Diastreoselective Construction of *syn-α*-Oxyamines *via* Copper(I)-Catalyzed Three-Component α-Oxyaldehyde-Dibenzylamine-Alkynes Coupling Reaction: Application in the Synthesis of (+)-β-Conhydrine and Its Analogues

Sharad Chandrakant Deshmukh,^a Arundhati Roy,^a and Pinaki Talukdar*^a

^{*a*} Dmitri Mendeleev Block, Department of Chemistry, Indian Institute of Science Education and Research, Pune 411021, India.

Fax: (+) 91 20 2589 9790; Tel: (+) 91 20 2590 8098;

E-mail: ptalukdar@iiserpune.ac.in

Supporting Information

ents	Page Number
Physical Measurements	S 1
Experimental	S1–S8
Theoretical Calculations	S8–S10
Crystal Structures	S10–S17
NMR Spectra	S18–S52
References	S53
	ents Physical Measurements Experimental Theoretical Calculations Crystal Structures NMR Spectra References

I. Physical Measurements.

¹H NMR spectra were recorded at 400 or 500 MHz using TMS as an internal standard and ¹³C NMR spectra at 100 or 125 MHz using CDCl₃ as an internal standard. The following abbreviations are used to describe peak patterns where appropriate: b, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants are reported in hertz (Hz). High resolution mass spectra (HRMS) were performed either on an electron spray ionization time-of-flight (ESI-TOF) or on a Matrix-assisted laser desorption/ionization (MALDI-TOF-TOF) mass spectrometer. Melting points were measured with a micro melting point apparatus. HPLC analyses were performed on a HPLC system equipped with C18 columns, detected at 273 nm. Flow phase was acetonitrile/water (95/5 to 90/10), and flow rate was 1.0 mL/min.

II. Experimental

Synthesis of (*R*)-*N*,*N*-dibenzyl-3-(cyclohex-1-en-1-yl)-1-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)prop-2-yn-1-amine 15b ($C_{28}H_{33}NO_2$). Following the Method A, reaction of 12 (245 mg, 1.88

mmol) with **13** (374 mg, 1.90 mmol) and alkyne **14b** (200 mg, 1.88 mmol) in dry toluene (5 mL) in the presence of CuBr (14 mg, 0.10 mmol), 4 Å molecular sieves (1.12 g) was carried out. The crude product was subjected to column chromatography over silica gel (*Eluent*: 2% EtOAc in petroleum ether) to furnish **15b** (508 mg, 65%) as colorless oil. IR (KBr) v (cm⁻¹): 2925,1605, 1494, 1456, 1372, 1257, 1209, 1134, 1070, 1029, 1002 ; $[\alpha]_D^{25} = -158.2$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.46 (d, J = 7.3 Hz, 4H), 7.31 (t, J = 7.4 Hz, 4H), 7.23 (t, J = 7.3 Hz, 2H), 6.18 - 6.15 (m, 1H), 4.30 (q, J = 6.4 Hz, 1H), 4.03 (dd, J = 8.2, 6.4 Hz, 1H), 3.91-3.85 (m, 3H), 3.70 (d, J = 7.4 Hz, 1H), 3.48 (d, J = 13.8 Hz, 2H), 2.21 - 2.17 (m, 2H), 2.16 – 2.12 (m, 2H) 1.72-1.60 (m, 4H), 1.35 (s, 3H), 1.28 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 139.7(2C), 135.0, 129.0 (4C), 128.3 (4C), 127.0 (2C), 120.4, 109.7, 88.7, 81.2, 76.5, 67.5, 56.1, 55.5 (2C), 29.8, 29.7, 26.7, 25.7, 22.4, 21.6 ; HRMS (ESI) Calcd. for C₂₈H₃₄NO₂ 416.2590 [M + H]⁺, found 416.2583.

