Electronic Supplementary Information

#### Disila-analogues of the synthetic retinoids EC23 and TTNN: synthesis, structure and biological evaluation

#### Josef B. G. Gluyas,<sup>a</sup> Christian Burschka,<sup>a</sup> Steffen Dörrich,<sup>a</sup> Judith Vallet,<sup>b</sup> Hinrich Gronemeyer<sup>b</sup> and Reinhold Tacke<sup>\*a</sup>

<sup>a</sup>Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
 <sup>b</sup>Department of Cancer Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)
 CNRS/INSERM/ULP, BP 10142, F-67404 Illkirch Cedex, C.U. de Strasbourg, France.

\**E-mail:* r.tacke@uni-wuerzburg.de; Fax +49-931-31-84609; Phone: +49-931-31-85250.

| Table S1 | Crystallographic data and experimental parameters for the crystal structure analyses of <b>5a</b> , <b>5b</b> and <b>8b</b> . |
|----------|-------------------------------------------------------------------------------------------------------------------------------|
|----------|-------------------------------------------------------------------------------------------------------------------------------|

| Compound                                          | 5a                             | 5b                    | 8b                      |
|---------------------------------------------------|--------------------------------|-----------------------|-------------------------|
| Empirical formula                                 | $C_{22}H_{22}O_2$              | $C_{20}H_{22}O_2Si_2$ | $C_{22}H_{24}O_2Si_2$   |
| Formula mass [g mol <sup>-1</sup> ]               | 318.40                         | 350.56                | 376.59                  |
| Collection T [K]                                  | 173(2)                         | 173(2)                | 173(2)                  |
| $\lambda(Mo_{K\alpha})$ [Å]                       | 0.71073                        | 0.71073               | 0.71073                 |
| Crystal system                                    | triclinic                      | orthorhombic          | orthorhombic            |
| Space group (No.)                                 | <i>P</i> 1 (1)                 | <i>Pbca</i> (61)      | <i>Pbca</i> (61)        |
| <i>a</i> [Å]                                      | 6.6502(19)                     | 9.7328(10)            | 10.3734(6)              |
| <i>b</i> [Å]                                      | 8.0811(19)                     | 11.2756(8)            | 11.1736(7)              |
| <i>c</i> [Å]                                      | 18.466(5)                      | 35.715(4)             | 36.103(2)               |
| α [°]                                             | 80.28(3)                       | 90                    | 90                      |
| β [°]                                             | 84.36(3)                       | 90                    | 90                      |
| γ [°]                                             | 66.24(3)                       | 90                    | 90                      |
| V [Å <sup>3</sup> ]                               | 894.7(4)                       | 3919.5(6)             | 4184.6(4)               |
| Ζ                                                 | 2                              | 8                     | 8                       |
| $D_{\rm calcd} [{ m g \ cm}^{-3}]$                | 1.182                          | 1.188                 | 1.196                   |
| $\mu [\mathrm{mm}^{-1}]$                          | 0.074                          | 0.190                 | 0.182                   |
| F(000)                                            | 340                            | 1488                  | 1600                    |
| Crystal dimensions [mm]                           | $0.50 \times 0.20 \times 0.02$ | 0.5	imes 0.4	imes 0.1 | 0.4 	imes 0.3 	imes 0.2 |
| $2\theta$ range [°]                               | 5.56-58.34                     | 4.76-53.84            | 4.52-53.72              |
| Index ranges                                      | $-9 \le h \le 9,$              | $-12 \le h \le 12,$   | $-13 \le h \le 13,$     |
|                                                   | $-10 \le k \le 10,$            | $-13 \le k \le 12$ ,  | $-14 \le k \le 14,$     |
|                                                   | $-25 \le l \le 25$             | $-45 \le l \le 26$    | $-45 \le l \le 45$      |
| No. of collected reflections                      | 12799                          | 19094                 | 30629                   |
| No. of independent reflections                    | 4485                           | 3971                  | 4474                    |
| $R_{ m int}$                                      | 0.0927                         | 0.0456                | 0.0654                  |
| No. of reflections used                           | 4485                           | 3971                  | 4474                    |
| No. of parameters                                 | 232                            | 224                   | 240                     |
| No. of restraints                                 | 12                             | 0                     | 0                       |
| $S^{a}$                                           | 0.900                          | 1.014                 | 1.030                   |
| Weight parameters $a/b^b$                         | 0.1005/0.0000                  | 0.0665/0.2200         | 0.0540/2.6001           |
| $R_1^{c} [I > 2\sigma(I)]$                        | 0.0579                         | 0.0402                | 0.0469                  |
| $wR_2^d$ (all data)                               | 0.1664                         | 0.1109                | 0.1229                  |
| Max./min. residual electron density [e $Å^{-3}$ ] | +0.368/-0.261                  | +0.232/-0.284         | +0.271/-0.301           |

