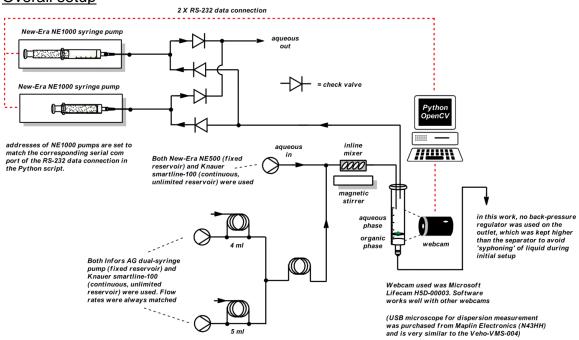
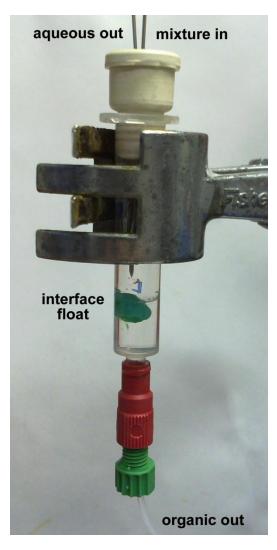
A prototype continuous-flow liquid-liquid extraction system using open-source technology.


SUPPORTING INFORMATION

Matthew O'Brien,* Peter Koos, Duncan L. Browne and Steven V. Ley


Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW

Overall setup	S2
Prototype separator	S 3
Inline mixer	S 4
Intensity/Concentration Calibration Curves	S 6
Comparison between linear and quartic calibration	S 7
Data for 3a	S 8
Data for 3b	S 8
Data for 3c	S 8
Data for 3d	S 8
Data for 3e	S 9
Data for 3f	S 9
Data for 3g	S 9
Data for 3h	S 9
Data for 3i	S10
Data for 6a	S10
Data for 6b	S10
Data for 6c	S10
Data for 6d	S11
Data for 9a	S11
Data for 9b	S11
Data for 9c	S11

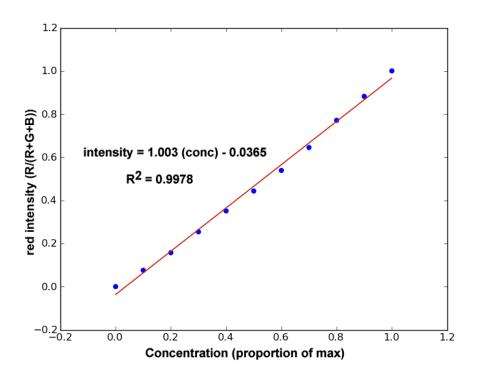
<u>General Experimental (Flow Apparatus)</u> <u>Overall setup</u>

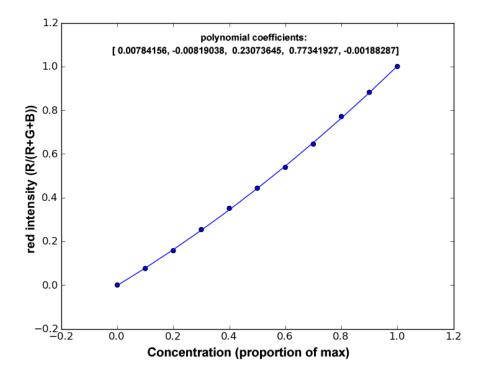
Prototype Separator

The main body is a 2.5 mL plastic syringe barrel. Upper inlets are 120 mm stainless steel 21g needles going through the B10 suba-seal. The interface float was made by melting together roughly equal amounts (volume) of the polyethylene plunger from an HSW normject 1 mL syringe and a peice of green B-24 Keck clip.