Synthesis of (*R*)-*N*,*N*-dibenzyl-1-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)-4,4-dimethylpent-2yn-1-amine 15c ($C_{26}H_{33}NO_2$). Following the Method A, reaction of 12 (174 mg, 1.34 mmol) with 13 (213 mg, 1.12 mmol) and alkyne 14a (100 mg, 1.12 mmol) in dry toluene (5.0 mL) in the presence of CuBr (9 mg, 0.06 mmol), 4 Å molecular sieves (2.00 g) was carried out. The crude product was subjected to column chromatography over silica gel (*Eluent*: 1 % EtOAc in petroleum ether) to furnish 15c (348 mg, 73%) as colorless solid. Mp.76–78 °C, IR (KBr) v (cm⁻¹): 2958, 2873, 1609, 1585, 1456, 1285, 1121, 1078; $[\alpha]_D^{25} = -133.67$ (*c* = 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.42 (d, *J* = 7.2 Hz, 4H), 7.28 (t, *J* = 7.3 Hz, 4H), 7.20 (t, *J* = 7.1 Hz, 2H), 4.21 (q, *J* = 6.5 Hz, 1H), 3.98 (dd, *J* = 8.2, 6.6 Hz, 1H), 3.82 (dd, *J* = 8.1, 6.6 Hz, 1H), 3.78 (d, *J* = 14.0 Hz, 2H), 3.56 (d, *J* = 7.5 Hz, 1H), 3.43 (d, *J* = 14.0 Hz, 2H), 1.32 (s, 3H), 1.26 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 139.8 (2C), 129.0 (4C), 128.2 (4C), 127.0 (2C), 109.5, 96.0, 76.5, 72.6, 67.6, 55.8, 55.4 (2C), 31.5 (3C), 27.7, 26.7, 25.9; HRMS (ESI) Calcd. for C₂₆H₃₄NO₂ 392.2590 [M + H]⁺, found 392.2589.

Synthesis of (*R*)-*N*,*N*-dibenzyl-1-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)-4-methoxybut-2-yn-1amine 15d ($C_{24}H_{29}NO_3$). Following the Method A, reaction of 12 (204 mg, 1.57 mmol) with 13 (272 mg, 1.43 mmol) and alkyne 14d (100 mg, 1.43 mmol) in dry toluene (8.0 mL) in the presence of CuBr (12 mg, 0.08 mmol), 4 Å molecular sieves (2.00 g) was carried out. The crude product was subjected to column chromatography over silica gel (*Eluent*: 2% EtOAc in petroleum ether) to furnish 15d (480 g, 88%) as light yellow oil. IR (neat) v (cm⁻¹): 2928, 1508, 1495, 1371, 1252, 1210, 1187, 1146, 1098, 1028; $[\alpha]_D^{25} = -135.20$ (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.43 (d, *J* = 7.2 Hz, 4H), 7.29 (t, *J* = 7.2 Hz, 4H), 7.21 (t, *J* = 7.2 Hz, 2H), 4.29 (q, *J* = 6.3 Hz, 1H), 4.20 (d, *J* = 1.8 Hz, 2H), 4.00 (dd, *J* = 8.2, 6.4 Hz, 1H), 3.89 -3.85 (m, 3H), 3.62 (d, *J* = 7.2 Hz, 1H), 3.46 (d, *J* = 14.0 Hz, 2H), 3.60 (s, 3H), 1.32 (s, 3H), 1.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 139.4 (2C), 129.0 (4C), 128.3 (4C), 127.1 (2C), 109.8, 82.3, 81.4, 76.3, 67.4, 60.1, 57.6, 55.5 (2C), 55.4, 26.6, 25.5; HRMS (ESI) Calcd. for $C_{24}H_{30}NO_3$ [M + H]⁺ 380.2226, found 380.2224. **Synthesis** of (R)-N,N-dibenzyl-4-((tert-butyldiphenylsilyl)oxy)-1-((S)-2,2-dimethyl-1,3dioxolan-4-yl)but-2-yn-1-amine 15e (C₃₉H₄₅NO₃Si). Following the Method A, reaction of 12 (500 mg, 3.84 mmol) with 13 (760 g, 3.84 mmol) and alkyne 14e (1.13 g, 3.84 mmol) in dry toluene (8.0 mL) in the presence of CuBr (27 mg, 0.19 mmol), 4 Å molecular sieves (2.00 g) was carried out. The crude product was subjected to column chromatography over silica gel (Eluent: 2% EtOAc in petroleum ether) to furnish 15e (1.62 g, 70%) as colorless oil. IR (Neat) v (cm⁻¹): 2983, 2889, 2361, 1508, 1492, 1455, 1370, 1209, 1029, 1088, 967, 838; $[\alpha]_D^{25} = -64.60$ (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.76 (dd, J = 7.8, 1.5 Hz, 4H), 7.46 - 7.38 (m, 10H), 7.30 (t, J = 7.1 Hz, 4H), 7.23 (t, J = 7.3 Hz, 2H), 4.34 (d, J = 1.8 Hz, 2H), 4.21 (q, J = 6.2Hz, 1H), 3.92 (dd, J = 8.4, 6.4 Hz, 1H), 3.82 (d, J = 13.9 Hz, 2H), 3.77 (dd, J = 8.4, 6.2 Hz, 1H), 3.54 (dt, J = 7.8, 1.8 Hz, 1H), 3.40 (d, J = 14.0 Hz, 2H), 1.34 (s, 3H), 1.26 (s, 3H), 1.15 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 139.6 (2C), 135.8 (4C), 133.4 (2C), 130.0 (2C), 129.0 (4C), 128.3 (4C), 127.9 (4C), 127.0 (2C), 109.7, 85.0, 80.0, 76.2, 67.4, 55.5, 55.4 (2C), 52.9, 26.8 (3C), 26.6, 25.7, 19.4; HRMS (ESI) Calcd. For $C_{39}H_{46}NO_3Si 604.3247 [M + H]^+$, found 604.3245.