electron density [e A ] <sup>a</sup>  $S = \{\sum [w(F_o^2 - F_c^2)^2]/(n-p)\}^{0.5}; n = \text{no. of reflections}; p = \text{no. of parameters.} \ ^b w^{-1} = \sigma^2(F_o^2) + (aP)^2 + bP, \text{ with } P = [\max(F_o^2, 0) + 2F_c^2]/3. \ ^c R_1 = \sum ||F_o| - |F_c||/\sum |F_o|. \ ^d wR_2 = \{\sum [w(F_o^2 - F_c^2)^2]/\sum [w(F_o^2)^2]\}^{0.5}.$ 

| Compound                            | 15                             | 17                             | 28                             |
|-------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Empirical formula                   | $C_{23}H_{24}O_2$              | $C_{20}H_{22}O_3Si_2$          | $C_{14}H_{26}Si_3$             |
| Formula mass [g mol <sup>-1</sup> ] | 332.42                         | 366.56                         | 278.62                         |
| Collection T [K]                    | 100(2)                         | 100(2)                         | 173(2)                         |
| $\lambda(Mo_{K\alpha})$ [Å]         | 0.71073                        | 0.71073                        | 0.71073                        |
| Crystal system                      | monoclinic                     | monoclinic                     | monoclinic                     |
| Space group (No.)                   | $P2_{1}/c$ (14)                | <i>C</i> 2 (5)                 | $P2_{1}/c$ (14)                |
| a [Å]                               | 20.5765(9)                     | 60.024(5)                      | 14.635(4)                      |
| <i>b</i> [Å]                        | 11.1441(5)                     | 11.4478(8)                     | 10.5599(16)                    |
| <i>c</i> [Å]                        | 8.1245(4)                      | 8.7407(6)                      | 11.643(3)                      |
| β[°]                                | 98.9270(10)                    | 95.534(4)                      | 94.50(3)                       |
| V [Å <sup>3</sup> ]                 | 1840.43(15)                    | 5978.1(7)                      | 1793.9(7)                      |
| Ζ                                   | 4                              | 12                             | 4                              |
| $D_{\rm calcd} [{ m g \ cm}^{-3}]$  | 1.200                          | 1.222                          | 1.032                          |
| $\mu [\mathrm{mm}^{-1}]$            | 0.075                          | 0.193                          | 0.247                          |
| <i>F</i> (000)                      | 712                            | 2328                           | 608                            |
| Crystal dimensions [mm]             | $0.30 \times 0.22 \times 0.10$ | $0.47 \times 0.20 \times 0.03$ | $0.50 \times 0.30 \times 0.15$ |
| $2\theta$ range [°]                 | 2.00-66.28                     | 2.72-52.74                     | 4.76–54.96                     |
| Index ranges                        | $-31 \le h \le 31,$            | $-72 \le h \le 74,$            | $-19 \le h \le 19,$            |
|                                     | $-17 \le k \le 16,$            | $-14 \le k \le 14,$            | $-12 \le k \le 12,$            |
|                                     | $-9 \le l \le 12$              | $-10 \le l \le 10$             | $-15 \le l \le 15$             |
| No. of collected reflections        | 38468                          | 39207                          | 21879                          |
| No. of independent reflections      | 6772                           | 12031                          | 3958                           |
| R <sub>int</sub>                    | 0.0313                         | 0.0454                         | 0.0949                         |
| No. of reflections used             | 6772                           | 12031                          | 3958                           |
| No. of parameters                   | 231                            | 692                            | 161                            |
| No. of restraints                   | 0                              | 1                              | 0                              |
| $S^a$                               | 1.072                          | 1.020                          | 0.913                          |
| Weight parameters $a/b^b$           | 0.0565/0.5356                  | 0.0909/2.7879                  | 0.0588/0.0000                  |
| $R_1^c [I > 2\sigma(I)]$            | 0.0422                         | 0.0549                         | 0.0425                         |
| $wR_2^d$ (all data)                 | 0.1216                         | 0.1458                         | 0.1084                         |
| Absolute structure parameter        |                                | 0.00(15)                       |                                |
| Max./min. residual                  | +0.558/-0.184                  | +1.103/-0.295                  | +0.357/-0.278                  |
| electron density [e $Å^{-3}$ ]      |                                |                                |                                |

Table S2Crystallographic data and experimental parameters for the crystal structure analyses of 15, 17 and 28.

