# A New *N*-imidazolyl-1,8-naphthalimide Based Fluorescent Sensor for Fluoride Detection

## Junqi Wang, Lingyun Yang, Chen Hou, and Haishi Cao\*

Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 68849, USA

### General

Absorbance spectra are collected by 8453 UV-Visible Spectrophotometer (Agilent Technologies). Fluorescence measurements are carried out in а RF-5301 Spectrofluorophotometer (Shimadzu, Japan). The fluorescence spectra are recorded in a 1 cm quartz cuvette at room temperature. The excitation and emission slits are set at 5 nm. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on Bruker 300 UltraShield. All reagents are purchased from Sigma-Aldrich (MO, USA), Fisher Scientific (USA) and Acros Organics (USA) in analytical grade and used as received, unless otherwise stated.

## **Synthesis**



**6-bromo-2-cyclopentyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (1a)** A mixture of 4-bromo-1,8-naphthalic anhydride (0.276g, 1mmol) and cyclopentanamine (0.170g, 2 mmol) in 5.0 mL pyridine was refluxed for 12 hr under argon atmosphere<sup>1</sup>. After the reaction, mixture was cooled down to room temperature, pyridine was removed by rotary evaporation to give the crude product that was purified by column chromatography (silica, 220-400 mesh, CH<sub>2</sub>Cl<sub>2</sub> : Hexane = 1: 1  $\nu/\nu$ ). The product is isolated as a white solid **1a** (0.267g, 78%). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ : 1.72 (m, 2H), 2.05(m, 6H), 5.56 (m, 1H), 7.80(t, *J*=8.1Hz, 1H), 7.97 (d, *J*=8.1Hz, 1H), 8.35 (d, *J*=8.1Hz, 1H), 8.46 (d, *J*=7.8Hz, 1H), 8.60 (d, *J*=6.3Hz, 1H); <sup>13</sup>C (75MHz, CDCl<sub>3</sub>)  $\delta$ : 26.1, 28.8, 52.8, 122.7, 123.6, 128.1, 128.8, 129.8, 130.4, 131.1, 131.1, 131.9, 132.9, 163.9. MS: m/z

 $(M^{\scriptscriptstyle +})$  343.02. Anal. Calcd. for  $C_{17}H_{14}BrNO_2$ : C, 59.32; H, 4.10; N, 4.07. Found: C, 59.18; H, 4.06, N, 4.19.

**6-bromo-2-(2-hydroxyphenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione** (1b) 4-bromo-1,8-naphthalic anhydride (0.276g, 1mmol) and 2-aminophenol (0.218g, 2 mmol) in 5.0 mL pyridine were refluxed for 12 hr under argon atmosphere. After the reaction, mixture was cooled down to room temperature, pyridine was removed by rotary evaporation to give the crude product that was purified by column chromatography (silica, 220-400 mesh, CH<sub>2</sub>Cl<sub>2</sub> : EtOAc = 4: 1  $\nu/\nu$ ). The product is isolated as an orange solid **1b** (0.198g, 54%). <sup>1</sup>H NMR (300 MHz, DMSO)  $\delta$ : 6.96 (m, 2H), 7.27 (m, 2H), 8.05 (t, *J*=6.9 Hz, 1H), 8.26(d, *J*=8.2Hz, 1H), 8.32 (d, *J*=8.4Hz, 1H), 8.61 (m, 2H), 9.63 (s, 1H); <sup>13</sup>C (75MHz, DMSO)  $\delta$ : 117.0, 119.6, 123.1, 123.1, 123.9, 129.3, 129.4, 129.6, 130.2, 130.4, 130.7, 131.4, 131.9, 132.1, 133.2, 153.8, 163.3. MS: *m/z* (M<sup>+</sup>) 366.98. Anal. Calcd. for C<sub>18</sub>H<sub>10</sub>BrNO<sub>3</sub>: C, 58.72; H, 2.74; N, 3.80. Found: C, 58.69; H, 2.67; N, 3.91.

