Supplementary Information

Construction of Functionalized 2,3-Dihydro-1,4-benzoxazines via [5 + 1]

Annulation of 2-Halo-1,3-dicarbonyl Compounds with Imines

Ya-Ru Zhang, ^a Jian-Wu Xie,^{*, a} Xu-Jiao Huang ^a and Wei-Dong Zhu^{*, a}

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry and Life Sciences, Zhejiang Normal University, 321004Jinhua, P. R. of China.

E-mail: xiejw@zjnu.cn; weidongzhu@zjnu.cn

1. General methods	2
2. Screening studies of organocatalytic [5 + 1] annulation	2
3. X-ray data of racemic 3ad, 4ra and enantiopure 3ha	4
4. ¹ H NMR and ¹³ C NMR data of 3ra-3za	5
5. ¹ H NMR and ¹³ C NMR spectra	8
6. HPLC spectra	46

1. General Methods:

NMR spectra were recorded with tetramethylsilane as the internal standard. TLC was performed on glass-backed silica plates. Column chromatography was performed using silica gel (160-200 mesh) eluting with ethyl acetate and petroleum ether. ¹H NMR spectra were recorded at 400 MHz, and ¹³C NMR spectra were recorded at 100 MHz (Bruker Avance). Chemical shifts (δ) are reported in ppm downfield from CDCl₃ (δ = 7.26 ppm) or DMSO (δ = 2.50 ppm) for ¹H NMR and relative to the central CDCl₃ resonance (δ = 77.0 ppm) or DMSO resonance (δ = 39.5 ppm) for ¹³C NMR spectroscopy. Coupling constants (J) are given in Hz. ESI-HRMS spectrometer was measured with a Finnigan LCQ^{DECA} ion trap mass spectrometer. Optical rotations were measured at 589 nm at 20 °C. Enantiomeric excess was determined by HPLC analysis on Chiralpak AS, IC and OD columns.

Figure 3. Structures Chiral Phase Transfer Catalysts

TABLE S1. Screening studies of organocatalytic domino reaction of 4-hydroxylcoumarin 2a to α -bromonitroalkene 3a^a.

		+ EtOOC C Br 2a	OOEt Base, CPTC Solvent, 20°C	, 20 h 3aa	-COOEt COOEt
entry	catalyst	base	solvent	yield ^{b)} (%)	ee ^{c)} (%)
1	4a	K ₂ CO ₃	CH ₃ CN	61	37
2	4 b	K ₂ CO ₃	CH ₃ CN	71	27
3	4c	K ₂ CO ₃	CH ₃ CN	67	45
4	4d	K ₂ CO ₃	CH ₃ CN	60	26
5	4 e	K ₂ CO ₃	CH ₃ CN	68	0
6	4 f	K ₂ CO ₃	CH ₃ CN	73	5
7	4g	K ₂ CO ₃	CH ₃ CN	62	33
8	4h	K ₂ CO ₃	CH ₃ CN	69	0
9	4c	K ₂ CO ₃	CHCl ₃	66	81
10	4c	Cs ₂ CO ₃	CHCl ₃	59	71
11	4 c	CsOH	CHCl ₃	46	35
12	4 c	LiOH	CHCl ₃	61	0
13	4c	КОН	CHCl ₃	42	70

^{a)} Otherwise noted, reactions performed with 0.10 mmol of **1a**, 0.20 mmol of **2a**, 10 mol% of **4**, 100 mol% of Base in 1 mL solvent at 20 °C. ^{b)} Isolated yield. ^{c)} Determined by chiral HPLC analysis.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

3ad 4ra 3ha

3. X-ray data of racemic 3ad, 4ra and enantiopure 3ha

Molecular Structure of 3ad, 4ra and enantiopure 3ha, (ellipsoids with 50% probability)

Crystal data for 3ad (No. CCDC 881882) $C_{19}H_{19}NO_4$ (325.35), Triclinic, space group P-1, a = 8.9397(6) Å, b = 11.7671(8)) Å, c = 17.0494(12) Å, U = 1711.5(2) Å³, Z = 2, specimen 0.254 x 0.0177 x 0.123 mm³, T = 296(2) K, SIEMENS P4 diffractometer, absorption coefficient 0.089 mm⁻¹, reflections collected 27342, independent 7780 [R(int) = 0.0278], refinement by Full-matrix least-squares on F^2 , data/restraints/parameters 7780 / 0 / 434, goodness-of-fit on $F^2 = 1.065$, final *R* indices [*I*>2 σ (*I*)] R1 = 0.0550, wR2 = 0.1548, *R* indices (all data) R1 = 0.0842, wR2 = 0.1770, largest diff. peak and hole 0.495 and - 0.412 Å⁻³.