 ${}^{a}S = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}]/(n-p)\}^{0.5}; n = \text{no. of reflections}; p = \text{no. of parameters.} \ {}^{b}w^{-1} = \sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP, \text{ with } P = [\max(F_{o}^{2}, 0) + 2F_{c}^{2}]/3. \ {}^{c}R_{1} = \sum ||F_{o}| - |F_{c}||/\sum |F_{o}|. \ {}^{d}wR_{2} = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}]/\sum [w(F_{o}^{2})^{2}]\}^{0.5}.$ 

| Compound                            | 29                      | 33                    | 34                             |
|-------------------------------------|-------------------------|-----------------------|--------------------------------|
| Empirical formula                   | $C_{13}H_{24}OSi_3$     | $C_{13}H_{20}O_2Si_2$ | $C_{12}H_{18}O_2Si_2$          |
| Formula mass [g mol <sup>-1</sup> ] | 280.59                  | 264.47                | 250.44                         |
| Collection T [K]                    | 173(2)                  | 173(2)                | 173(2)                         |
| $\lambda(Mo_{K\alpha})$ [Å]         | 0.71073                 | 0.71073               | 0.71073                        |
| Crystal system                      | monoclinic              | monoclinic            | monoclinic                     |
| Space group (No.)                   | $P2_{1}(4)$             | $P2_{1}/c$ (14)       | <i>C</i> 2/ <i>c</i> (15)      |
| <i>a</i> [Å]                        | 6.2270(8)               | 12.8871(17)           | 17.973(4)                      |
| <i>b</i> [Å]                        | 10.0764(18)             | 8.8099(11)            | 5.5806(8)                      |
| <i>c</i> [Å]                        | 14.0512(19)             | 14.4156(14)           | 27.605(6)                      |
| β[°]                                | 91.347(16)              | 116.374(12)           | 90.75(3)                       |
| V [Å <sup>3</sup> ]                 | 881.4(2)                | 1466.3(3)             | 2768.5(9)                      |
| Ζ                                   | 2                       | 4                     | 8                              |
| $D_{\rm calcd} [{ m g \ cm}^{-3}]$  | 1.057                   | 1.198                 | 1.202                          |
| $\mu [\mathrm{mm}^{-1}]$            | 0.256                   | 0.231                 | 0.241                          |
| <i>F</i> (000)                      | 304                     | 568                   | 1072                           |
| Crystal dimensions [mm]             | 0.5 	imes 0.2 	imes 0.2 | 0.4	imes 0.4	imes 0.2 | $0.50 \times 0.40 \times 0.15$ |
| $2\theta$ range [°]                 | 5.80-59.04              | 5.60-58.50            | 7.64–58.32                     |
| Index ranges                        | $-8 \le h \le 8,$       | $-17 \le h \le 17,$   | $-24 \le h \le 24,$            |
|                                     | $-13 \le k \le 13$ ,    | $-11 \le k \le 12,$   | $-7 \le k \le 7,$              |
|                                     | $-19 \le l \le 19$      | $-19 \le l \le 19$    | $-37 \le l \le 37$             |
| No. of collected reflections        | 11609                   | 18328                 | 19009                          |
| No. of independent reflections      | 4562                    | 3938                  | 3545                           |
| R <sub>int</sub>                    | 0.0605                  | 0.0410                | 0.0368                         |
| No. of reflections used             | 4562                    | 3938                  | 3545                           |
| No. of parameters                   | 193                     | 180                   | 150                            |
| No. of restraints                   | 51                      | 0                     | 0                              |
| $S^{a}$                             | 1.053                   | 1.060                 | 1.104                          |
| Weight parameters $a/b^b$           | 0.0778/0.0000           | 0.0769/0.3474         | 0.0619/1.4934                  |
| $R_1^c [I > 2\sigma(I)]$            | 0.0433                  | 0.0446                | 0.0370                         |
| $wR_2^d$ (all data)                 | 0.1232                  | 0.1252                | 0.1080                         |
| Absolute structure parameter        | 0.01(13)                |                       |                                |
| Max./min. residual                  | +0.365/-0.381           | +0.382/-0.403         | +0.364/-0.242                  |
| electron density [e $Å^{-3}$ ]      |                         |                       |                                |

Table S3Crystallographic data and experimental parameters for the crystal structure analyses of 29, 33 and 34.