Synthesis of *tert*-butyl ((*R*)-4-(dibenzylamino)-4-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)but-2yn-1-yl)carbamate 15f ($C_{28}H_{36}N_2O_4$). Following the Method A, reaction of 12 (456 mg, 3.50 mmol) with 13 (691 mg, 3.50 mmol) and alkyne 14f (0.60 g, 3.50 mmol) in dry toluene (8.0 mL) in the presence of CuBr (25 mg, 0.19 mmol), 4 Å molecular sieves (1.75 g) was carried out. The crude product was subjected to column chromatography over silica gel (*Eluent*: 5% EtOAc in petroleum ether) to furnish 15f (1.20 g, 76%) as colorless oil. IR (Neat) v (cm⁻¹): 3566, 2980, 1699, 1495, 1455, 1367, 1245, 1160, 1069; $[\alpha]_D^{25} = -104.0$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.42 (br d, J = 5.0 Hz, 4H), 7.29 (d, J = 7.4 Hz, 4H), 7.21 (d, J = 7.1 Hz, 2H), 4.70 (br s, 1H), 4.22 – 4.27 (m, 1H), 4.00 – 3.97 (m, 3H), 3.83 (dd, J = 8.2, 6.0 Hz, 3H), 3.56 (d, J = 4.8 Hz, 1H), 3.43 (d, J = 13.3 Hz, 2H), 1.46 (s, 9H), 1.31 (s, 3H), 1.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 155.4, 139.4 (2C), 129.0 (4C), 128.3 (4C), 127.1 (2C), 109.7, 82.8, 80.1, 78.0, 76.3, 67.3, 55.5 (2C), 55.4, 30.8, 28.5(3C), 26.6, 25.5; HRMS (ESI) Calcd. for $C_{28}H_{37}N_2O_4$ 465.2753 [M + H]⁺, found 465.2757.

(*R*)-5-((*S*)-1-hydroxy-2-iodoethyl)pyrrolidin-2-one 22a (C₆H₁₀INO₂). To the solution of the epoxide 21a (252 mg, 1.97 mmol) in THF (8 mL) was added to CuI (74 mg, 0.39 mmol) and methylmagnesium iodide (655 mg in 8 mL in Et₂O, 3.94 mmol) at -30 °C during 15 min. The reaction mixture was allowed to warm to 0 °C, stirred for 2.5 h. After completion, the reaction mixture was quenched by addition of NH₄Cl (20 mL). Compound was extracted in CH₂Cl₂ (2 × 20 mL), dried over Na₂SO₄ and concentrated *in vacuo*. The dried mass was subjected to column chromatography over silica gel (*Eluent*: 4% MeOH in CHCl₃) to furnish the pure 22a (268 mg, 53%) as white solid. Mp. 124–126 °C; IR (KBr) v (cm⁻¹): 3862, 3300, 3161, 1660, 1411, 1188, 1041; $[\alpha]_D^{25} = -19.25$ (*c* = 0.4, CHCl₃); ¹H NMR (400 MHz, DMSO-D₆) δ (ppm): 7.6 (br s, 1H), 5.41 (d, *J* = 5.5 Hz, 1H), 3.61 (dt, *J* = 8.2, 4.5 Hz, 1H), 3.36 (dt, *J* = 11.4, 5.1 Hz, 1H), 3.30 (dd, *J* = 10.1, 4.8 Hz, 1H), 3.17 (dd, *J* = 9.6, 6.8 Hz, 1H), 2.15 - 1.97 (m, 3H), 1.80 - 1.72 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm): 177.0, 73.6, 57.5, 30.3, 23.6, 12.0 ; HRMS (ESI) Calcd. for C₆H₁₀INO₂Na 277.9653 [M + Na]⁺, found 277.9653.