**6-bromo-2-(1H-imidazol-2-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (1c)** A mixture of 4bromo-1,8-naphthalic anhydride (0.276g, 1mmol) and 2-aminoimidazole sulfate (0.215g, 1 mmol) in 5.0 mL pyridine was refluxed for 12 hr under argon atmosphere. After the reaction, mixture was cooled down to room temperature, pyridine was removed by rotary evaporation to give the crude product that was purified by column chromatography (silica, 220-400 mesh, CH<sub>2</sub>Cl<sub>2</sub> : EtOAc = 1: 4 *v/v*). The product is isolated as a yellow solid **1c** (0.092g, 27%). <sup>1</sup>H NMR (300 MHz, DMSO) δ: 7.09 (s, 1H), 7.28 (s, 1H), 8.16 (t, *J*=7.0 Hz, 1H), 8.27(d, *J*=7.8Hz, 1H), 8.43 (d, *J*=7.2Hz, 1H), 8.70 (m, 2H), 12.20 (s, 1H); <sup>13</sup>C (75MHz, DMSO) δ: 116.1, 117.2, 121.4, 128.7, 129.6, 130.7, 132.1, 132.2, 132.7, 133.1, 134.1, 137.0, 160.9, 161.8, 162.5. MS: *m/z* (M<sup>+</sup>) 340.98. Anal. Calcd. for C<sub>15</sub>H<sub>8</sub>BrN<sub>3</sub>O<sub>2</sub>: C, 52.66; H, 2.36; N, 12.28. Found: C, 52.42; H, 2.49; N, 12.31.

**3-amino-1,8-naphthalimide** 3-nitro-1,8-naphthalic anhydride (1.0g) was mixed with tin(II) chloride (7.0g) in conc. hydrochloric acid (7.0 ml) and refluxed for 2 hr. The reaction mixture was cooled and filtered to give yellow solid<sup>2</sup>. The crude product was recrystallized in glacial acetic acid to yield product as yellow solid (0.789g, 90%). <sup>1</sup>H NMR (300 MHz, DMSO)  $\delta$ : 7.35 (s, 1H), 7.65 (t, *J*=7.2 Hz, 1H), 7.96 (s, 1H), 8.10(m, 2H); <sup>13</sup>C (75MHz, DMSO)  $\delta$ : 113.1, 119.0, 119.7, 123.3, 123.5, 127.7, 127.8, 133.0, 134.1, 148.6, 161.4, 161.5. MS: *m/z* (M<sup>+</sup>) 213.16

**5-amino-2-cyclopentyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (2a)** A mixture of 3-amino-1,8-naphthalic anhydride (0.213g, 1mmol) and cyclopentanamine (0.170g, 2 mmol) in 5.0 mL pyridine was refluxed for 12 hr under argon atmosphere<sup>1</sup>. After the reaction, mixture was cooled down to room temperature, pyridine was removed by rotary evaporation to give the crude product that was purified by column chromatography (silica, 220-400 mesh, CH<sub>2</sub>Cl<sub>2</sub> : ethyl acetate = 11: 1  $\nu/\nu$ ). The product is isolated as a yellow solid **2a** (0.176g, 63%). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ : 1.65(m, 3H), 2.09(m, 5H), 4.17(s, 2H), 5.60(m, 1H), 7.32 (s, 1H), 7.64 (t, *J*=7.5Hz, 1H), 7.99 (m, 2H), 8.35 (d, *J*=6.3Hz, 1H); <sup>13</sup>C (75MHz, CDCl<sub>3</sub>)  $\delta$ : 26.1, 28.8, 52.3, 114.1, 122.1, 124.2, 127.3, 131.2, 133.6, 145.1, 164.6. MS: m/z (M<sup>+</sup>) 280.07. Anal. Calcd. for C<sub>17</sub>H<sub>16</sub>N<sub>2</sub>O<sub>2</sub>: C, 72.84; H, 5.75; N, 9.99. Found: C, 73.01; H, 5.56, N, 9.91.

**5-amino-2-(2-hydroxyphenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (2b)** A mixture of 3-amino-1,8-naphthalic anhydride (0.213g, 1mmol) and 2-aminophenol (0.218g, 2 mmol) in 5.0

