Supporting Information

π -Fused bis-BODIPY as a candidate for NIR dyes

Mitsunori Nakamura,^a Hiroyuki Tahara,^a Kohtaro Takahashi,^a Toshi Nagata,^{b,*} Hiroki Uoyama,^a Daiki Kuzuhara,^d Shigeki Mori,^c Tetsuo Okujima,^a Hiroko Yamada,^d and Hidemitsu Uno^{a,*}

^{*a*} Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan. Fax: (+) 81-89-927-9610E-mail: uno@ehime-u.ac.jp

^b National Institutes for Natural Sciences (NINS) Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji, Okazaki

444-8787, Japan

^c Integrated Center for Sciences, Ehime University, Matsuyama 790-8577, Japan

^d Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; CREST JST

Experimental Procedure

General: Melting points are uncorrected. Unless otherwise specified, NMR spectra were obtained with a JEOL JNM AL-400 spectrometer at ambient temperature by using $CDCl_3$ as a solvent and tetramethylsilane as an internal standard for ¹H and ¹³C. Mass spectra (EI and FAB) were measured with an MStation spectrometer (JEOL MS-700). MALDI-TOF mass spectra were measured on Voyger DE Pro (Applied Biosystems) in VBL, Ehime University by using sinapinic acid as matrix. IR spectra were measured with a Horiba FT-720 spectrophotometor. UV-vis and fluorescence spectra were measured on JASCO V-570 and HITACHI F-4500, respectively. Absolute quantum yields were measured on a Hamamatsu Photonics C9920-02. TG analysis was done with SII Exstar 600 TG/DTA 6200. Elemental analysis was performed on a Yanaco MT-5 elemental analyzer. X-ray diffraction data were collected by Rigaku Mercury-8 (Mo *Ka* radiation, 3-kW sealed tube), Rigaku VariMax Saturn (Mo *Ka* radiation, 1.2-kW rotating anode). The X-ray diffraction, NMR, IR, TG, and EA measurements were performed in INCS, Ehime University. Preparative GPC was done by a JAI LC-9801 installed with JAI-1H (Φ 20 x 600 mm) and 2H (Φ 20 x 600 mm) columns.

Diethyl 3,5-bis(5-ethoxycarbonyl-3,4-diethylpyrrol-2-ylmethyl)-4,8-dihydro-4,8-ethanopyrrolo[3,4-f]isoindole-1,7-dicarboxylate (*syn-4a*): The reaction of ethyl 5-acetoxylmethyl-3,4-diethylpyrrole-1-carboxylate (**3a**; 0.900 g, 3.37 mmol), and diethyl 4,8-dihydro-4,8-ethanopyrrolo[3,4-f]isoindole-1,7-dicarboxylate (*syn-2*; 0.500 g, 1.52 mmol) gave 0.615 g (54%) of the title compound as a white powder: mp, 130–132 °C; ¹H NMR δ 8.89 (br s, 2H) , 8.40 (br s, 2H), 5.20 (m, 1H), 4.21–4.33 (m, 8H), 3.85 (m, 4H), 3.66 (m, 1H), 2.72 (m, 4H), 2.39 (m, 4H), 1.72 (m, 2H), 1.59 (m, 2H), 1.37 (t, 6H, *J* = 7.1 Hz), 1.27 (t, 6H, *J* = 7.1 Hz), 1.15 (t, 6H, *J* = 7.6 Hz), 1.06 (t, 6H, *J* = 7.6 Hz); ¹³C NMR: δ 162.03, 161.46, 136.24, 133.55, 129.20, 128.43, 124.20, 123.27, 116.95, 113.56, 60.02, 59.75, 31.91, 29.04, 28.81, 27.78, 23.06, 18.40, 17.03, 16.31, 15.85, 14.53, 14.37; IR (KBr): *v*_{max}, 3316, 1674, 1442, 1257 cm⁻¹; MS (FAB⁺): *m/z* 743 (M⁺+1). Anal. Calcd for C₄₂H₅₄N₄O₈: C, 67.90; H, 7.33; N, 7.54. Found: C, 67.67; H, 7.23; N, 7.42.

Diethyl 3,5-bis(3-ethoxycarbonyl-4,7-dihydro-4,7-ethano-2*H*-isoindolylmethyl)-4,8-dihydro-4,8-ethanopyrrolo[3,4-*f*]isoindole-1,7-dicarboxylate (*syn*-4b): The reaction of ethyl 3-acetoxylmethyl-4,7-dihydro-4,7-ethano-2*H*-isoindole-1-carboxylate (3b; 2.35 g, 8.13 mmol) and *syn*-2 (1.33 g, 4.05 mmol) gave 1.95 g (61%) of the title compound as a diastereomeric mixture: white powder; mp, 180 – 181 °C (decomp.); ¹H NMR: δ 9.47 (m, 4H), 6.47 (m, 4H), 5.19 (m, 1H), 4.35 (m, 4H), 4.26 (m, 8H), 3.90 (m, 4H), 3.71 (m, 1H), 1.53 (m, 12H), 1.37 (m, 12H); ¹³C NMR (typical signals): δ 171.41, 162.63, 137.52, 136.45, 136.08, 135.37, 131.66, 128.44, 121.71, 115.16, 113.49, 112.72, 60.07, 56.90, 56.20, 33.94, 32.41, 31.86, 28.97, 27.85, 27.03, 26.28, 23.07, 20.94, 14.51; IR (KBr): v_{max} , 3309, 2946, 1674 cm⁻¹; MS (FAB): *m/z* 787 (M⁺+1); HRMS (FAB⁺): Calcd for C₄₆H₅₀N₄O₈+H⁺, 787.3707; Found: 787.3714.

Diethyl 3,7-bis(3-ethoxycarbonyl-4,7-dihydro-4,7-ethano-2*H***-isoindolylmethyl)-4,8-dihydro-4,8-ethanopyrrolo[3,4-f]isoindole-1,5-dicarboxylate** (*anti-4b*): The reaction of **3b** (2.35 g, 8.13 mmol) with *syn-***2** (1.33 g, 4.05 mmol) afforded 2.13 g (72%) of the title compound as a diastereomeric mixture: white powder; mp, 181–183 °C (decomp.); ¹H NMR (DMSO-*d*₆): δ 10.69 (m, 4H), 6.36 (m, 2H), 6.24 (m, 2H), 4.78 (m, 2H), 4.60 (m, 2H), 4.28 (m, 2H), 4.18 (m, 8H), 3.60 (m, 4H), 1.47 (m, 8H), 1.35 (m, 12H), 1.12 (m, 4H); ¹³C NMR (DMSO-*d*₆; typical signals): δ 216.71, 210.59, 201.60, 161.82, 137.04, 135.55, 128.51, 125.84, 120.36, 119.67, 118.09, 113.64, 65.84, 59.94, 59.73, 34.55, 32.98, 32.27, 31.20, 30.55, 27.45, 26.98, 23.25; IR (KBr): v_{max} , 3309, 2978, 1666 cm⁻¹; MS (FAB⁺): *m*/*z* 787 (M⁺+1), 786 (M⁺); HRMS (FAB⁺): Calcd for C₄₆H₅₀N₄O₈+H⁺, 787.3707. Found: 787.3695.