(*R*)-5-((*S*)-2-bromo-1-hydroxyethyl)pyrrolidin-2-one 22b (C₆H₁₀BrNO₂).To the solution of the epoxide 21a (50mg, 0.394 mmol) in THF (6 mL) was added to CuI (15 mg, 0.08 mmol) and methylmagnesium bromide [3.0 M in Et₂O] (0.26 mL, 0.79 mmol) at -30 °C during 15 min. The reaction mixture allowed to warm to 0 °C, stirred for 2.5 h. After completion, the reaction mixture was quenched by addition of NH₄Cl (10 mL). Compound was extracted in CH₂Cl₂ (2 × 10 mL), dried over Na₂SO₄ and concentrated *in vacuo*. The dried mass was subjected to column chromatography over silica gel (*Eluent*: 4% MeOH in CHCl₃) to furnish the pure 22b (43 mg, 53%) as white solid. Mp. 135 – 136 °C; IR (KBr) v (cm⁻¹): 3315, 3212, 2924, 1666, 1459, 1382, 1286, 1181, 1060, 950; $[\alpha]_D^{25} = -16.4$ (c = 0.5, MeOH); ¹H NMR (400 MHz, CD₃OD) δ (ppm): 3.85- 3.80 (m, 1H), 3.65 – 3.60 (m, 1H), 3.47 (dd, J = 14.6, 8.9, 1H), 3.38 (dd, J = 10.7, 6.7, 1H), 2.41 – 2.32 (m, 1H), 2.29 – 2.18 (m, 2H), 1.93 – 1.88 (m, 1H); ¹³C NMR (100 MHz, CD₃OD) δ (ppm): 180.2, 73.8, 57.2, 33.9, 29.9, 23.3; HRMS (ESI) Calcd. for C₆H₁₁BrNO₂ 207.9973 [M + H]⁺, found 207.9973.

(*R*)-6-((*S*)-1-hydroxy-2-iodoethyl)piperidin-2-one 22c (C₇H₁₂INO₂). To the solution of the epoxide 21b (100 mg, 0.71 mmol) in THF (8 mL) was added to CuI (27 mg, 0.14 mmol) and methylmagnesium iodide (236 mg in 8 mL in Et₂O, 1.42 mmol) at -30 °C during 15 min. The reaction mixture was allowed to warm to 0 °C, stirred for 2.5 h. After completion, the reaction mixture was quenched by addition of NH₄Cl (20 mL). Compound was extracted in CH₂Cl₂ (2 × 20 mL), dried over Na₂SO₄ and concentrated *in vacuo*. The dried mass was subjected to column chromatography over silica gel (*Eluent*: 4% MeOH in CHCl₃) to furnish the pure 22c (107 mg, 56%) as white solid. Mp. 117–119 °C; IR (KBr) v (cm⁻¹): 3402, 3198, 2945, 1636, 1541, 1339, 1263, 1168, 1036; $[\alpha]_D^{25} = + 9.25$ (*c* = 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.93 (br s, 1H), 3.48 – 3.26 (m, 3H), 3.25 – 3.14 (m, 2H), 2.48 – 2.38 (m, 1H), 2.33 – 2.18 (m, 1H), 2.00 – 1.88 (m, 2H), 1.36 – 1.18 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 173.1, 73.2, 57.6, 31.1, 24.8, 19.7, 11.1; HRMS (ESI) Calcd. for C₇H₁₂INO₂Na 291.9810 [M + Na]⁺, found 291.9811.