mL pyridine was refluxed for 12 hr under argon atmosphere. After the reaction, mixture was cooled down to room temperature, pyridine was removed by rotary evaporation to give the crude product that was purified by column chromatography (silica, 220-400 mesh, CH<sub>2</sub>Cl<sub>2</sub> : EtOAc = 2: 1 v/v). The product is isolated as a yellow solid **2b** (0.170g, 56%). <sup>1</sup>H NMR (300 MHz, acetone-d6)  $\delta$ : 5.44(s, 2H), 7.02(m, 2H), 7.30 (m, 2H), 7.45(s, 1H), 7.66(t, *J*=6.6 Hz, 1H), 8.07 (m, 2H), 8.18(d, *J*=8.1Hz, 1H), 8.58 (s,1H); <sup>13</sup>C (75MHz, acetone-d6)  $\delta$ : 112.3, 116.5, 119.6, 121.7, 122.1, 123.2, 123.7, 124.1, 125.7, 126.8, 129.5, 130.4, 131.4, 134.1, 147.6, 153.7, 163.6, 163.9. MS: m/z (M<sup>+</sup>) 304.10. Anal. Calcd. for C<sub>18</sub>H<sub>12</sub>N<sub>2</sub>O<sub>3</sub>: C, 71.05; H, 3.97; N, 9.21. Found: C, 70.84; H, 3.91; N, 9.30.

**5-amino-2-(1H-imidazol-2-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (2c)** A mixture of 3-amino-1,8-naphthalic anhydride (0.213g, 1mmol) and 2-aminoimidazole sulfate (0.215g, 1 mmol) in 5.0 mL pyridine was refluxed for 12 hr under argon atmosphere. After the reaction, mixture was cooled down to room temperature, pyridine was removed by rotary evaporation to give the crude product that was purified by column chromatography (silica, 220-400 mesh, MeOH : EtOAc = 1: 5 *v/v*). The product is isolated as a yellow solid **2c** (0.086g, 31%). <sup>1</sup>H NMR (300 MHz, DMSO)  $\delta$ : 6.10 (s, 2H), 7.02 (m, 1H), 7.27 (m, 1H), 7.37(s, 1H), 7.68 (t, *J*=7.4Hz, 1H), 8.02 (s, 1H), 8.13(m, 2H), 12.23 (s, 1H); <sup>13</sup>C (75MHz, DMSO)  $\delta$ : 113.1, 121.4, 121.6, 122.4, 126.3, 127.8, 132.9, 134.1, 148.6. MS: *m/z* (M<sup>+</sup>) 278.07. Anal. Calcd. for C<sub>15</sub>H<sub>10</sub>N<sub>4</sub>O<sub>2</sub>: C, 64.74; H, 3.62; N, 20.13. Found: C, 64.49; H, 3.76; N, 20.25.

**2-cyclopentyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (3a)**) A mixture of 1,8-naphthalic anhydride (0.198g, 1mmol) and cyclopentanamine (0.170g, 2 mmol) in 5.0 mL pyridine was refluxed for 12 hr under argon atmosphere<sup>1</sup>. After the reaction, mixture was cooled down to room temperature, pyridine was removed by rotary evaporation to give the crude product that was purified by column chromatography (silica, 220-400 mesh, CH<sub>2</sub>Cl<sub>2</sub> : Hexane = 1: 10  $\nu/\nu$ ). The product is isolated as a light brown solid **3a** (0.215g, 81%). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ : 1.69 (m, 2H), 2.13(m, 6H), 5.61 (m, 1H), 7.79(t, *J*=8.2Hz, 2H), 8.21 (d, *J*=7.9Hz, 2H), 8.62 (d, *J*=7.8Hz, 2H); <sup>13</sup>C (75MHz, CDCl<sub>3</sub>)  $\delta$ : 26.1, 28.8, 52.7, 123.2, 126.9, 127.5, 131.1, 131.5, 133.6, 164.6. MS: m/z (M<sup>+</sup>) 265.11. Anal. Calcd. for C<sub>17</sub>H<sub>15</sub>NO<sub>2</sub>: C, 76.96; H, 5.70; N, 5.28. Found: C, 76.88; H, 5.51, N, 5.39.

**2-(2-hydroxyphenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (3b)** A mixture of 1,8-naphthalic anhydride (0.198g, 1mmol) and 2-aminophenol (0.218g, 2 mmol) in 5.0 mL pyridine was refluxed for 12 hr under argon atmosphere. After the reaction, mixture was cooled down to room temperature, pyridine was removed by rotary evaporation to give the crude product that was purified by column chromatography (silica, 220-400 mesh, CH<sub>2</sub>Cl<sub>2</sub> : EtOAc = 2: 1  $\nu/\nu$ ). The product is isolated as a light yellow solid **3b** (0.240g, 83%). <sup>1</sup>H NMR (300 MHz, DMSO)  $\delta$ : 6.96(m, 2H), 7.26 (m, 2H), 7.90 (m, 2H), 8.56 (m, 4H), 9.65(s, 1H); <sup>13</sup>C (75MHz, DMSO)  $\delta$ : 116.9, 119.5, 123.1, 123.4, 127.7, 128.5, 130.2, 130.6, 131.1, 131.9, 134.8, 153.9, 163.9. MS: m/z (M<sup>+</sup>) 289.15. Anal. Calcd. for C<sub>18</sub>H<sub>11</sub>NO<sub>3</sub>: C, 74.73; H, 3.83; N, 4.84. Found: C, 74.59; H, 3.69; N, 4.84.