1,7-Dimethyl-3,5-bis(3,4-diethyl-5-methylpyrrol-2-ylmethyl)-4,8-dihydro-4,8-ethanopyrrolo[3,4-f]isoindole (*syn-5a*): Tetra ester *syn-4a* (0.615 g, 0.827 mmol) was reduced with LiAlH₄ to give 0.406 g (96%) of the title compound as a pale yellow powder: ¹H NMR: δ 7.26 (br s, 2H), 6.85 (br s, 2H), 3.98 (m, 1H), 3.79 (m, 4H), 3.76 (m, 1H), 2.36–2.44 (m, 8H), 2.15 (s, 6H), 2.08 (s, 6H), 1.62–1.70 (m, 4H), 1.11 (t, 6H, *J* = 7.6 Hz), 1.09 (t, 6H, *J* = 7.6 Hz); ¹³C NMR: δ 126.44, 125.80, 121.97, 120.98, 120.27, 119.85, 116.58,

115.70, 30.23, 30.07, 28.94, 28.77, 22.70, 17.62, 17.55, 16.79, 16.40, 11.19, 11.07; IR (KBr): 3371, 2962, 2931, 2862 cm⁻¹; MS (FAB⁺): m/z 511 (M⁺+1), 510 (M⁺), 509 (M⁺-1); HRMS (FAB⁺): $C_{34}H_{46}N_4$ +H⁺, 511.3801. Found: 511.3777.

1,7-Dimethyl-3,5-bis(3-methyl-4,7-dihydro-4,7-ethano-2H-isoindolylmethyl)-4,8-dihydro-4,8-ethanopyrrolo[3,4-f] isoindole and the second statement of the second statement of

(*syn-***5b**): *syn-*Bis-dipyrromethane tetra ester *syn-***4b** (3.41 g, 4.33 mmol) was reduced to give 1.55 g (65%) of the crude title compound as a mixture of diastereomers: brown powder; ¹H NMR: δ 10.69 (m, 4H), 6.36 (m, 2H), 6.24 (m, 2H), 4.78 (m, 1H), 4.60 (m, 1H), 4.28 (m, 2H), 3.75 (m, 4H), 3.60 (m, 2H), 1.47 (m, 8H), 1.35 (m, 6H), 1.27 (m, 6H), 1.12 (m, 4H); MS (FAB⁺): *m/z* 555 (M+1⁺), 554(M⁺); HRMS (FAB⁺): C₃₈H₄₂N₄+H⁺, 555.3488. Found 555.3493.

1, 5-Dimethyl-3, 7-bis (3-methyl-4, 7-dihydro-4, 7-ethano-2H-isoindolylmethyl)-4, 8-dihydro-4, 8-ethanopyrrolo [3, 4-f] isoindole and the second se

(*anti*-**5b**): *anti*-Bis-dipyrromethane tetra ester *anti*-**4b** (2.123 g, 2.70 mmol) was converted to give 1.227 g (82%) of the crude title compound as a mixture of diastereomers; brown powder; ¹H NMR: δ 6.85 (m, 4H), 6.38 (m, 4H), 3.77 (m, 2H), 3.75 (m, 4H), 3.62 (m, 2H), 3.52 (m, 2H), 2.02 (s, 12H), 1.58 (m, 4H), 1.43 (m, 8H); MS (FAB⁺): *m*/*z* 555 (M+1⁺), 554(M⁺) ; HRMS (FAB⁺): C₃₈H₄₂N₄+H⁺, 555.3488. Found 555.3480.

1,2,10,11-Tetraethyl-4,4,8,8-tetrafluoro-3,5,7,9-tetramethyl-6,13-dihydro-6,13-ethano-4,8-dibora-3a,4a,7a,8a-tetraazabenzo[1,2 -*a*:**5,4**-*a*']-*s*-**indacene** (*syn*-**6a**): The title compound was obtained from *syn*-**5a** (28 mg, 0.054 mmol) in 36% yield (12 mg) as pink crystals: mp, 160 °C (decomp.); ¹H NMR: δ 7.04 (s, 2H), 4.57 (m, 1H), 4.19 (m, 1H), 2.60 (q, 4H, *J* = 7.6 Hz), 2.54 (s, 6H), 2.51 (s, 6H), 2.39 (q, 4H, *J* = 7.6 Hz), 1.69-1.73 (m, 4H), 1.21 (t, 6H, *J* = 7.6 Hz), 1.09 (t, 6H, *J* = 7.6 Hz); ¹³C NMR: δ 158.13, 146.31, 145.75, 144.40, 136.79, 132.85, 132.16, 126.36, 119.03, 32.11, 29.85, 29.17, 28.70, 17.93, 17.31, 16.96, 15.02, 12.97, 12.66 IR (KBr): 2966, 2931, 2870, 1603, 1174 cm⁻¹; UV-vis (CHCl₃): λ_{max} (ϵ /10⁴ M⁻¹·cm⁻¹), 550 (15.1), 503 (7.52), 387 (2.15) nm; MS (FAB⁺): *m/z* 603 (M⁺+1); HRMS (FAB⁺): C₃₄H₄₀B₂F₄N₄+H⁺, 603.3453. Found: 603.3451. Anal. Calcd for C₃₄H₄₀B₂F₄N₄+2/3CHCl₃: C, 61.03; H, 6.01; N, 8.21. Found: C, 61.08; H, 6.13; N, 7.93.

tetraaza-s-indaceno[2,3-b:6,5-b']difluorene (*syn-***6b**): Bis-dipyrromethane *syn-***5b** (862 mg, 1.55 mmol) was reacted to give 698 mg (70%) of the title compound as a mixture of diastereomers: purple powder; mp, 160 °C (decomp.); ¹H NMR: δ 7.15 (m, 2H), 6.50 (m, 2H), 6.38 (m, 2H), 4.53 (m, 1H), 4.18 (m 1H), 4.07 (m, 2H), 3.89 (m, 2H), 2.93 (s, 6H), 2.54 (s, 6H), 1.69 (m, 8H), 1.43 (m, 4H); ¹³C NMR (typical signals): δ 150.95, 150.25, 147.41, 143.24, 136.36, 133.57, 128.15, 127.02, 125.52, 119.76, 118.86, 34.39, 33.12, 29.83, 28.39, 26.42, 26.48, 26.54, 26.61, 12.82, 12.67; IR (KBr): v_{max} 2866, 1616, 1403, 1176, 1122 cm⁻¹ UV-vis (CHCl₃): λ_{max} (ε /10⁴ M⁻¹·cm⁻¹), 553 (10.9), 504 (5.76), 397 (2.15) nm; MS (FAB⁺): m/z 647 (M⁺+1); HRMS (FAB⁺): C₃₈H₃₆B₂F₄N₄+H⁺, 647.3140. Found: 647.3165.