 ${}^{a}S = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}]/(n-p)\}^{0.5}; n = \text{no. of reflections}; p = \text{no. of parameters.} \ {}^{b}w^{-1} = \sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP, \text{ with } P = [\max(F_{o}^{2}, 0) + 2F_{c}^{2}]/3. \ {}^{c}R_{1} = \sum ||F_{o}| - |F_{c}||/\sum |F_{o}|. \ {}^{d}wR_{2} = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}]/\sum [w(F_{o}^{2})^{2}]\}^{0.5}.$ 



**Figure S1** <sup>1</sup>H NMR spectrum of compound **4b**.



Figure S2 <sup>13</sup>C NMR spectrum of compound 4b.



| Markhan | **** | ndeli finns stanfisper f | olonii yoofaa ahaa ahaa ahaa ahaa ahaa ahaa ahaa | hange begen her it have been been been been been been been be |    | kalah yang d | ukan kana kana kana kana kana kana kana | - | halla ann an mar ann an | in a constant of the | Anthe Maria Anthenia | hind the state of | elle for for the sector of the | hallow of the state of the stat | uhaan mulan ay ha | Napalan ja Managa kai |
|---------|------|--------------------------|--------------------------------------------------|---------------------------------------------------------------|----|--------------|-----------------------------------------|---|----------------------------------------------------------|----------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|
| <br>35  | 30   | 25                       | 20                                               | 15                                                            | 10 |              | 0                                       |   | -10                                                      | -15                  | -20                  | -25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -30                            | -35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -40               | ppm                   |

Figure S3 <sup>29</sup>Si NMR spectrum of compound 4b.



**Figure S4** <sup>1</sup>H NMR spectrum of compound **5a**.



Figure S5 <sup>13</sup>C NMR spectrum of compound 5a.



**Figure S6** <sup>1</sup>H NMR spectrum of compound **5b**.



Figure S7 <sup>13</sup>C NMR spectrum of compound 5b.



|    |    |    | llashi ishadalashi kabila pabara in<br>Para mering karagan paparan kara |    | i dian bia diata di kulara di<br>Mangaran ing pangan ang karangan<br>Mangaran ing pangan ang karangan |    |   | la da al la casa da angana da angan<br>Pangana da ang tang kang pangangan pangan<br>Pangana da ang tang kang pangangan pangan pangangan pangangan pangangan pangangan pangangan pangangan pangangan |     |     |     |     |
|----|----|----|-------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------|----|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|
| 70 | 60 | 50 | 40                                                                      | 30 | 20                                                                                                    | 10 | 0 | -10                                                                                                                                                                                                 | -20 | -30 | -40 | ppm |

Figure S8<sup>29</sup>Si NMR spectrum of compound 5b.



**Figure S9** <sup>1</sup>H NMR spectrum of compound **6**.



**Figure S10** <sup>13</sup>C NMR spectrum of compound **6**.



Figure S11 <sup>29</sup>Si NMR spectrum of compound 6.



Figure S12 <sup>1</sup>H NMR spectrum of compound 7b.



**Figure S13**<sup>13</sup>C NMR spectrum of compound **7b**.



Figure S14<sup>29</sup>Si NMR spectrum of compound 7b.



**Figure S15** <sup>1</sup>H NMR spectrum of compound **8a**.



**Figure S16**<sup>13</sup>C NMR spectrum of compound **8a**.



Figure S17 <sup>1</sup>H NMR spectrum of compound 8b.



**Figure S18**<sup>13</sup>C NMR spectrum of compound **8b**.





Figure S19<sup>29</sup>Si NMR spectrum of compound 8b.



**Figure S20** <sup>1</sup>H NMR spectrum of compound **9**.



Figure S21 <sup>13</sup>C NMR spectrum of compound 9.



Figure S22 <sup>29</sup>Si NMR spectrum of compound 9.



Figure S23 <sup>1</sup>H NMR spectrum of compound 10.



Figure S24 <sup>13</sup>C NMR spectrum of compound 10.



Figure S25 <sup>1</sup>H NMR spectrum of compound 11.



**Figure S26**<sup>13</sup>C NMR spectrum of compound **11**.





Figure S27<sup>29</sup>Si NMR spectrum of compound 11.