Crystal data for 4ra (No. CCDC 881884) $C_{18}H_{15}NO_5$ (325.31), Monoclinic, space group Cc, a = 12.4785 Å, b = 13.3392(5) Å, c = 10.0137(4) Å, U = 1623.97(10) Å³, Z = 10, specimen 0.48 x 0.32 x 0.28 mm³, T = 296(2) K, SIEMENS P4 diffractometer, absorption coefficient 0.098 mm⁻¹, reflections collected 6854, independent 3230 [R(int) = 0.0179], refinement by Full-matrix least-squares on F^2 , data/restraints/parameters 3230 / 2 / 218, goodness-of-fit on $F^2 = 1.046$, final *R* indices [*I*>2 σ (*I*)] R1 = 0.0386, wR2 = 0.1052, *R* indices (all data) R1 = 0.0447, wR2 = 0.1113, largest diff. peak and hole 0.204 and -0.178 Å⁻³.

Crystal data for 3ha (No. CCDC 881883) $C_{20}H_{20}CINO_5$ (389.82), Tetragonal, space group P4(3), a = 9.0853(7) Å, b = 9.0853(7) Å, c = 23.592(4) Å, U = 1947.4(4) Å³, Z = 12, specimen 0.46 x 0.38 x 0.28 mm³, T = 296(2) K, SIEMENS P4 diffractometer, absorption coefficient 0.226 mm⁻¹, reflections collected 8605, independent 3959 [R(int) = 0.0243], refinement by Full-matrix least-squares on F^2 , data/restraints /parameters 3959/1/245, goodness-of-fit on $F^2 = 1.047$, final *R* indices [$I > 2\sigma(I)$] R1 = 0.0573, wR2 = 01517, *R* indices (all data) R1 = 0.0975, wR2 = 0.1780, largest diff. peak and hole 0.402 and -0.306 Å⁻³.

4. ¹H NMR and ¹³C NMR data of 3ra-3za

Synthesis of 2,3-Dihydro-1,4-Benzoxazines 3ra-3za

General procedure: **1r** (21.3 mg, 0.10 mmol), **2a** (47.4 mg, 0.20 mmol), TBAB (6.44 mg, 0.02 mmol) and KOH (5.6 mg, 0.10 mmol) were stirred in CH₃CN (1 mL) at room temperature for 20 h. Then flash chromatography on silica gel (10% ethylacetate/ petroleum ether) gave product **3ra** as a white solid (24.1 mg, 65% yield).

Diethyl 3-(2-hydroxyphenyl)-3,4-dihydro-2H-benzo[b][1,4] oxazine-2,2-dicarboxylate (3ra): white solid, mp: 168 – 170 °C; 24.1 mg, yield 65%; ¹H NMR (400 MHz, DMSO) δ 9.70 (s, 1H), 6.99 (t, *J* = 7.6 Hz, 2H), 6.88 (d, *J* = 7.9 Hz, 1H), 6.78 – 6.67 (m, 2H), 6.58 (t, *J* = 8.8 Hz, 2H), 6.52 (t, *J* = 5.5 Hz, 2H), 5.64 (d, *J* = 4.2 Hz, 1H), 4.16–4.05 (m, 2H), 4.03 – 3.90 (m, 2H), 1.03 (dd, *J* = 8.8, 5.3 Hz, 3H), 0.93 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ 166.9, 165.0, 155.0, 140.5, 133.1, 128.7, 128.1, 126.7, 122.9, 119.2, 117.0, 116.9, 115.0, 114.7, 82.6, 62.3, 62.1, 47.9, 14.1, 13.8; IR (KBr) cm⁻¹ 3419, 2978, 1749, 1723, 1615, 1450, 1443, 1274, 1238, 1200, 1154, 837, 739; ESI-HRMS: calcd. for C₂₀H₂₁NO₆+H 372.1442, found 372.1445.