6,6,15,15-Tetrafluoro-5,7,14,16-tetramethyl-1,4,8,10,13,17-hexahydro-1,4:8,17:10,13-triethano-6,15-dibora-5a,6a,14a,15a-

tetraaza-s-indaceno[2,3-b:6,7-b']difluorene (*anti*-6b): *anti*-Bis-dipyrromethane *anti*-5b (255 mg, 0.46 mmol) was reacted to give 259 mg (82%) of the title compound as a mixture of diastereomers: purple powder; mp, 160 °C (decomp.); ¹H NMR: δ 7.12 (m, 2H), 6.50 (m, 2H), 6.40 (m, 2H), 4.36 (m, 2H), 4.10 (m, 2H), 3.89 (m, 2H), 2.54 (m, 6H), 2.51 (m, 6H), 1.67 (m, 8H), 1.43 (m, 4H); ¹³C NMR (typical signals): δ 151.18, 150.23, 149.03, 146.95, 138.35, 136.20, 133.61, 128.27, 126.82, 120.05, 118.92, 34.35, 33.12, 31.88, 30.90, 29.57, 28.66, 26.53, 22.64; UV-vis (CHCl₃): λ_{max} (ε/10⁴ M⁻¹·cm⁻¹), 545 (23.4), 509 (6.85), 403 (3.17) nm; MS (FAB⁺): *m/z* 647 (M⁺+1); HRMS (FAB⁺): Calcd for C₃₈H₃₆B₂F₄N₄+H⁺, 647.3140. Found: 647.3137.

Ethyl 3-(4-*tert*-butylbenzoyl)-4,7-dihydro-4,7-ethano-2*H*-isoindole-1-carboxylate (11): 4-*tert*-Butylbenzoic acid (5.36 g, 30.1 mmol) was added to trifluoroacetic anhydride (4.2 ml, 30.0 mmol) at room temperature under an inert atmosphere and the mixture was stirred for 15min. After the vessel was wrapped with an aluminum foil, trifluoroacetic acid (2.7 ml, 35.3 mmol) and ethyl 4,7-dihydro-4,7-ethano-2*H*-isoindole-1-carboxylate (1; 2.17 g, 9.99 mmol) were successively added. The mixture was stirred at room temperature for 3 days. The reaction was quenched by the addition of aqueous saturated NaHCO₃ and the resulted mixture was extracted with CHCl₃. The organic extract was washed with aqueous saturated NaHCO₃, water, and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was chromatographed on silica gel (Rf, 0.10; CH₂Cl₂) and alumina (Rf, 0.45; CH₂Cl₂) to give 2.91 g (77%) of the title compound as white solid; mp, 138 °C; ¹H NMR: δ 9.20 (br s, 1H), 7.74 (m, 2H), 7.52 (m, 2H), 6.54 (m, 1H), 6.43 (m, 1H), 4.45 (m, 1H), 4.37 (m, 2H), 3.84 (m, 1H), 1.64-1.44 (m, 4H), 1.41 (t, 3H, *J* = 7.1 Hz), 1.39 (s, 9H); ¹³C NMR: δ 186.01, 161.21, 156.40, 137.54, 137.09, 136.37, 136.09, 135.23, 129.32, 125.57, 125.02, 118.24, 61.07, 35.55, 34.87, 33.93, 31.60, 26.58, 26.55, 14.87; IR (KBr): v_{max} 3313, 1697, 1628, 1281 cm⁻¹; MS (MALDI-TOF): *m*/*z* 378 (M+H⁺), 349 (M⁺-C₂H₄). Anal. Calcd for C₂₄H₂₇NO₃: C, 76.36; H, 7.21; N, 3.71. Found: C, 76.13; H, 7.20; N, 3.76.

Ethyl 3-[(4-*tert*-butylphenyl)hydroxymethyl]-4,7-dihydro-4,7-ethano-2*H*-isoindole-1-carboxylate (12): To a stirred solution of ketone 11 (1.12 g, 2.98 mmol) in dry THF (30 ml) and dry MeOH (10 ml) was added NaBH₄ (0.375 g, 9.91 mmol) at 0 °C under an inert atmosphere and then the mixture was stirred at room temperature for 2 h. The mixture was quenched with water and the mixture was extracted with EtOAc. The organic extract was washed with water and brine, dried over Na₂SO₄, and concentrated. The residue was recrystallized from CHCl₃/hexane to give 1.084 g (95%) of the title compound as a mixture of diastereomers: white solid; mp, 170 °C (decomp.); ¹H NMR: δ 8.67–8.34 (m, 1H), 7.37 (m, 2H), 7.29 (m, 2H), 6.50–6.33 (m, 2H), 5.88 (m, 1H), 4.32 (m, 1H), 4.27 (m, 2H), 3.54 (m, 1H), 2.49–2.19 (m, 1H), 1.60–1.38 (m, 4H), 1.34 (m, 3H), 1.32 (m, 9H); IR (KBr): v_{max} , 3360, 3332, 1681, 1639 cm⁻¹; MS (MALDI-TOF): *m/z* 362 (M⁺+1–H₂O). Anal. Calcd for C₂₄H₂₉NO₃+1/6 CHCl₃: C, 72.68; H, 7.36; N, 3.51. Found: C, 72.66; H, 7.16; N, 3.60.

Ethyl 3-[acetoxy(4-*tert*-butylphenyl)methyl]-4,7-dihydro-4,7-ethano-2*H*-isoindole-1-carboxylate (13): To a stirred solution of alcohol 12 (0.759 g, 2.00 mmol) and 4-(N,N-dimethylamino)pyridine (0.038 g, 0.307 mmol) in dry $CH_2Cl_2(28 \text{ ml})$ was added acetic anhydride (1.9 ml, 20.1 mmol) at room temperature under an inert atmosphere and the mixture was stirred for 30 min. The reaction mixture was washed with aqueous saturated NaHCO₃, water, and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue

was chromatographed on silica gel (Rf, 0.6; 40% EtOAc/hexane) to give 0.840 g (99 %) of the title compound as a mixture of diastereomers: white solid; mp, 170 °C (decomp.); ¹H NMR: δ 8.32 (m, 1H), 7.42–7.34 (m, 2H), 7.30–7.24 (m, 2H), 6.93 (m, 1H), 6.46 (m, 1H), 6.39 (m, 1H), 4.35–4.23 (m, 3H), 3.57 (s, 1H), 2.14 (m, 3H), 1.68–1.38 (m, 4H), 1.38–1.33 (m, 3H), 1.32 (s, 9H); IR (KBr): v_{max} , 3309, 1747, 1660, 1219 cm⁻¹; HRMS (FAB⁺): Calcd for C₂₆H₃₂NO₄+H⁺, 422.2326. Found: 422.2322. Anal. Calcd for C₂₆H₃₂NO₄+1/3H₂O: C, 73.04; H, 7.47; N, 3.28. Found: C, 72.89; H, 7.42; N, 3.32.

