3. Comparison of ¹H and ¹³C NMR data for natural and synthetic bastadin-3

	Natural bastadin-3		Synthetic bastadin-3		
Dogition	¹³ C RMN [DMSO-	¹ H RMN [DMSO-d6,	¹³ C RMN [DMSO-	¹ H RMN [DMSO-d6,	
Position	d6, 67.89 MHz]	100 MHz]	d6, 100 MHz]	400 MHz]	
1, 25	27.7 (t)	3.72 (s)	27.7 (t)	3.72 (s)	
2, 24	151.7 (s)		151.7 (s)		
3, 23	163.0 (s)		162.9 (s)		
4, 22		8.00 (t, 7.0)		7.92 (t, 5.7)	
5, 21	40.4 (t)	3.29 (q, 7.0)	40.3 (t)	3.30 (q, 6.4)	
6, 20	33.6 (t)	2.62 (t, 7.0)	33.5 (t)	2.63 (t, 7.2)	
7, 18	131.4 (s)		131.4 (s)		
8, 17	132.6 (d)	7.29 (d, 1.9)	132.5 (d)	7.29 (d, 1.4)	
9, 16	109.1 (s)		108.9 (s)		
10, 15	152.3 (s)		152.2 (s)		
11, 14	116.2 (d)	6.85 (d, 8.2)	116.1 (d)	6.84 (d, 8.2)	
12, 19	128.8 (d)	6.98 (dd, 1.9, 8.2)	128.7 (d)	6.97 (d, 8.1)	
26, 37	129.1 (s)		129.3 (s)		
27, 36	132.2 (d)	7.32 (d, 1.9)	132.0 (d)	7.32 (d, 1.6)	
28, 35	111.3 (s)		111.3 (s)		
29, 34	149.5 (s)		149.7 (s)		
30, 33	127.6 (s)		127.6 (s)		
31, 38	131.1 (d)	6.93 (d, 1.9)	131.0 (d)	6.93 (d, 1.5)	
2/24-		11.84 (s)			
NOH		11.64 (8)			
10/15-		10.02 (s)		9.97 (s, 1H)	
ОН		10.02 (8)		9.97 (8, 111)	
29/34-		8.94 (s)		8.94 (s- br, 1H)	
ОН		0.74 (8)		0.74 (5- UI, III)	

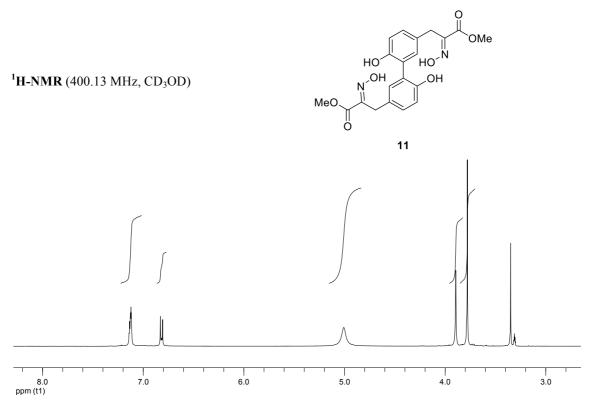
150

ppm (t1)

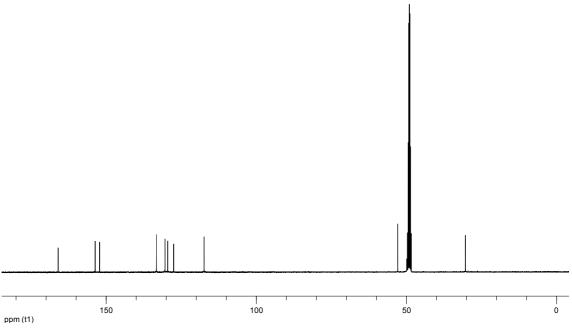

50

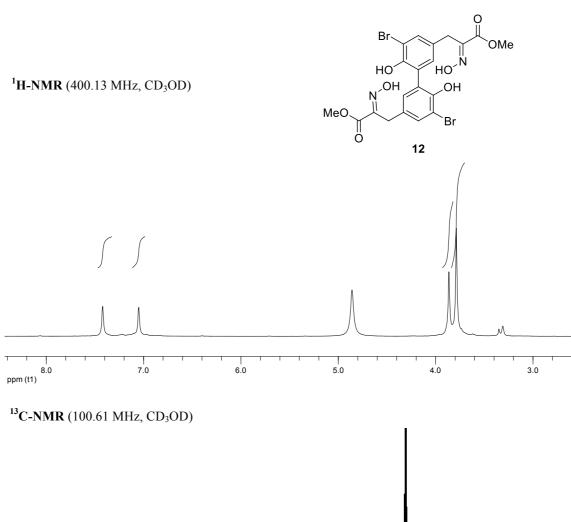
100

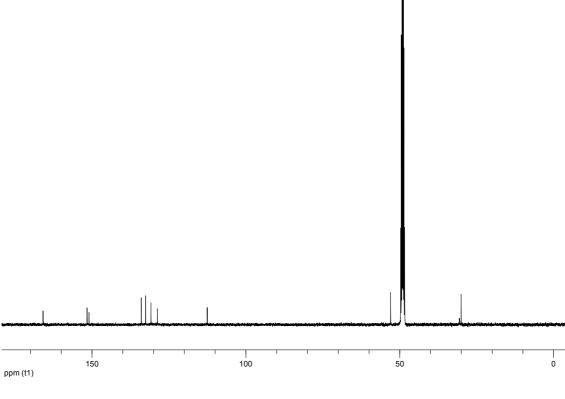
Dioxepine Bastadin 3 (3)


Table 4. Comparison of ¹H and ¹³C NMR data for natural and synthetic Dioxepine bastadin-3

	natural dioxepine bastadin 3		synthetic dioxepine bastadin 3		
Position	¹³ C NMR [DMSO-	¹ H NMR [DMSO-d6,	¹³ C NMR [DMSO-	¹ H NMR [DMSO-	
	d6, 100 MHz]	400 MHz]	d6, 100 MHz]	d6, 400 MHz]	
1, 25	28.3	3.83 (s)	28.4	3.87 (s)	
2, 24	151.3		151.3		
3, 23	163.0		163.0		
4, 22		8.02 (t, 6.6)		8.03 (t, 5.8)	
5, 21	40.3	3.30 (m)	40.3	3.30 (s),	
6, 20	33.5	2.64 (t, 6.6)	33.5	2.63 (t, 7.2)	
7, 18	131.5		131.4		
8, 17	132.6	7.28 (d, 1.9)	132.6	7.27 (d,1.9)	
9, 16	109.0		109.0		
10, 15	152.3		152.3		
11, 14	116.2	6.83 (d, 8.7)	116.2	6.82 (d, 8.3)	
12, 19	128.8	6.96 (dd, 1.9, 8.7)	128.8	6.95 (d, 7.3)	
26, 37	135.8		135.8		
27, 36	132.8	7.51 (d, 1.9)	132.8	7.51 (d, 1.8)	
28, 35	115.4		115.4		
29, 34	147.7		147.7		
30, 33	132.6		132.6		
31, 38	128.5	7.40 (d, 1.9)	128.5	7.40 (d, 1.7),	
39	101.3	5.66 (s)	101.3	5.66 (s),	
2/24-NOH		11.97 (brs)		11.99 (s)	
9/15-OH		9.99 (brs)		10.03 (s)	






4. ¹H NMR and ¹³C NMR Spectral Data