Diethyl 3-(2-hydroxyphenyl)-6-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazine-2,2-dicarboxylate (**3sa):** white solid, mp: 176 – 178 °C; 27.3 mg, yield 71%; ¹H NMR (400 MHz, DMSO) δ 9.67 (s, 1H), 6.99 (t, *J* = 7.7 Hz, 2H), 6.75 (d, *J* = 8.0 Hz, 2H), 6.58 (t, *J* = 7.5 Hz, 1H), 6.44 (d, *J* = 4.1 Hz, 1H), 6.37 (s, 1H), 6.31 (d, *J* = 8.0 Hz, 1H), 5.61 (d, *J* = 4.2 Hz, 1H), 4.09 (q, *J* = 6.8 Hz, 2H), 4.03-3.90 (m, 2H), 2.09 (s, 3H), 1.04 (t, *J* = 7.0 Hz, 3H), 0.93 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ 167.0, 165.0, 155.0, 138.4, 132.8, 131.6, 128.7, 128.2, 126.7, 119.2, 117.6, 116.6, 115.0, 110.0, 82.6, 62.2, 62.0, 47.8, 21.0, 14.2, 13.8; IR (KBr) cm⁻¹ 3434, 2987, 1749, 1726, 1623, 1452, 1438, 1277, 1235, 1205, 1151, 837, 742; ESI-HRMS: calcd. for C₂₁H₂₃NO₆+H 386.1598, found 386.1594.

Diethyl 3-(2-hydroxyphenyl)-7-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazine-2,2-dicarboxylate (**3ta**): white solid, mp: 92 – 94 °C; 21.9 mg, yield 57%; ¹H NMR (400 MHz, DMSO) δ 9.68 (s, 1H), 6.98 (t, *J* = 7.1 Hz, 2H), 6.76 (d, *J* = 7.7 Hz, 1H), 6.71 (s,1H), 6.59 – 6.51 (m, 2H), 6.46 (d, *J* = 8.0 Hz, 1H), 6.25 (d, *J* = 4.1 Hz, 1H), 5.59 (d, *J* = 4.1 Hz, 1H), 4.15 – 4.05 (m, 2H), 4.03 – 3.93 (m, 2H), 2.14 (s, 3H), 1.05 (t, *J* = 7.1 Hz, 3H), 0.93 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ 166.9, 165.0, 155.0, 140.5, 130.4, 128.6, 128.0, 126.7, 126.1, 123.3, 119.1, 117.2, 115.0, 114.8, 82.7, 62.3, 56.4, 47.9, 20.6,

14.2, 13.8; IR (KBr) cm⁻¹ 3432, 2986, 1741, 1730, 1625, 1454, 1434, 1276, 1240, 1200, 1158, 836, 739; ESI-HRMS: calcd. for C₂₁H₂₃NO₆+H 386.1598, found 386.1592.

Diethyl 6-chloro-3-(2-hydroxyphenyl)-3,4-dihydro-2H-benzo[b][1,4]oxazine-2,2-dicarboxylate (3ua): white solid, mp: 112 – 114 °C; 25.9 mg, yield 64%; ¹H NMR (400 MHz, DMSO) δ 9.76 (s, 1H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.96 – 6.90 (m, 3H), 6.78 (d, *J* = 7.9 Hz, 1H), 6.64 – 6.59 (m, 2H), 6.53 – 6.51 (m, 1H), 5.64 (d, *J* = 4.0 Hz, 1H), 4.16 – 4.08 (m, 2H), 4.02 – 3.93 (m, 2H), 1.05 (t, *J* = 7.0 Hz, 3H), 0.93 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ 166.5, 164.6, 155.1, 139.2, 134.5, 128.9, 127.8, 126.6, 126.1, 119.3, 118.2, 116.2, 115.1, 113.5, 82.6, 62.5, 62.2, 47.6, 14.2, 13.8; IR (KBr) cm⁻¹ 3414, 2987, 1748, 1729, 1614, 1501, 1447, 1281, 1229, 1201, 1154, 846, 744; ESI-HRMS: calcd. for C₂₀H₂₀CINO₆+H 406.1052, found 406.1047.