Diethyl 3,7-bis[(3-ethoxycarbonyl-4,7-dihydro-4,7-ethano-2*H*-isoindolyl)(4-*tert*-butylphenyl)methyl]-4,8-dihydro-4,8-ethanopyrrolo[3,4-*f*]isoindole-1,5-dicarboxylate (14): To a stirred solution of acetate 13 (0.847 g, 2.01 mmol) and *anti*-dipyrrole *anti*-2 (0.329 g, 1.00 mmol) in acetic acid (26 ml) was added *p*-toluenesulfonic acid monohydrate (0.10 g, 0.53 mmol) at room temperature in the dark. After being stirred for 3 h, the mixture was quenched by addition of water. The mixture was extracted with EtOAc. The organic extract was washed with water and brine, dried over Na₂SO₄, and concentrated. The residue was chromatographed on silica gel (Rf, 0.5, 40% EtOAc/hexane) to give 1.040 g (99%) of the title compound as a mixture of diastereomers: white powder; mp, 170 °C (decomp.); ¹H NMR: δ 8.04 (m, 4H), 7.36–7.27 (m, 4H), 7.15–7.01 (m, 4H), 6.49–5.99 (m, 4H), 5.56–5.16 (m, 2H), 4.45–4.03 (m, 12H), 3.24–2.94 (m, 2H), 1.56–1.34 (m, 8H), 1.34–1.11 (m, 34H); ¹³C NMR (typical signals): δ 161.75, 150.35, 150.20, 150.10, 137.9–135.1, 129.3–125.5, 113.3–112.5, 59.85, 59.77, 34.47, 33.78, 32.40, 31.33, 30.63, 28.08, 27.97, 26.7–26.1, 14.46; IR (KBr): v_{max} , 3448, 1697, 1508, 1234 cm⁻¹; MS (MALDI-TOF): *m/z* 1022 [M⁺+H–(C₂H₄)], 978 [M⁺+H–(C₂H₄)]. Anal. Calcd for C₆₆H₇₄N₄O₈: C, 75.40; H, 7.09; N, 5.33. Found: C, 75.30; H, 7.09; N, 5.42.

1,5-Dimethyl-3,7-bis[(3-methyl-4,7-dihydro-4,7-ethano-2*H*-isoindolyl)(4-*tert*-butyl-phenyl)methyl]-4,8-dihydro-4,8-ethanopyrro lo[3,4-*f*]isoindole (15): Tetra ester 14 (0.526 g, 0.500 mmol) was reduced with LiAlH₄ to give 0.351 g (86%) of the title compound as a mixture of diastereomer: orange solid, ¹H NMR (CD₂Cl₂): δ 7.7–6.8 (br m, 10H), 6.5–6.2 (br m, 4H), 3.67 (br m, 4H), 3.2–3.0 (br m, 2H), 2.7–2.6 (br m, 2H), 2.0–1.3 (12H), 1.32 (m, 18H); IR (KBr): *v*_{max}, 3456, 3417, 2951, 2861 cm⁻¹; MS (FAB⁺): *m*/*z* 819 (M⁺+1), 818 (M⁺), 817 (M⁺–1). HRMS (FAB⁺): Calcd for C₅₈H₆₆N₄+H⁺, 819.5366. Found: 819.5354.

X-ray experiment

Table S1. Crystallographic summary

	syn-6a	anti-6a·PhCl ^a	syn-6b·CHCl ₃	anti-6b·2CHCl ₃	syn-7·PhMe
crystal formula	$C_{34}H_{40}B_2F_4N_4$	$\begin{array}{c} C_{40}H_{45}ClB_{2}F_{4}N_{4}\\ [C_{34}H_{40}B_{2}F_{4}N_{4}] \end{array}$	$C_{39}H_{37}B_2Cl_3F_4N_4$	$C_{40}H_{38}B_2Cl_6F_4N_4$	$C_{39}H_{44}B_2F_4N_4$
space group	Pbca	$P2_{l}/c$	$P2_{l}/c$	$P2_l/c$	$P2_{l}/c$
<i>a</i> [Å]	16.8468(3)	24.4208(4)	16.5658(16)	13.753(3)	11.0884(3)
b[Å]	14.7846(2)	11.8609(2)	15.3933(15)	13.110(3)	23.5088(9)
<i>c</i> [Å]	24.5438(4)	29.0741(5)	14.3780(12)	25.759(5)	13.9282(5)
$\alpha[^{\circ}]$	90	90	90	90	90
β [°]	90	118.0000(10)	95.115(4)	119.635(3)	102.6061(14)
γ[°]	90	90	90	90	90
V[Å ³]	6113.20(17)	7435.6(2)	3651.8(6)	4036.9(15)	3543.2(2)
Ζ	8	8	4	4	4
Radiation	Cu <i>Ka</i>	Cu <i>Ka</i>	CuKa	ΜοΚα	CuKa
μ [mm ⁻¹]	0.766	0.630 [0.629]	2.741	0.480	0.712
unique reflns	5591	13133 [13133]	6636	9252	6472
obsd reflns	4660	10614 [10180]	2317	7147	4116
R _{equiv}	0.0504	0.0469 [0.0471]	0.0901	0.0350	0.0572
Parameters (restrained)	398 (0)	1193 (711) [810 (1)]	512 (388)	584 (0)	613 (527)
$R_{I}[I > 2\sigma(I)]$	0.0421	0.0438 [0.0455]	0.0975	0.0600	0.0785
wR_2 (All)	0.1109	0.1326 [0.1302]	0.2239	0.1722	0.2203
GOF	1.075	1.177 [1.135]	1.103	1.078	1.059
T[K]	100	100	100	100	100
CCDC No	864644	864645, [865408] ^a	864646	864647	864648

^{*a*} The structure of bis-BODIPY *anti*-**6a** ($C_{34}H_{40}B_2F_4N_4$) is also refined without the solvent molecules by Platon Squeeze. The data based on the Squeeze result is shown in brackets.

