Electronic Supplementary Information

A Highly Selective Fluorescence Sensor for Tin (Sn⁴⁺) and Its Application in Imaging Live Cells

Qi Wang, Chunyan Li, Ying Zou, Haoxuan Wang, Tao Yi* and Chunhui Huang

Department of Chemistry & Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China Email: <u>yitao@fudan.edu.cn</u>

Table of contents

Fig. S1	Photos of color changes and fluorescent responses of 1
Fig. S2	Detection limit of Sn ⁴⁺ in solution of 1S3
Fig. S3	Curves of fluorescence intensity ratio $F_0/(F-F_0)$ at 580 nm vs. $1/[Sn^{4+}]$ and $[Sn^{4+}]$ S4
Fig. S4	a) Fluorescence spectra of 1 (20 μ M) in ethanol/Hepes upon addition of Cr ³⁺ ;
	b) Fluorescence intensity ratio $F_0/(F-F_0)$ at 580 nm of 1 vs. $1/[Cr^{3+}]$ and $[Cr^{3+}]$
Fig. S5	a) Fluorescence spectra of 1 (20 $\mu M)$ in ethanol/Hepes upon addition of $Cu^{2+};$
	b) Fluorescence intensity ratio $F_0/(F-F_0)$ at 580 nm of 1 vs. $1/[Cu^{2+}]$ and $[Cu^{2+}]$ S6
Fig. S6	Lifetime decay profiles of 1 on addition of different amounts of $SnCl_4$ S7
Fig. S7	Variation of fluorescence intensity (580 nm) of 1 (20 μ M) in the presence of 10 equiv
Cr ³⁺ ion	and by addition of 50 equiv EDTA in ethanol/Hepes solution
Fig. S8	Variation of fluorescence intensity (580 nm) of 1 (20 μ M) in the presence of 10 equiv
Cu^{2+} ion	and by addition of 50 equiv EDTA in ethanol/Hepes solution
Fig. S9	ESI mass spectra of compound 1 upon binding with tin (IV) chloride
Fig. S10	Variation of absorbance of $1 (20 \ \mu M)$ in ethanol/Hepes solution with different pH S9
Fig. S11	¹ H and ¹³ C NMR spectra of 2 in a CDCl ₃ solution at 20 °CS10
Fig. S12	¹ H NMR and ¹³ C NMR spectra of 3 in a CD ₃ OD solution at 20 °CS11
Fig. S13	¹ H NMR and ¹³ C NMR spectrum performed on a CDCl ₃ solution of 3 at 20 °CS12
Fig. S14	¹ H NMR and ¹³ C NMR spectrum performed on a CDCl ₃ solution of 1 at 20 °CS13

1. Change in color and fluorescence of 1 with different ions.

Fig. S1 Photos of color changes and fluorescent responses of **1** (20 μ M) upon addition of 100 μ M different metal ions (Na⁺, K⁺, Mg²⁺, Sn⁴⁺, Ca²⁺, Li⁺, Fe²⁺, Ni²⁺, Cu²⁺, Cd²⁺, Ni²⁺, Ag⁺, Mn²⁺, Cr³⁺, Hg²⁺, Zn²⁺, Pb²⁺) in ethanol/Hepes buffer solutions (2:1, v/v, pH 7.2) ($\lambda_{ex} = 365$ nm).

2. Limit of detection.

Fig. S2 The absorbance at 555 nm of 1 (2.0×10^{-5} M in ethanol/Hepes (2:1, v/v, pH 7.2)) as a function of Sn⁴⁺ concentration.

3. Fluorescence titration curve

Fig. S3 Fluorescence intensity ratio $F_0/(F-F_0)$ at 580 nm of 1 *vs* $1/[\text{Sn}^{4+}]$ (\blacksquare) and 1 *vs* $[\text{Sn}^{4+}]$ (\blacktriangledown) (\heartsuit) ($C_1 = 20 \ \mu\text{M}, \lambda_{\text{ex}} = 420 \ \text{nm}$). Time interval between two adjacent measurements was 5 min.

Fig. S4 a) Fluorescence spectra of **1** (20 μ M) in ethanol/Hepes (2: 1, v/v) upon addition of Cr³⁺. b) Fluorescence intensity ratio $F_0/(F-F_0)$ at 580 nm of **1** vs **1**/[Cr³⁺] (**■**) and [Cr³⁺] (**▼**) ($C_1 = 20 \ \mu$ M, $\lambda_{ex} = 420 \text{ nm}$). Time interval between two adjacent measurements was 5 min.

Fig. S5 a) Fluorescence spectra of 1 (20 μ M) in ethanol/Hepes (2 : 1, v/v) upon addition of Cu²⁺. b) Fluorescence intensity ratio $F_0/(F-F_0)$ at 580 nm of 1 vs 1/[Cu²⁺] (\blacksquare) and [Cu²⁺] (\blacktriangledown) ($C_1 = 20 \ \mu$ M, $\lambda_{ex} = 420 \ nm$). Time interval between two adjacent measurements was 5 min.

4. Efficiency of energy transfer

Fig. S6 Lifetime decay profiles ($\lambda_{ex} = 371$ nm, monitored at 560 nm) of 1 on addition of different amounts of SnCl₄ in ethanol/Hepes (2:1, v/v, pH 7.2) ([1] = 2.0×10^{-5} M).

The efficiency of the energy transfer was investigated according to Förster theory. Efficiency of energy transfer (E) can be obtained from following equation:

$$\mathbf{E} = 1 - \frac{\tau_{DA}}{\tau_D}$$

In this equation, τ_{DA} is the fluorescence lifetime of the donor in the presence of the acceptor and τ_D is the fluorescence lifetime of the donor in the absence of the acceptor.

5. Kinetic response

Fig. S7 Variation of fluorescence intensity (580 nm) of **1** (20 μ M) in the presence of 10 equiv Cr³⁺ ion and by addition of 50 equiv EDTA in ethanol/Hepes solution (2:1, v/v, pH 7.2). Time interval between two adjacent measurements was 5 min.

Fig. S8 Variation of fluorescence intensity (580 nm) of free **1** (20 μ M) in the presence of 10 equiv Cu²⁺ ion and by addition of 50 equiv EDTA in ethanol/Hepes solution (2:1, v/v, pH 7.2). Time interval between two adjacent measurements was 5 min.

6. ESI mass spectrum of the complex

Fig. S9 ESI mass spectra of compound 1 upon binding with tin (IV) chloride.

7. pH response

Fig. S10 Variation of absorbance of **1** (20 μ M) in ethanol/Hepes solution (2:1, v/v) in different pH conditions. The pH of the solutions was adjusted by addition of 0.2 mol L⁻¹ HCl.

8. NMR

Fig. S11 ¹H NMR and ¹³C NMR spectrum performed on a CDCl₃ solution of **2** at 20 °C.

Fig. S12 ¹H NMR and ¹³C NMR spectrum performed on a CD₃OD solution of ester protected **3** at 20 °C.

Fig. S13 1 H NMR and 13 C NMR spectrum performed on a CDCl₃ solution of 3 at 20 $^{\circ}$ C.

Fig. S14 ¹H NMR and ¹³C NMR spectrum performed on a CDCl₃ solution of **1** at 20 °C.