**2-(1H-imidazol-2-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (3c)** A mixture of 1,8-naphthalic anhydride (0.198g, 1mmol) and 2-aminoimidazole sulfate (0.215g, 1 mmol) in 5.0 mL pyridine was refluxed for 12 hr under argon atmosphere. After the reaction, mixture was cooled

down to room temperature, pyridine was removed by rotary evaporation to give the crude product that was purified by column chromatography (silica, 220-400 mesh,  $CH_2Cl_2$  : EtOAc = 1: 1  $\nu/\nu$ ). The product is isolated as a brown solid **3c** (0.110g, 42%). <sup>1</sup>H NMR (300 MHz, DMSO)  $\delta$ : 7.24 (m, 2H), 7.91 (m, 2H), 8.61 (m, 4H), 11.74(s, 1H); <sup>13</sup>C (75MHz, DMSO)  $\delta$ : 114.9, 120.8, 122.1, 129.3, 131.4, 133.1, 134.2, 137.1, 162.5, 165.4. MS: m/z (M<sup>+</sup>) 263.11. Anal. Calcd. for C<sub>15</sub>H<sub>9</sub>N<sub>3</sub>O<sub>2</sub>: C, 68.44; H, 3.45; N, 15.96. Found: C, 68.49; H, 3.39; N, 15.78.

#### Reference

1. Nandhikonda, P.; Heagy, M.D. Chem. Comm. 2010, 8002.

2. Peters, A. T.; Behesti, Y. S. S. J. Soc. Dyers. Colour. 1989, 29.



**Fig. S1** Fluorescence emission spectra change of **1a**, **2a**, **3a**, **1b**, **2b**, and **3b**  $(5.0 \times 10^{-6} \text{M})$  in the presence of 10 equiv. F<sup>-</sup> (TABF) in CH<sub>2</sub>Cl<sub>2</sub> at room temperature.



**Fig. S2** No significant change were observed for absorption spectra of **1a**, **2a**, **3a**, **1b**, **2b**, and **3b** ( $1.0 \times 10^{-3}$ M) in the presence of 1 equiv. F<sup>-</sup> (TABF) in CH<sub>2</sub>Cl<sub>2</sub> at room temperature.



Fig. S3 1c, 2c and 3c showed solvation effect in different solvents (dichloromethane, acetonitrile and methanol) at room temperature.



**Fig. S4** The competition experiment of **1c** ( $5.0 \times 10^{-6}$ M) in CH<sub>2</sub>Cl<sub>2</sub> upon addition of 1 equiv one of anions (Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, OAc<sup>-</sup>, H<sub>2</sub>PO<sub>4</sub><sup>-</sup> or HSO<sub>4</sub><sup>-</sup>) and 1 equiv F<sup>-</sup> ( $\lambda_{ex}$ =344 nm,  $\lambda_{em}$ =442 nm).



Fig. S5 1c ( $5.0 \times 10^{-6}$ M) showed 1:1 stoichiometry with F<sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub><sup>-</sup> ( $\lambda_{ex}$ =344 nm,  $\lambda_{em}$ =442 nm).

|                    | Cl        | Br⁻       | I_        | NO <sub>3</sub> <sup>-</sup> | OAc       | H <sub>2</sub> PO <sub>4</sub> <sup>-</sup> | HSO <sub>4</sub> |
|--------------------|-----------|-----------|-----------|------------------------------|-----------|---------------------------------------------|------------------|
| Log K <sub>a</sub> | 2.41±0.14 | 2.01±0.09 | 1.89±0.12 | 1.10±0.17                    | 3.08±0.21 | 3.46±0.19                                   | 1.78±0.08        |

**Table S1** The binding constants of anions with **1c**  $(5.0 \times 10^{-6} \text{M})$  in CH<sub>2</sub>Cl<sub>2</sub> at room temperature.





























DMSO-dB



















Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012