	anti- $7 \cdot 2C_{10}H_7Cl^a$	$16 \cdot 2CHCl_3$	16 · PhCl	$17 \cdot PhCl \cdot 1/2i \cdot PA$
crystal formula	$C_{52}H_{50}B_2Cl_2F_4N_4$	$C_{60}H_{62}B_2Cl_6F_4N_4$	$C_{64}H_{65}B_2ClF_4N_4$	$C_{123}H_{122}B_4Cl_2F_8N_4O$
space group	P-1	$P2_{I}/c$	$P2_{l}/c$	P-1
<i>a</i> [Å]	7.944(3)	11.3126(2)	11.247(4)	12.9946(3)
<i>b</i> [Å]	10.964(4)	29.2235(6)	27.084(9)	13.0045(3)
<i>c</i> [Å]	13.432(4)	17.1103(3)	17.815(6)	17.9199(4)
<i>α</i> [°]	98.902(13)	90	90	74.7391(8)
β [°]	93.514(13)	92.3136(11)	94.678(6)	88.1657(9)
γ[°]	104.888(14)	90	90	62.0910(10)
V[Å ³]	1110.7(7)	5651.93(18)	5409(3)	2566.87(11)
Ζ	1	4	4	1
Radiation	ΜοΚα	Cu <i>Ka</i>	ΜοΚα	Cu <i>Ka</i>
μ [mm ⁻¹]	0.0530	3.230	0.0439	1.148
unique reflns	5031	10206	12384	9258
obsd reflns	3071	7145	9355	8081
Requiv	0.0530	0.0511	0.0439	0.0474
Parameters (restrained)	293 (0)	870 (867)	733 (243)	739 (269)
R_{I} [I > 2 σ (I)]	0.1653	0.0667	0.0619	0.0554
wR_2 (All)	0.3974	0.1916	0.1538	0.1572
GOF	1.233	1.064	1.082	1.085
T[K]	100	100	100	100
CCDC No	864649	864650	864651	864652

Table S1 (continued). Crystallographic summary

^{*a*} The crystal is treated as twin.

Figure S1. UV (blue) and fluorescence (red) spectra of syn-6b

Figure S2. UV (blue) and fluorescence (red) spectra of syn-8

Figure S3. UV (blue) and fluorescence (red) spectra of syn-9

Figure S4. UV (blue) and fluorescence (red) spectra of anti-6b

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

TD-DFT calculation

Excitation energies and oscillator strengths

syn-6a, HOMO-2: 157; HOMO(s): 158, HOMO(a): 159; LUMO(s): 160, LUMO(a): 161

Excited State 1: Singlet-A 2.5245 eV 491.12 nm f=0.0602

- 158 ->161 -0.36991
- 159 ->160 0.58579

This state for optimization and/or second-order correction. Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 2.5492 eV 486.37 nm f=0.0035

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

158 ->160 159 ->161	0.52490 -0.47689			
Excited State 3: 157 ->160 158 ->161 159 ->160	Singlet-A -0.24261 0.51376 0.24716	2.8622 eV	433.17 nm	f=0.4961
Excited State 4: 156 ->160 157 ->161 158 ->160 159 ->161	Singlet-A 0.16358 -0.35888 0.31784 0.36885	2.9756 eV	416.67 nm	f=0.2811
Excited State 5: 157 ->160 158 ->161 159 ->160	Singlet-A 0.63422 0.16025 0.13081	3.1089 eV	398.80 nm	f=0.4206
Excited State 6: 155 ->161 156 ->160 157 ->161 158 ->160 159 ->161	Singlet-A 0.15030 0.21828 0.56721 0.13904 0.17223	3.3502 eV	370.08 nm	f=0.1205
Excited State 7: 155 ->160 156 ->161	Singlet-A 0.55006 0.36946	3.4806 eV	356.22 nm	f=0.0134
Excited State 8: 155 ->161 156 ->160 157 ->161 158 ->160 159 ->161	Singlet-A 0.25535 0.53882 -0.12497 -0.14065 -0.16247	3.5032 eV	353.91 nm	f=0.3317
Excited State 9: 154 ->160 155 ->161 156 ->160	Singlet-A 0.58307 -0.30611 0.17111	3.6999 eV	335.10 nm	f=0.0135
Excited State 10: 154 ->161 155 ->160 156 ->161	Singlet-A 0.39649 -0.30831 0.47698	3.7073 eV	334.43 nm	f=0.0283
Excited State 11: 154 ->160 155 ->161 156 ->160	Singlet-A 0.35486 0.53590 -0.28200	3.8143 eV	325.05 nm	f=0.0114
Excited State 12: 154 ->161 155 ->160 156 ->161	Singlet-A 0.56565 0.26470 -0.31711	3.8503 eV	322.01 nm	f=0.0066
Excited State 13: 152 ->160 153 ->161	Singlet-A 0.61241 -0.33044	4.8175 eV	257.36 nm	f=0.0078
Excited State 14: 152 ->161 153 ->160	Singlet-A -0.34117 0.60836	4.8185 eV	257.31 nm	f=0.0029
Excited State 15: 152 ->160	Singlet-A 0.25352	5.0245 eV	246.76 nm	f=0.0401

153 ->161 158 ->163 159 ->162	0.5719 0.1403 -0.18540	7 3)		
Excited State 152 ->161 153 ->160 158 ->162 159 ->163	16: Singlet-A 0.5623' 0.2587 -0.18756 0.1573'	5.0515 eV 7 1 5 7	7 245.44 nm	f=0.0491
Excited State 150 ->161 151 ->160	17: Singlet-A -0.40720 0.56622	5.1916 eV) 2	7 238.82 nm	f=0.0000
Excited State 149 ->161 150 ->160 151 ->161	18: Singlet-A 0.1016 0.54810 -0.42402	5.1976 eV 9 0	7 238.54 nm	f=0.0000
Excited State 149 ->160 150 ->161 151 ->160	19: Singlet-A 0.5675' 0.3022' 0.2773	5.4937 eV 7 1	7 225.68 nm	f=0.0003
Excited State 149 ->161 150 ->160 151 ->161	20: Singlet-A 0.42160 0.29243 0.46955	5.5850 eV 0 8 8	7 222.00 nm	f=0.0002
anti 60 HOM	A 2. 157. HOMO	(a), 159 UO	MO(a), 150, I	IMO (a), 160 I IMO (a), 161
Excited State	1: Singlet-A	2.5669 eV	483.01 nm	f=0.0015
158 ->160	0.5330	3		
This state for op	otimization and/or	second-order co	rrection.	
Copying the exc	cited state density	for this state as	the 1-particle F	RhoCI density.
Excited State 158 ->161 159 ->160	2: Singlet-A 0.4424' 0.5426:	2.5695 eV 7 5	482.52 nm	f=0.0564
Excited State 156 ->160 157 ->161 158 ->161 159 ->160	3: Singlet-A 0.11280 0.17855 0.46235 -0.34316	2.8830 eV 0 8 5	7 430.06 nm	f=0.9828
Excited State 156 ->161 157 ->160 158 ->160 159 ->161	4: Singlet-A 0.1306 0.4328 0.2612 -0.37493	2.9326 eV 0 3 5	7 422.77 nm	f=0.0611
Excited State 157 ->161 158 ->161	5: Singlet-A 0.6547 -0.12155	3.2248 eV	7 384.47 nm	f=0.4103
Excited State 155 ->160 156 ->161 157 ->160 158 ->160 159 ->161	6: Singlet-A 0.1562 -0.14230 0.51920 -0.23397 0.2128	3.2841 eV 1) 6 7	7 377.53 nm	f=0.1067
Excited State 155 ->161	7: Singlet-A -0.36692	3.4855 eV	7 355.72 nm	f=0.1851