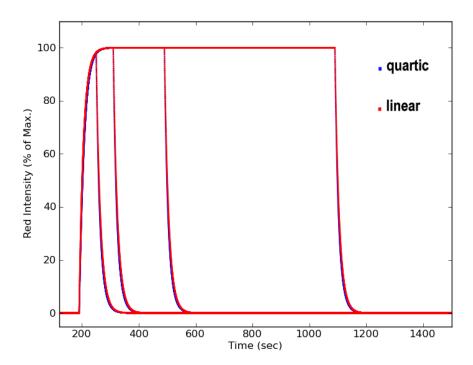
Inline Mixer

Body of mixer is cut from the barrel of a 1 mL HSW normject syringe. The thread on the inlet side was made by heating to softness then screwing in the $\frac{1}{4}$ -28-UNF connector, which cut a thread. PTFE tape was used to improve the seal. The outlet is a simple female luer to female $\frac{1}{4}$ -28 UNF adapter.


Inline mixer, biphasic mixture (DCM/Water, DCM dyed red), stirrer on maximum speed:



Inline mixer, biphasic mixture, no stirring


Linear Regression between dye concentration and red intensity:

Quartic polynomial calibration:

Comparison between linear and quartic calibration (converting calculated concentration to 'observed' intensity) for 0.25 mL heavy phase dispersion measurements.

Compound Data

1-benzylidene-2-phenylhydrazine (3a):

M. S. Gordon, S. A. Sojka and J. G. Krause, J. Org. Chem., 1984, 49, 97-100.

¹H NMR (CDCl₃, 400 MHz) δ 7.65-7.69 (m, 3H), 7.38 (t, J = 7.0 Hz, 2H), 7.34 - 7.24 (m, 3H), 7.11 - 7.15 (m, 2H), 6.89 (t, J = 7.5 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 101 MHz) δ 144.7 (CH₀), 137.3, 135.4 (CH₀), 129.3, 128.6, 128.4, 126.2, 120.2, 112.8 ppm. IR (solid state): 3310 (w), 3058 (w), 1602 (m), 1594 (m), 1494 (m), 1262 (m) cm⁻¹. HRMS (ES): m/z [MH]⁺ calcd for C₁₃H₁₂N₂: 196.0995, found 196.1000.

1-(4-methylbenzylidene)-2-phenylhydrazine (3b):

M. S. Gordon, S. A. Sojka and J. G. Krause, J. Org. Chem., 1984, 49, 97-100.

¹H NMR (CDCl₃, 400 MHz) δ 7.68 (s, 1H), 7.54-7.58 (m, 2H), 7.24-7.30 (m, 2H), 7.17-7.21 (m, 2H), 7.09-7.14 (m, 2H), 6.83-6.90 (m, 1H), 2.37 (s, 3H) ppm. ¹³C NMR (CDCl₃, 101 MHz) δ 144.9 (CH₀), 138.5 (CH₀), 137.6, 132.6 (CH₀), 129.4, 129.3, 126.2, 120.0, 112.8, 21.4 (CH₃) ppm. IR (solid state): 3312 (w), 3029 (w), 1597 (m), 1507 (m), 1493 (m), 1259 (m) cm⁻¹. HRMS (ES): m/z [MH][†] calcd for C₁₄H₁₄N₂: 210.1151, found 210.1152.

1-(naphthalen-1-ylmethylene)-2-phenylhydrazine (3c):

¹H NMR (CDCl₃, 400 MHz) δ 8.81 (d, J = 8.5 Hz, 1H), 8.26 (s, 1H), 7.81-7.92 (m, 3H), 7.74 (s, 1H), 7.60-7.64 (m, 1H), 7.48-7.56 (m, 2H), 7.32-7.37 (m, 2H), 7.18-7.22 (m, 2H), 6.94 (t, J = 7.0 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 101 MHz) δ 144.7 (CH₀), 137.0, 134.0 (CH₀), 130.8 (CH₀), 130.4 (CH₀), 129.5, 129.1, 128.8, 126.8, 126.4, 126.0, 125.5, 124.5, 120.2, 112.9 ppm. IR (solid state): 3308 (w), 3053 (w), 1600 (s), 1506 (m), 1493 (m), 1253 (m) cm⁻¹. HRMS (ES): m/z [MH]⁺ calcd for C₁₇H₁₄N₂: 246.1151, found 246.1147.