(*R*)-5-((*R*)-1-hydroxypropyl)pyrrolidin-2-one 23a (C₇H₁₃NO₂). Following the Method B, the Gilman reagent was prepared by adding MeLi (1.6 M) in pentane (11 mL, 17.30 mmol) to a suspension of CuI (1.64 g, 8.66 mmol) in dry Et₂O (40 mL) at -35 °C. Opening of the epoxide was carried out by adding a solution of 21a (220 mg, 1.73 mmol) in dry THF (6 mL) to the freshly prepared Gilman reagent and stirring for 2 h at the same temperature. The crude product was subjected to column chromatography over silica gel (*Eluent*: 4% MeOH in CHCl₃) to furnish 23a (191 mg, 77%) as colorless oil. IR (KBr) v (cm⁻¹): 3266, 2930, 1670, 1459, 1417, 1270, 1122, 1078, 1042; $[\alpha]_D^{25} = -30.0$ (c = 0.4, CHCl₃); ¹H NMR (500 MHz, DMSO) δ (ppm): 7.44 (br s, 1H), 4.59 (d, J = 5.6 Hz, 1H), 3.34 (dt, J = 7.4, 5.1 Hz, 1H), 3.08 (dt, J = 9.0, 5.3 Hz, 1H), 2.04 – 1.89 (m, 3H), 1.70 – 1.62 (m, 1H), 1.35 – 1.28 (m, 1H), 1.25 – 1.16 (m, 1H), 0.82 (t, J = 5.6 Hz, 1H), 3.84 (dt, J = 7.4, 5.1 Hz, 1H), 3.26 (m, 1H), 0.82 (t, J = 5.6 Hz, 1H), 3.84 (dt, J = 7.4, 5.1 Hz, 1H), 3.08 (dt, J = 9.0, 5.3 Hz, 1H), 2.04 – 1.89 (m, 3H), 1.70 – 1.62 (m, 1H), 1.35 – 1.28 (m, 1H), 1.25 – 1.16 (m, 1H), 0.82 (t, J = 5.6 Hz, 1H), 3.84 (dt, J = 7.4 (m, 1H), 1.25 – 1.16 (m, 1H), 0.82 (t, J = 5.6 Hz, 1H), 1.35 – 1.28 (m, 1H), 1.25 – 1.16 (m, 1H), 0.82 (t, J = 5.6 Hz, 1H), 3.84 (dt, J = 7.4 (m, 1H), 1.25 – 1.16 (m, 1H), 0.82 (t, J = 5.6 Hz, 1H), 1.35 – 1.28 (m, 1H), 1.25 – 1.16 (m, 1H), 0.82 (t, J = 5.6 Hz, 1H), 3.84 (dt, J = 7.4 (m, 1H), 1.25 – 1.16 (m, 1H), 0.82 (t, J = 5.6 Hz, 1H), 3.84 (dt, J = 7.4 (m, 1H), 1.25 – 1.16 (m, 1H), 0.82 (t, J = 5.6 Hz, 1H), 1.35 – 1.28 (m, 1H), 1.25 – 1.16 (m, 1H), 0.82 (t, J = 5.6 Hz, 1H), 1.35 – 1.28 (m, 1H), 1.25 – 1.16 (m, 1H), 0.82 (t, J = 5.6 Hz, 1H), 1.35 – 1.28 (m, 1H), 1.25 – 1.28 (m, 1H), 0.82 (t, J = 5.6 Hz, 1H), 1.35 – 1.28 (m, 1H), 1.25 – 1.28 (m, 1H), 1.35 – 1.28 (m, 1H), 1.35

7.4 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ (ppm): 179.3, 76.6, 59.6, 30.7, 26.3, 23.8, 10.0; HRMS (ESI) Calcd. For C₇H₁₃NO₂Na 166.0844 [M + H]⁺, found 166.0844.

(*R*)-5-((*R*)-1-hydroxyhexyl)pyrrolidin-2-one 23b ($C_{10}H_{19}NO_2$). Following the Method B, the Gilman reagent was prepared by adding BuLi (1.6 M) in hexane (15.0 mL, 23.6 mmol) to a suspension of CuI (2.24 g,11.8 mmol) in dry Et₂O (40 mL) at -35 °C. Opening of the epoxide was carried out by adding a solution of **21a** (300 mg, 2.36 mmol) in dry THF (5 mL) to the freshly prepared Gilman reagent and stirring for 2 h at the same temperature. The crude product was subjected to column chromatography over silica gel (*Eluent*: 4% MeOH in CHCl₃) to furnish **23b** (332 mg, 76%) as white solid. Mp. 60–62 °C; IR (KBr) v (cm⁻¹): 3417, 3221, 2931, 1685, 1457, 1363, 1270, 1133, 1072, 1057; $[\alpha]_D^{25} = -9.75$ (c = 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.54 (br s, 1H), 3.52 (q, J = 7.1 Hz, 1H), 3.42 – 3.33 (m, 1H), 2.70 – 2.58 (m, 1H), 2.39 – 2.28 (m, 2H), 2.21 – 2.09 (m, 1H), 1.82 – 1.74 (m, 1H), 1.56 – 1.41 (m, 2H), 1.41 – 1.20 (m, 6H), 0.89 (t, J = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 179.1, 75.3, 59.9, 33.4, 31.9, 30.7, 25.2, 23.9, 22.7, 14.1; HRMS (ESI) Calcd. for $C_{10}H_{20}NO_2$ 186.1415 [M + H]⁺, found 186.1415.