Excited State 8: 155 ->160 156 ->161 158 ->160 159 ->161	Singlet-A 0.47505 -0.40630 0.11147 -0.12519	3.5105 eV	353.18 nm	f=0.0151
Excited State 9: 154 ->160 155 ->161 156 ->160	Singlet-A 0.53264 0.35774 0.24203	3.7112 eV	334.08 nm	f=0.0231
Excited State 10: 154 ->161 155 ->160 156 ->161	Singlet-A 0.44675 0.32671 0.40630	3.7179 eV	333.48 nm	f=0.0175
Excited State 11: 154 ->160 155 ->161 156 ->160	Singlet-A -0.43636 0.45211 0.31710	3.8315 eV	323.59 nm	f=0.0054
Excited State 12: 154 ->161 155 ->160 156 ->161	Singlet-A 0.52089 -0.33840 -0.32663	3.8462 eV	322.36 nm	f=0.0031
Excited State 13: 152 ->161 153 ->160	Singlet-A -0.36605 0.59607	4.8534 eV	255.46 nm	f=0.0005
Excited State 14: 152 ->160 153 ->161	Singlet-A 0.52739 -0.46783	4.8623 eV	254.99 nm	f=0.0006
Excited State 15: 152 ->161 153 ->160 158 ->163 159 ->162	Singlet-A 0.54880 0.29144 0.14216 -0.18658	5.0277 eV	246.60 nm	f=0.0128
Excited State 16: 152 ->160 153 ->161 158 ->162 159 ->163	Singlet-A 0.39658 0.46587 0.18477 -0.16201	5.0358 eV	246.21 nm	f=0.0824
Excited State 17: 150 ->161 151 ->160	Singlet-A -0.45647 0.52461	5.2155 eV	237.72 nm	f=0.0006
Excited State 18: 150 ->160 151 ->161	Singlet-A 0.51150 -0.46828	5.2181 eV	237.60 nm	f=0.0000
Excited State 19: 149 ->160 150 ->161 151 ->160	Singlet-A 0.53299 -0.30291 -0.33375	5.5320 eV	224.12 nm	f=0.0001
Excited State 20: 149 ->161 150 ->160 151 ->161	Singlet-A 0.47217 -0.29995 -0.41657	5.5783 eV	222.26 nm	f=0.0004
syn-7, HOMO: 15 Excited State 1: 151 ->152	1; LUMO: 152 Singlet-A 0.59919	2.1893 eV	566.32 nm	f=1.2907

This state for optimization and/or second-order correction. Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: 150 ->152 151 ->153	Singlet-A 0.25165 0.63318	2.2406 eV	553.36 nm	f=0.0451
Excited State 3: 148 ->152 150 ->152 151 ->153 151 ->154	Singlet-A 0.12145 0.56141 -0.12525 -0.27611	2.8397 eV	436.61 nm	f=0.1228
Excited State 4: 149 ->152 150 ->153	Singlet-A 0.11031 0.65055	3.0189 eV	410.69 nm	f=0.0137
Excited State 5: 148 ->152 149 ->153 151 ->154	Singlet-A 0.55714 0.15576 0.35244	3.2134 eV	385.84 nm	f=0.0088
Excited State 6: 148 ->153 149 ->152 150 ->153	Singlet-A 0.17221 0.64587 -0.10882	3.2539 eV	381.03 nm	f=0.0162
Excited State 7: 147 ->152 148 ->152 150 ->152 151 ->154	Singlet-A 0.21319 -0.34347 0.17309 0.45466	3.4693 eV	357.38 nm	f=0.2317
Excited State 8: 148 ->153 149 ->152 150 ->154	Singlet-A 0.66088 -0.19927 -0.10164	3.7069 eV	334.47 nm	f=0.0444
Excited State 9: 147 ->152 148 ->152 149 ->153	Singlet-A -0.12204 -0.15817 0.66583	3.7266 eV	332.70 nm	f=0.0469
Excited State 10: 146 ->152 148 ->153 150 ->154	Singlet-A 0.14823 0.10196 0.66228	3.8645 eV	320.83 nm	f=0.2249
Excited State 11: 147 ->152 149 ->153 151 ->154	Singlet-A 0.62902 0.10179 -0.16412	3.9003 eV	317.88 nm	f=0.0215
Excited State 12: 146 ->152 147 ->153	Singlet-A -0.30084 0.60242	4.0944 eV	302.81 nm	f=0.3227
Excited State 13: 146 ->152 147 ->153 147 ->154 150 ->154	Singlet-A 0.55765 0.25538 -0.22130 -0.11633	4.2558 eV	291.33 nm	f=0.0029
Excited State 14: 145 ->152 146 ->153	Singlet-A -0.17860 0.65987	4.5342 eV	273.44 nm	f=0.0088

Excited State 15: 149 ->154	Singlet-A 0.69497	4.7282 eV	262.22 nm	f=0.0095
Excited State 16: 148 ->154	Singlet-A 0.68897	4.7359 eV	261.80 nm	f=0.0120
Excited State 17: 145 ->152 146 ->153 150 ->155 151 ->157	Singlet-A 0.63076 0.12131 -0.10789 -0.16353	4.9549 eV	250.23 nm	f=0.0522
Excited State 18: 144 ->152 145 ->153 147 ->154 151 ->155	Singlet-A 0.16520 0.45646 0.31956 0.36269	5.1060 eV	242.82 nm	f=0.0896
Excited State 19: 144 ->152 145 ->153 146 ->152 147 ->154 151 ->156	Singlet-A -0.30575 0.42059 -0.10043 -0.37981 -0.22363	5.1607 eV	240.25 nm	f=0.0634
Excited State 20: 142 ->153 143 ->152	Singlet-A -0.25498 0.63111	5.2992 eV	233.97 nm	f=0.0002
anti-7, HOMO: 15 Excited State 1: 151 ->152 This state for optimic Copying the excited	1; LUMO: 152 Singlet-A 0.59308 zation and/or seco state density for t	1.9399 eV ond-order cor this state as th	639.13 nm rection. ne 1-particle F	f=1.0350 RhoCI density.
Excited State 2: 150 ->152 151 ->153	Singlet-A 0.52544 -0.47088	2.3966 eV	517.33 nm	f=0.0000
Excited State 3: 148 ->152 149 ->152	Singlet-A 0.28791 0.13041	2.8726 eV	431.61 nm	f=0.0005