1-(4-(methylthio)benzylidene)-2-phenylhydrazine (**3d**):

¹H NMR (CDCl₃, 400 MHz) δ 7.63-7.67 (s, 1H), 7.58-7.61 (m, 2H), 7.25-7.32 (m, 5H), 7.11-7.15 (m, 2H), 6.90 (t J = 7.0 Hz, 1H), 2.53 (s, 3H) ppm. ¹³C NMR (CDCl₃, 101 MHz) δ 145.0 (CH₀), 139.3 (CH₀), 137.3, 133.7 (CH₀), 129.2, 127.0, 126.9, 120.5, 16.1 (CH₃) ppm. IR (solid state): 3315 (w), 1594 (m), 1493 (m), 1264 (m) cm⁻¹. Elemental Analysis calcd for C₁₄H₁₄N₂S: C = 69.39%, H= 5.82%, N = 11.56%, found C = 69.37%, H = 5.74%, N= 11.57%.

1-(4-ethoxybenzylidene)-2-phenylhydrazine (3e):

¹H NMR (CDCl₃, 400 MHz) δ 7.59-7.65 (m, 3H), 7.47 (s, 1H), 7.28-7.35 (m, 2H), 7.11-7.15 (m, 2H), 6.87-6.95 (m, 3H), 4.09 (q, J = 7.0 Hz, 2H), 1.46 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 101 MHz) δ 159.5 (CH₀), 145.1 (CH₀), 137.6, 129.3, 128.0 (CH₀), 127.6, 119.8, 114.8, 112.7, 63.6 (CH₂), 14.9 (CH₃) ppm. IR (solid state): 3315 (w), 2978 (w), 1597 (m), 1504 (m), 1494 (m), 1262 (m), 1239 (m) cm⁻¹. Elemental Analysis calcd for C₁₅H₁₆N₂O: C = 74.97%, H= 6.71%, N = 11.66%, found C = 74.77%, H = 6.70%, N= 11.28%.

1-(4-ethylbenzylidene)-2-phenylhydrazine (3f):

¹H NMR (CDCl₃, 400 MHz) δ 7.68 (s, 1H), 7.60-7.64 (m, 2H), 7.55 (s, 1H), 7.28-7.33 (m, 2H), 7.23-7.26 (m, 2H), 7.13-7.17 (m, 2H), 6.88-6.93 (m, 1H), 2.70 (q, J = 7.5 Hz, 2H), 1.29 (t, J = 7.5 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 101 MHz) δ 144.9 (2C, CH₀), 137.6, 132.9 (CH₀), 129.3, 128.2, 126.3, 120.0, 112.8, 28.8 (CH₂), 15.5 (CH₃) ppm. IR (solid state): 3312 (w), 2966 (w), 1598 (m), 1507 (m), 1262 (m), 1258 (m) cm⁻¹. HRMS (ES): m/z [MH]⁺ calcd for C₁₅H₁₆N₂: 224.1308, found 224.1307.

1-(2-fluorobenzylidene)-2-phenylhydrazine (3g):

1-(4-methoxybenzylidene)-2-phenylhydrazine (3h):

M. S. Gordon, S. A. Sojka and J. G. Krause, J. Org. Chem., 1984, 49, 97-100.

¹H NMR (CDCl₃, 400 MHz) δ 7.60-7.65 (m, 3H), 7.47 (s, 1H), 7.28-7.34 (m, 2H), 7.11-7.15 (m, 2H), 6.88-6.97 (m, 3H), 3.86 (s, 3H) ppm. ¹³C NMR (CDCl₃, 101 MHz) δ 160.1 (CH₀), 145.0 (CH₀), 137.5, 129.3, 128.2 (CH₀), 127.7, 119.8, 114.2, 112.7, 55.3 (CH₃) ppm. IR (solid state): 3309 (w), 3054 (w), 1598 (m), 1587 (m), 1482 (m), 1446 (m), 1256 (m), 1236 (m) cm⁻¹. Elemental Analysis calcd for C₁₄H₁₄N₂O: C = 74.31%, H= 6.24%, N = 12.38%, found C = 74.39%, H = 6.23%, N= 12.44%.