Diethyl 7-chloro-3-(2-hydroxyphenyl)-3,4-dihydro-2H-benzo[b][1,4]oxazine-2,2-dicarboxylate (**3va):** white solid, mp: 134 – 136 °C; 21.8 mg, yield 54%; ¹H NMR (400 MHz, DMSO) δ 9.75 (s, 1H), 7.03 – 6.95 (m, 3H), 6.77 (dd, *J* = 10.2, 5.0 Hz, 3H), 6.60 (dd, *J* = 12.8, 8.0 Hz, 2H), 5.65 (d, *J* = 4.1 Hz, 1H), 4.19 – 4.06 (m, 2H), 4.05 – 3.92 (m, 2H), 1.05 (t, *J* = 7.0 Hz, 3H), 0.94 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ 166.5, 164.5, 155.1, 141.0, 132.3, 128.9, 127.8, 126.2, 122.7, 119.9, 119.3, 116.7, 115.5, 115.1, 82.7, 62.5, 62.2, 47.9, 14.1, 13.8; IR (KBr) cm⁻¹ 3413, 2985, 1750, 1730, 1612, 1500, 1449, 1281, 1230, 1202, 1154, 846, 744; ESI-HRMS: calcd. for C₂₀H₂₀ClNO₆+H 406.1052, found 406.1045.

Diethyl 3-(2-hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-benzo[b][1,4]oxazine-2,2-dicarboxylate (**3wa**): white solid, mp: 176 – 178 °C; 28.8 mg, yield 72%; ¹H NMR (400 MHz, DMSO) δ 9.72 (s, 1H), 6.88 (t, *J* = 7.5 Hz, 2H), 6.70 (t, *J* = 7.6 Hz, 1H), 6.56 – 6.48 (m, 2H), 6.44 (d, *J* = 4.0 Hz, 1H), 6.32 (s, 1H), 6.20 (d, *J* = 8.7 Hz, 1H), 5.54 (d, *J* = 4.0 Hz, 1H), 4.12 – 4.04 (m, 2H), 4.03 – 3.91 (m, 2H), 3.60 (s, 3H), 1.03 (t, *J* = 7.0 Hz, 3H), 0.96 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ 166.9, 164.9, 159.7, 156.1, 140.5, 133.2, 128.8, 122.8, 119.3, 116.9, 114.7, 104.7, 100.8, 82.8, 62.2, 62.0, 55.2, 47.6, 14.1, 13.9; IR (KBr) cm⁻¹ 3425, 2983, 1752, 1727, 1615, 1498, 1440, 1278, 1238, 1208, 1145, 843, 749; ESI-HRMS: calcd. for C₂₁H₂₃NO₇+H 402.1547, found 402.1563.

Diethyl 3-(2-hydroxy-5-methylphenyl)-3,4-dihydro-2H-benzo[b][1,4]oxazine-2,2-dicarboxylate (**3xa):** white solid, mp: 168 – 170 °C; 30.4 mg, yield 79%; ¹H NMR (400 MHz, DMSO) δ 9.44 (s, 1H),

6.88 (d, J = 7.8 Hz, 1H), 6.80 (d, J = 7.1 Hz, 2H), 6.71 (t, J = 7.1 Hz, 1H), 6.65 (d, J = 8.1 Hz, 1H), 6.56 (d, J = 7.6 Hz, 1H), 6.53 – 6.48 (m, 2H), 5.59 (s, 1H), 4.12 – 3.95 (m, 2H), 3.98 (dd, J = 16.6, 8.3 Hz, 2H), 1.98 (s, 3H), 1.01 (t, J = 6.9 Hz, 3H), 0.94 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ 166.8, 165.0, 152.8, 140.4, 133.2, 129.1, 128.4, 127.1, 126.3, 122.9, 116.9, 114.9, 114.6, 82.6, 62.3, 62.0, 48.2, 20.9, 14.1, 13.8; IR (KBr) cm⁻¹ 3426, 2985, 1748, 1723, 1616, 1451, 1441, 1277, 1240, 1203, 1151, 846, 733; ESI-HRMS: calcd. for C₂₁H₂₃NO₆+H 386.1598, found 386.1583.