150 ->152 0.33593 150 ->154 -0.10501 151 ->153 0.39159 Excited State 4: Singlet-A 3.0350 eV 408.52 nm f=0.0806 148 ->152 -0.16277 149 ->152 0.49336 151 ->154 0.42139 Excited State 5: 3.1097 eV 398.71 nm f=0.3511 Singlet-A 147 ->152 0.12265 149 ->152 -0.41424 0.49724 151 ->154 Excited State 6: Singlet-A 3.1557 eV 392.89 nm f=0.0024 148 ->152 0.58365 149 ->152 0.14541 150 ->152 -0.14669 150 ->154 0.11288 151 ->153 -0.19172

Excited State	7:	Singlet-A	3.3388 eV	371.34 nm	f=0.4700
147 ->152		-0.18176			
150 ->153		0.63741			

Excited State 8: 147 ->152 150 ->153 151 ->154	Singlet-A 0.62297 0.15239 -0.11338	3.7526 eV	330.40 nm	f=0.2497
Excited State 9: 149 ->153 150 ->154	Singlet-A 0.12964 0.65393	3.7965 eV	326.58 nm	f=0.0001
Excited State 10: 149 ->153 150 ->154	Singlet-A 0.65923 -0.12875	3.9882 eV	310.87 nm	f=0.0048
Excited State 11: 146 ->152 148 ->153	Singlet-A -0.16279 0.64665	4.0253 eV	308.01 nm	f=0.0821
Excited State 12: 146 ->152 147 ->154 148 ->153	Singlet-A 0.62238 0.14685 0.18889	4.0367 eV	307.14 nm	f=0.1203
Excited State 13: 147 ->153	Singlet-A 0.68326	4.3072 eV	287.85 nm	f=0.0000
Excited State 14: 145 ->152 146 ->153 148 ->154 149 ->154	Singlet-A 0.46608 -0.21310 0.16672 0.43116	4.6195 eV	268.39 nm	f=0.0056
Excited State 15: 145 ->152 146 ->153 149 ->154	Singlet-A -0.38797 0.18586 0.53998	4.6252 eV	268.06 nm	f=0.0135
Excited State 16: 145 ->152 148 ->154	Singlet-A -0.12606 0.67715	4.6486 eV	266.71 nm	f=0.0051
Excited State 17: 145 ->152 146 ->153 151 ->155	Singlet-A 0.21854 0.59885 0.20536	4.8519 eV	255.54 nm	f=0.0001
Excited State 18: 144 ->152 146 ->152 147 ->154 151 ->156	Singlet-A 0.46936 -0.10250 0.43312 0.21670	5.0200 eV	246.98 nm	f=0.1081
Excited State 19: 142 ->153 143 ->152	Singlet-A -0.16010 0.67056	5.1434 eV	241.05 nm	f=0.0003
Excited State 20: 142 ->152 143 ->153 144 ->152 147 ->154 151 ->157 Syn-9 HOMO: 145	Singlet-A 0.58895 -0.17237 0.20535 -0.16884 0.10092	5.2157 eV	237.71 nm	f=0.0216

Excited State 1: Singlet-A

1.9858 eV 624.34 nm f=1.3464 145 ->146 0.59412

This state for optimization and/or second-order correction.

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: 144 ->146 145 ->147	Singlet-A -0.25822 0.62565	2.0183 eV	614.31 nm	f=0.0512
Excited State 3: 144 ->146 145 ->147 145 ->148	Singlet-A 0.54990 0.11435 -0.33052	2.6576 eV	466.53 nm	f=0.1837
Excited State 4: 144 ->147	Singlet-A 0.65821	2.7923 eV	444.03 nm	f=0.0442
Excited State 5: 140 ->146 144 ->146 145 ->148	Singlet-A 0.11187 0.21126 0.56584	3.0683 eV	404.09 nm	f=0.0989
Excited State 6: 141 ->146 142 ->146 145 ->149	Singlet-A 0.10123 0.20375 0.64276	3.4639 eV	357.93 nm	f=0.0077
Excited State 7: 141 ->147 142 ->147 143 ->146 145 ->150	Singlet-A -0.10937 -0.10951 0.47371 0.47173	3.5747 eV	346.84 nm	f=0.0019
Excited State 8: 142 ->146 144 ->148	Singlet-A 0.19164 0.65902	3.5810 eV	346.22 nm	f=0.0881
Excited State 9: 141 ->146 142 ->146 143 ->147 145 ->149	Singlet-A 0.56231 0.24539 -0.22020 -0.19271	3.7125 eV	333.97 nm	f=0.0375
Excited State 10: 143 ->146 145 ->150	Singlet-A -0.45958 0.46889	3.7747 eV	328.46 nm	f=0.1813
Excited State 11: 140 ->147 141 ->146 142 ->146 143 ->147 144 ->148 145 ->149	Singlet-A 0.19866 -0.23507 0.54437 0.13638 -0.15281 -0.10362	3.8278 eV	323.90 nm	f=0.0872
Excited State 12: 140 ->146 141 ->147	Singlet-A 0.65911 0.15730	3.8457 eV	322.40 nm	f=0.0100
Excited State 13: 140 ->147 141 ->146 143 ->147	Singlet-A 0.34924 0.25237 0.49233	3.9883 eV	310.87 nm	f=0.2307
Excited State 14: 141 ->147 142 ->147 144 ->149	Singlet-A -0.22120 0.62560 0.12417	4.1094 eV	301.71 nm	f=0.0237
Excited State 15: 140 ->146	Singlet-A -0.14699	4.1415 eV	299.37 nm	f=0.0204