(*R*)-5-((*R*)-1-hydroxy-3,3-dimethylbutyl)pyrrolidin-2-one 23c ($C_{10}H_{19}NO_2$). Following the Method B, the Gilman reagent was prepared by adding ¹BuLi (1.6 M) in pentane (14.8 mL, 23.6 mmol) to a suspension of CuI (2.24 g,11.8 mmol) in dry Et₂O (40 mL) at -35 °C. Opening of the epoxide was carried out by adding a solution of **21a** (300 mg, 2.36 mmol) in dry THF (8 mL) to the freshly prepared Gilman reagent and stirring for 2 h at the same temperature. The crude product was subjected to column chromatography over silica gel (*Eluent*: 4% MeOH in CHCl₃) to furnish **23c** (315 mg, 72%) as white solid. Mp. 100–102 °C; IR (KBr) v (cm⁻¹): 3364, 3274, 2950, 1683, 1633, 1363, 1283, 1094, 1070, 102; $[\alpha]_D^{25} = -0.80$ (c = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.15 (br s, 1H), 3.47 – 3.44 (m, 2H), 3.41 – 3.17 (m, 1H), 2.36 – 2.31 (m, 2H), 2.16 – 2.07 (m, 1H), 1.72 – 1.66 (m, 1H), 1.34 – 1.23 (m, 2H), 0.95 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 179.3, 73.1, 60.8, 46.9, 30.7, 30.2, 30.1 (3C), 23.9; HRMS (ESI) Calcd. $C_{10}H_{20}NO_2$ 186.1415 [M + H]⁺, found 186.1415.

(*R*)-5-((*R*)-1-hydroxy-2-phenylethyl)pyrrolidin-2-one 23d (C₁₂H₁₅NO₂). Following the Method B, the Gilman reagent was prepared by adding PhLi (1.6 M) in pentane (14.8 mL, 23.6 mmol) to a suspension of CuI (2.24 g,11.8 mmol) in dry Et₂O (40 mL) at -35 °C. Opening of the epoxide was carried out by adding a solution of **21a** (300 mg, 2.36 mmol) in dry THF (8 mL) to the freshly prepared Gilman reagent and stirring for 2 h at the same temperature. The crude product was subjected to column chromatography over silica gel (*Eluent*: 4% MeOH in CHCl₃) to furnish **23d** (329 mg, 68%) as white solid. Mp. 138–140 °C; IR (KBr) v (cm⁻¹): 3377, 3258, 2917, 2852, 1631, 1636, 1494, 1311, 1266, 1101, 1067. $[\alpha]_D^{20} = -30.30$ (c = 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.36 – 7.31 (m, 2H), 7.28 – 7.26 (m, 1H), 7.24 - 7.21 (m, 2H), 6.54 (br s, 1H), 3.64 – 3.59 (m, 2H), 2.88 – 2.84 (m, 1H), 2.62 (dd, J = 13.8, 8.2 Hz, 1H), 2.55 (br d, J = 4.1 Hz, 1H), 2.41 – 2.36 (m, 2H), 2.27 – 2.20 (m, 1H), 1.92 – 1.83 (m, 1H); ¹³C NMR

(100 MHz, CDCl₃) δ (ppm): 178.9, 137.5, 129.5 (2C), 128.8 (2C), 126.8, 76.1, 58.8, 40.1, 30.5, 23.9; HRMS (ESI) Calcd. for C₁₂H₁₅NO₂Na 228.1000 [M + Na]⁺, found 228.1009.