Diethyl 3-(5-chloro-2-hydroxyphenyl)-3,4-dihydro-2H-benzo[b][1,4]oxazine-2,2-dicarboxylate (**3ya):** white solid, mp: 162 – 164 °C; 22.6 mg, yield 56%; ¹H NMR (400 MHz, DMSO) δ 10.08 (s, 1H), 7.07 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.92 – 6.91 (m, 2H), 6.76 (dd, *J* = 17.5, 8.2 Hz, 2H), 6.66 (d, *J* = 4.4 Hz, 1H), 6.60 – 6.53 (m, 2H), 5.58 (d, *J* = 4.4 Hz, 1H), 4.15 – 4.06 (m, 2H), 4.04 – 3.94 (m, 2H), 1.01 (t, *J* = 7.2 Hz, 3H), 0.97 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ 166.6, 164.9, 154.0, 140.2, 132.7, 128.6, 127.7, 123.2, 122.6, 117.1, 116.7, 114.8, 82.2, 62.4, 62.3, 56.4, 48.1, 19.0, 14.1, 13.8; IR (KBr) cm⁻¹ 3423, 2980, 1750, 1727, 1612, 1500, 1451, 1279, 1225, 1204, 1161, 841, 737; ESI-HRMS: calcd. for C₂₀H₂₀ClNO₆+H 406.1052, found 406.1077.

Diethyl 3-(5-bromo-2-hydroxyphenyl)-3,4-dihydro-2H-benzo[b][1,4]oxazine-2,2-dicarboxylate (3za): white solid, mp: 159 – 160 °C; 22.9 mg, yield 51%; ¹H NMR (400 MHz, DMSO) δ 10.11 (s, 1H), 7.18 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.05 (d, *J* = 2.1 Hz, 1H), 6.91 (d, *J* = 7.9 Hz, 1H), 6.75 (t, *J* = 8.1 Hz, 2H), 6.65 (d, *J* = 4.4 Hz, 1H), 6.60 – 6.53 (m, 2H), 5.57 (d, *J* = 4.4 Hz, 1H), 4.15 – 3.94 (m, 4H), 1.03 (t, *J* = 7.5 Hz, 6H); ¹³C NMR (100 MHz, DMSO) δ 166.6, 154.5, 140.2, 132.7, 131.4, 130.5, 129.2, 123.2, 117.3, 117.1, 114.8, 110.3, 82.2, 62.4, 62.3, 56.4, 48.2, 19.0, 14.1, 13.8; IR (KBr) cm⁻¹ 3426, 2981, 1750, 1725, 1612, 1450, 1447, 1276, 1233, 1207, 1159, 844, 745; ESI-HRMS: calcd. for C₂₀H₂₀BrNO₆+H 450.0547, found 450.0533.

5. ¹H NMR and ¹³C NMR spectra

3ca

3fa

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

3ka

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

-0

-100 -200

3ta

3za

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

4za

5. HPLC spectra

46

э

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	10.512	15240483	404683	80.871	87.479		
2	23.098	3604904	57925	19.129	12.521		
Total		18845387	462608	100.000	100.000		

Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.126	6347292	182807	64.010	73.939
2	16.468	3568839	64432	35.990	26.061
Total		9916131	247239	100.000	100.000

Detector A Ch1 254nm							
Peak# Ret.	Time	Area	Height	Area %	Height %		
1	5.845	7156620	304830	81.348	82.544		
2	6.716	1640963	64465	18.652	17.456		
Total		8797583	369295	100.000	100.000		

Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.980	5224354	205759	49.753	52.639
2	6.865	5276245	185125	50.247	47.361
Total		10500599	390884	100.000	100.000

1 Det.A Ch1 / 254nm

PeakTable

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	5.902	26589637	1165227	72.044	73.585		
2	6.753	10317920	418279	27.956	26.415		
Total		36907557	1583506	100.000	100.000		

Peak#	Ret. Time	Area	Height	Area %	Height %	
1	7.347	27416600	724161	81.087	85.701	
2	13.794	6394636	120825	18.913	14.299	
Total		33811237	844986	100.000	100.000	

53

ak#	Ret. Time	Area	Height	Area %	Height %
1	8.135	50953007	1263989	76.773	82.499
2	15.551	15415668	268140	23.227	17.501
Total		66368676	1532129	100.000	100.000