Electronic Supporting Information:

Studies on acedan-based mononuclear zinc complexes toward selective fluorescent probes for pyrophosphate

Alla Sreenivasa Rao,^a Subhankar Singha,^a Wonyong Choi^b and Kyo Han Ahn^{*a}

^aDepartment of Chemistry and the Center for Electro-Photo Behaviors in Advanced Molecular Systems, ^bSchool of Environmental Science and Engineering, POSTECH, San 31, Hyoja-dong, Pohang, 790-784, Republic of Korea.

E-mail: <u>ahn@postech.ac.kr</u>

Contents

1.	Fig. S1 ¹ H NMR (300 MHz) spectral change of 3 (10 mM) upon addition of Zn^{2+} (4 × 2.5
	mM) in CD ₃ CN S1
2.	Fig. S2 Isothermal Titration Calorimetry (ITC) data: (a) 3 (0.2 mM) with $Zn(ClO_4)_2$ (3.0
	mM); measured in CH ₃ CN at 30 °C S2
3.	Fig. S3 HRMS (FAB+) of 3 -Zn(II) as perchlorate salt S3
4.	Fig. S4 UV absorption change of (a) 3 (b) 4a and (c) 4b (10 μ M each) with addition of Zn ²⁺
	(1 equiv) in pH 7.4 buffer (10 mM HEPES containing 1% CH ₃ CN) followed by anion (1
	equiv) addition. PPi, ATP, ADP, and AMP were used as corresponding sodium salts S4
5.	Fig. S5 Fluorescence spectral change of 3 (10 μ M) upon addition of Zn ²⁺ (1 equiv) in pH 7.4
	buffer (10 mM HEPES containing 1% CH ₃ CN). λ_{ex} = 295 nm. Due to second-order
	diffraction interference fluorescence data were cut down at 570 nmS5
6.	Fig. S6 Fluorescence spectral change of 3-Zn (10 μ M) upon addition of PPi (top) and ATP
	(bottom) up to 20 μ M in pH 7.4 buffer (10 mM HEPES containing 1% CH ₃ CN. λ_{ex} = 295 nm.
	Inset is a part of the plot in the range from 0 to 0.5 $\mu M.$ Due to second-order diffraction
	interference fluorescence data were cut down at 550 nmS5
7.	¹ H and ¹³ C NMR of compounds S6–S12

Fig. S1 ¹H NMR (300 MHz) spectral change of **3** (10 mM) upon addition of Zn^{2+} (4 × 2.5 mM) in CD₃CN.

Fig. S2 Isothermal Titration Calorimetry (ITC) data: (a) **3** (0.2 mM) with $Zn(ClO_4)_2$ (3.0 mM); measured in CH₃CN at 30 °C.

Procedure: To a solution of **3** in the calorimeter cell, 5.0 μ L of zinc perchlorate was injected 40 times at 30 °C. The dilution effects were corrected by carrying out a separate blank titration. The titration data was analyzed by the built-in curve-fitting Origin software: the "two sets of sites" model was used, which applies to a receptor system that has non-identical and independent sites for binding (<u>support@microcalorimetry.com</u>).

Conditions:

Cell: **3** (0.2 mM) in acetonitrile

Syringe: zinc perchlorate hexahydrate solution (3.0 mM) in acetonitrile

Reference power: 26

Temperature: 30 °C

Stirring rate: 220 rpm.

Fig. S3 HRMS (FAB+) of 3-Zn(II) as perchlorate salt.

Fig. S4 UV absorption changes of (a) **3**, (b) **4a** and (c) **4b** (10 μ M each) with addition of Zn²⁺ (1 equiv.) in HEPES buffer (10 mM, pH 7.4; containing 1% CH₃CN) followed by anion (1 equiv.) addition. PPi, ATP, ADP, and AMP were used as corresponding sodium salts.

Fig. S5 Fluorescence spectral change of **3** (10 μ M) upon addition of Zn²⁺ (1 equiv.) in pH 7.4 buffer (10 mM HEPES containing 1% CH₃CN). $\lambda_{ex} = 295$ nm. Due to second-order diffraction interference fluorescence data were cut down at 570 nm.

Fig. S6 Fluorescence spectral change of 3-Zn (10 μ M) upon addition of PPi (top) and ATP (bottom) up to 20 μ M in pH 7.4 buffer (10 mM HEPES containing 1% CH₃CN). $\lambda_{ex} = 295$ nm. Inset is a part of the plot in the range from 0 to 0.5 μ M. Due to second-order diffraction interference fluorescence data were cut down at 550 nm.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