1-(2-chlorobenzylidene)-2-phenylhydrazine (3i):

R. Liu, Y. Zhu, L. Qin and S. Ji, Synthetic Communications, 2008, 38, 249-254.

E-(3-phenyloxiran-2-yl)methanol (6a):

K. Oh and W. E. Knabe, Tetrahedron, 2009, 65, 2966-2974.

OH

1H NMR (CDCl₃, 400 MHz) δ 7.30-7.40 (m, 5H), 7.47 (s, 1H), 4.07 (dd, J = 12.5, 2.5 Hz, 1H), 3.95 (d, J = 2.0 Hz, 1H), 3.70 (dd, J = 12.5, 4.0 Hz, 1H), 3.25 (dt, J = 4.0, 2.5 Hz, 1H) ppm.

13C NMR (CDCl₃, 101 MHz) δ 136.7 (CH₀), 128.6, 128.4, 125.8, 62.5, 61.3 (CH₂), 55.63 ppm. IR (solid state): 3408 (br), 2924 (w), 1496 (m), 1461 (m), 1069 (m) cm⁻¹. HRMS (ES): m/z [MNa]⁺ calcd for C₉H₁₀NaO: 173.0573, found 173.0575.

E-(3-pentyloxiran-2-yl)methanol (6b):

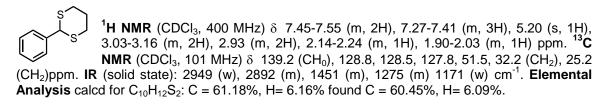
A. Mordini, S. Bindi, S. Pecchi, A. Degl'Innocenti, G. Reginato and A. Serci, J. Org. Chem., 1996, 61, 4374-4378.

¹H NMR (CDCl₃, 400 MHz) δ 3.91 (dd, J = 12.5, 2.5 Hz, 1H), 3.63 (dd, J = 12.5, 4.5 Hz, 1H), 2.89-3.00 (m, 2H), 2.06 (br, 1H), 1.54-1.63 (m, 2H), 1.39-1.52 (m, 2H), 1.33 (m, 4H), 0.86-0.95 (m, 3H) ppm. ¹³C NMR (CDCl₃, 101 MHz) δ 61.8, 58.5 (CH₁), 56.1 (CH₁), 31.6, 31.5, 25.6, 22.6, 14.0 (CH₃) ppm. IR (solid state): 3415 (br), 2926 (w), 2860 (w), 1467 (m), 1081 (m) cm⁻¹. Elemental Analysis calcd for C₈H₁₆O₂: C = 66.63%, H= 11.18%, found C = 66.60%, H = 10.94%.

E-(2-methyl-3-phenyloxiran-2-yl)methanol (6c):

R. Balamurugan, R. B. Kothapalli and G. K. Thota, European Journal of Organic Chemistry, 2011, 1557-1569.

OH ¹H NMR (CDCl₃, 400 MHz) δ 7.18-7.47 (m, 5H), 4.24 (s, 1H), 3.88 (d, J = 12.5 Hz, 1H), 3.78 (d, J = 12.5 Hz, 1H), 1.12 (s, 3H) ppm. ¹³C NMR (CDCl₃, 101 MHz) δ 135.6 (CH₀), 128.15, 127.6, 126.5, 65.1 (CH₀), 63.8, 60.3, 13.5 ppm. IR (solid state): 3428 (br), 2927 (w), 1497 (w), 1450 (m), 1384 (w), 1070 (m), 1030 (m) cm⁻¹. Elemental Analysis calcd for C₁₀H₁₂O₂: C = 73.15%, H= 7.37%, found C = 72.39%, H = 7.30%.


E-(3-octyloxiran-2-yl)methanol (6d):

J. S. Yadav, P. K. Deshpande and G. V. M. Sharma, *Tetrahedron*, 1990, **46**, 7033-7046. J. K. Karjalainen, O. E. O. Hormi and D. C. Sherrington, *Tetrahedron-Asymmetry*, 1998, **9**, 1563-1575.