141 ->147 142 ->147 143 ->146		0.62421 0.21841 0.16184			
Excited State 140 ->147 141 ->146 142 ->146 143 ->147	16:	Singlet-A 0.52701 -0.12359 -0.12329 -0.40291	4.1724 eV	297.15 nm	f=0.0169
Excited State 139 ->146 144 ->149	17:	Singlet-A 0.65598 0.13643	4.2216 eV	293.69 nm	f=0.0103
Excited State 139 ->146 142 ->147 144 ->149	18:	Singlet-A -0.12164 -0.11461 0.65198	4.3776 eV	283.22 nm	f=0.1548
Excited State 138 ->146 139 ->147 144 ->150	19:	Singlet-A 0.13746 -0.37137 0.55492	4.4667 eV	277.58 nm	f=0.0003
Excited State 138 ->146 139 ->147 140 ->147 140 ->148 144 ->150	20:	Singlet-A -0.22764 0.48441 0.10345 0.14332 0.37307	4.5217 eV	274.20 nm	f=0.0803
<i>anti-9</i> , HOMO Excited State): 145 ; 1:	LUMO: 146 Singlet-A	1.7631 eV	703.21 nm	f=1.1956
145 ->146 This state for op	otimiza	0.58401 ation and/or sec	ond-order cori	rection.	
145 ->146 This state for op Copying the exc	otimiza cited s	0.58401 ation and/or sec tate density for	cond-order corr this state as th	rection. e 1-particle F	RhoCI density.
145 ->146 This state for op Copying the exc Excited State 144 ->146 145 ->147	otimiza cited s 2:	0.58401 ation and/or sec tate density for Singlet-A 0.49465 0.50546	cond-order corr this state as th 2.1593 eV	rection. e 1-particle F 574.19 nm	RhoCI density. f=0.0000
145 ->146 This state for op Copying the exc Excited State 144 ->146 145 ->147 Excited State 144 ->146 145 ->147	otimiza cited s 2: 3:	0.58401 ation and/or sector singlet-A 0.49465 0.50546 Singlet-A 0.40898 -0.39048	cond-order corr this state as th 2.1593 eV 2.6958 eV	rection. e 1-particle F 574.19 nm 459.91 nm	RhoCI density. f=0.0000 f=0.0000
145 ->146 This state for op Copying the exc Excited State 144 ->146 145 ->147 Excited State 144 ->146 145 ->147 Excited State 142 ->146 145 ->148	otimiza cited s 2: 3: 4:	0.58401 ation and/or sectate density for Singlet-A 0.49465 0.50546 Singlet-A 0.40898 -0.39048 Singlet-A 0.10754 0.65843	cond-order corr this state as th 2.1593 eV 2.6958 eV 2.8615 eV	rection. e 1-particle F 574.19 nm 459.91 nm 433.28 nm	RhoCI density. f=0.0000 f=0.0000 f=0.3398
145 ->146 This state for op Copying the exc Excited State 144 ->146 145 ->147 Excited State 144 ->146 145 ->147 Excited State 142 ->146 145 ->148 Excited State 140 ->146 140 ->146 144 ->147	otimiza cited s 2: 3: 4: 5:	0.58401 ation and/or sectate density for Singlet-A 0.49465 0.50546 Singlet-A 0.40898 -0.39048 Singlet-A 0.65843 Singlet-A -0.11168 0.65698	cond-order corr this state as th 2.1593 eV 2.6958 eV 2.8615 eV 3.0604 eV	rection. e 1-particle F 574.19 nm 459.91 nm 433.28 nm 405.12 nm	RhoCI density. f=0.0000 f=0.0000 f=0.3398 f=0.3121
145 ->146 This state for op Copying the exc Excited State 144 ->146 145 ->147 Excited State 144 ->146 145 ->147 Excited State 142 ->148 Excited State 140 ->146 144 ->147 Excited State 141 ->147 Excited State 141 ->147	 bitimiza 2: 3: 4: 5: 6: 	0.58401 ation and/or sectate density for Singlet-A 0.49465 0.50546 Singlet-A 0.40898 -0.39048 Singlet-A 0.65843 Singlet-A -0.11168 0.65698 Singlet-A -0.10110 0.52895 0.42704	cond-order corr this state as th 2.1593 eV 2.6958 eV 2.8615 eV 3.0604 eV 3.4314 eV	rection. e 1-particle F 574.19 nm 459.91 nm 433.28 nm 405.12 nm 361.32 nm	RhoCI density. f=0.0000 f=0.0000 f=0.3398 f=0.3121 f=0.0083
145 ->146 This state for op Copying the exc Excited State 144 ->146 145 ->147 Excited State 144 ->146 145 ->147 Excited State 142 ->146 145 ->148 Excited State 140 ->146 144 ->147 Excited State 141 ->147 143 ->149 Excited State 141 ->149 Excited State	 bitimiza 2: 3: 4: 5: 6: 7: 	0.58401 ation and/or sectate density for Singlet-A 0.49465 0.50546 Singlet-A 0.40898 -0.39048 Singlet-A 0.65843 Singlet-A -0.11168 0.65698 Singlet-A -0.10110 0.52895 0.42704 Singlet-A 0.49046 -0.11286 -0.46486	cond-order corr this state as th 2.1593 eV 2.6958 eV 2.8615 eV 3.0604 eV 3.4314 eV 3.4726 eV	rection. e 1-particle F 574.19 nm 459.91 nm 433.28 nm 405.12 nm 361.32 nm 357.04 nm	RhoCI density. f=0.0000 f=0.0000 f=0.3398 f=0.3121 f=0.0083 f=0.0000

Excited State 9: 142 ->146 143 ->146 145 ->149	Singlet-A -0.34168 -0.33690 0.47610	3.5740 eV	346.91 nm	f=0.3632
Excited State 10: 141 ->146 144 ->148 145 ->150	Singlet-A 0.46306 -0.17789 0.45604	3.6175 eV	342.74 nm	f=0.0000
Excited State 11: 140 ->146 142 ->146 143 ->146 145 ->149	Singlet-A -0.21163 0.54112 -0.23488 0.21740	3.6494 eV	339.74 nm	f=0.0495
Excited State 12: 140 ->146 142 ->146	Singlet-A 0.62154 0.16231	3.7254 eV	332.81 nm	f=0.1394
Excited State 13: 139 ->146 140 ->147	Singlet-A 0.66370 -0.10353	4.0355 eV	307.24 nm	f=0.0000
Excited State 14: 140 ->147 142 ->147 143 ->147 144 ->149	Singlet-A -0.45254 0.16864 0.47000 -0.10508	4.1352 eV	299.82 nm	f=0.0000
Excited State 15: 137 ->146 140 ->147 142 ->147 143 ->147 144 ->149	Singlet-A -0.11116 -0.11699 0.55384 -0.24790 0.27122	4.3192 eV	287.06 nm	f=0.0000
Excited State 16: 141 ->147 143 ->146 144 ->150	Singlet-A 0.59326 0.11076 0.32215	4.3528 eV	284.84 nm	f=0.0213
Excited State 17: 140 ->147 141 ->146 142 ->147 143 ->147 144 ->149	Singlet-A 0.46646 0.11087 0.32827 0.27332 -0.23793	4.3929 eV	282.23 nm	f=0.0000
Excited State 18: 141 ->147 144 ->150	Singlet-A -0.30440 0.59128	4.4337 eV	279.64 nm	f=0.1897
Excited State 19: 140 ->147 143 ->147 144 ->149	Singlet-A 0.17082 0.30555 0.56591	4.4407 eV	279.20 nm	f=0.0000
Excited State 20: 138 ->146 139 ->147 140 ->148 141 ->147	Singlet-A 0.61206 0.19318 -0.15254 -0.10919	4.4871 eV	276.31 nm	f=0.1255

Figure S1. The calculated frontier orbitals of syn-6a (left) and anti-6a (right)

Figure S2. The calculated frontier orbitals of syn-9 (left) and anti-9 (right)

Hückel-type calculation

Figure S3. The Hückel LUMOs of the *syn/anti* isomers of **7**. Only the atoms contained in the π -electron system are considered, and the nitrogen atoms are replaced by sp² carbon atoms to emphasize the effect of topology. The presence and absence of the interaction between the LUMOs of the two BODIPY moieties are indicated by the AO coefficients of fused benzo atoms (marked with arrows). The orbital energy of the *anti* isomer is slightly lower than that of the *syn* isomer.