Figure S28 <sup>1</sup>H NMR spectrum of compound 12.



**Figure S29**<sup>13</sup>C NMR spectrum of compound **12**.





Figure S30<sup>29</sup>Si NMR spectrum of compound 12.



Figure S31 <sup>1</sup>H NMR spectrum of compound 14.



**Figure S32**<sup>13</sup>C NMR spectrum of compound **14**.




Figure S33 <sup>29</sup>Si NMR spectrum of compound 14.



Figure S34 <sup>1</sup>H NMR spectrum of compound 15.



**Figure S35** <sup>13</sup>C NMR spectrum of compound **15**.



**Figure S36** <sup>1</sup>H NMR spectrum of compound **16**.



**Figure S37**<sup>13</sup>C NMR spectrum of compound **16**.



Figure S38<sup>29</sup>Si NMR spectrum of compound 16.



Figure S39 <sup>1</sup>H NMR spectrum of compound 17.



**Figure S40**<sup>13</sup>C NMR spectrum of compound **17**.

 $< \frac{14.93}{14.91}$ 



**Figure S41**<sup>29</sup>Si NMR spectrum of compound **17**.



Figure S42 <sup>1</sup>H NMR spectrum of compound 20.



Figure S43 <sup>13</sup>C NMR spectrum of compound 20.





Figure S44 <sup>29</sup>Si NMR spectrum of compound 20.



**Figure S45** <sup>1</sup>H NMR spectrum of compound **21**.



**Figure S46**<sup>13</sup>C NMR spectrum of compound **21**.



Figure S47 <sup>1</sup>H NMR spectrum of compound 22.



Figure S48 <sup>13</sup>C NMR spectrum of compound 22.

→ 9.26 8.92

| an ter the state of the state of the | inter the state of | kitanan <sup>di</sup> nya dalah dan da | ingen og for for til støre og for | inerfilmenter för som för | uryddyfylyddyfyld | fhirtingturingtanis | stored publication and strangeting | alan (jara (asta) an ing | Hasanata jari ya farika yi fa | high the state of | ty ad a give the other adv | 14444444444444444444444444444444444444 | ktopy of the second | 9927/1-12191411/4274/1/6 | han an a |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|---------------------|------------------------------------|--------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
| 45                                   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35                                     | 30                                                                                                              | 25                        | 20                | 15                  | 10                                 | 5                        | 0                             | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -10                        | -15                                    | -20                                                                                                            | -25                      | ppm                                       |

Figure S49<sup>29</sup>Si NMR spectrum of compound 22.



**Figure S50** <sup>1</sup>H NMR spectrum of compound **27**.



**Figure S51** <sup>13</sup>C NMR spectrum of compound **27**.





**Figure S52**<sup>29</sup>Si NMR spectrum of compound **27**.



**Figure S53** <sup>1</sup>H NMR spectrum of compound **28**.



Figure S54 <sup>13</sup>C NMR spectrum of compound 28.



Figure S55 <sup>29</sup>Si NMR spectrum of compound 28.



Figure S56 <sup>1</sup>H NMR spectrum of compound 29.



Figure S57 <sup>13</sup>C NMR spectrum of compound 29.



Figure S58 <sup>29</sup>Si NMR spectrum of compound 29.



Figure S59 <sup>1</sup>H NMR spectrum of compound 30.



**Figure S60**<sup>13</sup>C NMR spectrum of compound **30**.



**Figure S61**<sup>15</sup>N NMR spectrum of compound **30**.





Figure S62 <sup>29</sup>Si NMR spectrum of compound 30.



Figure S63 <sup>1</sup>H NMR spectrum of compound 31.



Figure S64 <sup>13</sup>C NMR spectrum of compound 31.



**Figure S65**<sup>15</sup>N NMR spectrum of compound **31**.



Figure S66<sup>29</sup>Si NMR spectrum of compound **31**.



**Figure S67** <sup>1</sup>H NMR spectrum of compound **33**.



**Figure S68**<sup>13</sup>C NMR spectrum of compound **33**.
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012



Figure S69<sup>29</sup>Si NMR spectrum of compound 33.

## Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012



Figure S70 <sup>1</sup>H NMR spectrum of compound 34.

## Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012



Figure S71<sup>13</sup>C NMR spectrum of compound 34.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012



 $< 9.12 \\ 9.06 \\ 9.06$ 

Figure S72<sup>29</sup>Si NMR spectrum of compound 34.