¹H NMR (CDCl₃, 400 MHz) δ 3.93 (dd, J = 12.5, 2.5 Hz, 1H), 3.64 (dd, J = 12.5, 4.5 Hz, 1H), 2.89-3.02 (m, 2H), 1.54-1.65 (m, 2H), 1.40-1.51 (m, 2H), 1.17-1.38 (m, 10H), 0.84-0.94 (m, 3H), 1.71-1.99 (m, 1H) ppm. ¹³C NMR (CDCl₃, 101 MHz) δ 61.8, 58.5 (CH₁), 56.0 (CH₁), 31.9, 31.6, 29.5, 29.4, 29.2, 26.0, 22.7, 14.1 (CH₃) ppm. IR (solid state): 3264 (br), 3138 (br), 2918 (s), 2848 (s), 1459 (m), 1333 (w), 1058 (m), 1017 (m) cm⁻¹. Elemental Analysis calcd for C₁₁H₂₂O₂: C = 70.92%, H= 11.90% found C = 70.89%, H = 11.82.

2-phenyl-1,3-dithiane (9a):

C.-T. Chen, Y.-D. Lin and C.-Y. Liu, Tetrahedron, 2009, 65, 10470-10476.

2-(p-tolyl)-1,3-dithiane (9b):

D. Dong, Y. Ouyang, H. Yu, Q. Liu, J. Liu, M. Wang and J. Zhu, J. Org. Chem., 2005, 70, 4535-4537

¹H NMR (CDCl₃, 400 MHz) δ 7.33-7.50 (m, 2H), 7.11-7.24 (m, 2H), 5.15 (s, 1H) 3.00-3.19 (m, 2H), 2.82-2.99 (m, 2H), 2.28-2.47 (s, 3H), 2.13-2.27 (m, 1H), 1.85-2.07 (m, 1H) ppm. ¹³C NMR (CDCl₃, 101 MHz) δ 138.3 (CH₀), 136.3 (CH₀), 129.5, 127.7, 51.3 (CH₁), 32.2, 25.2, 21.2 (CH₃) ppm. IR (solid state): 2932 (w), 2894 (m), 1513 (m), 1421 (m), 1277 (m) 1169 (w) cm⁻¹. Elemental Analysis calcd for C₁₁H₁₄S₂: C = 62.81%, H= 6.71% found C = 62.92%, H = 6.70%.

2-(2-fluorophenyl)-1,3-dithiane (9c):

S. Goswami and A. C. Malty, *Tetrahedron Lett.*, 2008, **49**, 3092-3096. P. C. B. Page, A. E. Graham and B. K. Park, *Tetrahedron*, 1992, **48**, 7265-7274.

¹H NMR (CDCl₃, 400 MHz) δ 7.53-7.73 (m, 1H), 7.22-7.36 (m, 1H), 7.13-7.20 (m, 1H), 6.99-7.12 (m, 1H), 5.57 (s, 1H), 3.09-3.26 (m, 2H), 2.88-2.99 (m, 2H), 2.14-2.25 (m, 1H), 1.89-2.03 (m, 1H) ppm. ¹³C NMR (CDCl₃, 101 MHz) δ 159.0 (d, J_{C-F} = 249 Hz), 130.0 (d, J_{C-F} = 8 Hz), 129.6 (d, J_{C-F} = 3 Hz) 126.3 (d, J_{C-F} = 14 Hz) 124.7 (d, J_{C-F} = 4 Hz), 115.5 (d, J_{C-F} = 22 Hz) 43.1, 32.3, 25.1 ppm. IR (solid state): 2897(w), 1586 (m), 1456 (m), 1421 (m), 1275 (m), 1231 (m), 1088 (m) cm⁻¹. Elemental Analysis calcd for C₁₀H₁₁FS₂: C = 56.04%, H= 5.17% found C = 56.16%, H= 5.17%.