(*R*)-6-((*R*)-1-hydroxyhexyl)piperidin-2-one 25b (C₁₁H₂₁NO₂). Following the Method B, the Gilman reagent was prepared by adding BuLi (1.6 M) in hexane (9 mL, 14.2 mmol) to a suspension of CuI (1.36 g, 7.10 mmol) in dry Et₂O (30 mL) at -35 °C. Opening of the epoxide was carried out by adding a solution of **21b** (200 mg, 1.42 mmol) in dry THF (6 mL) to the freshly prepared Gilman reagent and stirring for 2 h at the same temperature. The crude product was subjected to column chromatography over silica gel (*Eluent*: 4% MeOH in CHCl₃) to furnish **25b** (206 mg, 73%) as colorless solid. Mp. 70–72 °C; IR (KBr) v (cm⁻¹): 3422, 2950, 1660, 1479, 1348, 1272, 1154, 1077, 1030; $[\alpha]_D^{25} = + 11.5$ (*c* = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.84 (br s, 1H), 3.62 – 3.58 (m, 1H), 3.32 (br s, 1H), 3.22 - 3.18 (m, 1H), 2.45 - 2.37 (m, 1H), 2.24 (ddd, *J* = 17.7, 12.0, 6.0 Hz, 1H), 1.93 - 1.87 (m, 2H), 1.77 (br s, 1H), 1.72 - 1.62 (m, 1H), 1.34 - 1.20 (m, 7H), 0.87 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 172.7, 74.9, 57.7, 33.5, 31.9, 31.2, 25.1, 24.7, 22.6, 20.0, 14.1; ; HRMS (ESI) Calcd. for C₁₁H₂₁NO₂ [M + Na]⁺ 222.1470, found 222.1475.

(*R*)-6-((*R*)-1-hydroxy-3,3-dimethylbutyl)piperidin-2-one 25c ($C_{11}H_{21}NO_2$). Following the Method B, the Gilman reagent was prepared by adding tert-BuLi (1.6 M) in pentane (4.5 mL, 7.10 mmol) to a suspension of CuI (0.68 g, 3.55 mmol) in dry Et₂O (20 mL) at -35 °C. Opening of the epoxide was carried out by adding a solution of **21b** (100 mg, 0.71 mmol) in dry THF (5 mL) to the freshly prepared Gilman reagent and stirring for 2 h at the same temperature. The crude product was subjected to column chromatography over silica gel (*Eluent*: 4% MeOH in CHCl₃) to furnish **25c** (106 mg, 75%) as white solid. Mp. 101–103 °C; IR (KBr) v (cm⁻¹): 3270, 2950, 1669, 1623, 1363, 1374, 1230, 1166, 1072, 1021; $[\alpha]_D^{20} = + 26.50$ (c = 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.81 (br s, 1H), 3.47 – 3.34 (m, 2H), 3.15 – 3.09 (m, 1H), 2.36 – 2.31 (m, 1H), 2.25 – 2.17 (m, 1H), 1.95 – 1.89 (m, 2H), 1.70 – 1.61 (m, 1H), 1.42 – 1.37 (m, 1H), 1.32 – 1.21 (m, 2H), 0.96 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 172.8, 72.7, 58.2, 47.5, 31.3, 30.3, 30.2 (3C), 25.4, 20.0; HRMS (ESI) Calcd. for C₁₁H₂₁NO₂ 222.1470 [M + Na]⁺, found 222.1470.

(*R*)-6-((*R*)-1-hydroxy-2-phenylethyl)piperidin-2-one 25d (C₁₃H₁₇NO₂). Following the Method B, the Gilman reagent was prepared by adding PhLi (1.6 M) in dibutyl ether (4.4 mL, 7.10 mmol) to a suspension of CuI (0.68 g, 3.55 mmol) in dry Et₂O (20 mL) at -35 °C. Opening of the epoxide was carried out by adding a solution of **21b** (100 mg, 0.71 mmol) in dry THF (5 mL) to the freshly prepared Gilman reagent and stirring for 2 h at the same temperature. The crude product was subjected to column chromatography over silica gel (*Eluent*: 4% MeOH in CHCl₃) to furnish **25d** (120 mg, 77%) as white solid. Mp. 105–106 °C; IR (KBr) v (cm⁻¹): 3518, 2964, 2873, 1654, 1600, 1501, 1579, 1448, 1285, 1123, 1073; $[\alpha]_D^{25} = + 7.20$ (c = 0.25, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.32 (t, J = 7.3 Hz, 2H), 7.28 – 7.22 (m, 1H), 7.22 - 7.18 (m, 2H), 6.62 (br s, 1H), 3.60 – 3.53 (m, 1H), 3.33 – 3.27 (m, 1H), 2.94 (dd, J = 13.2, 3.2 Hz, 1H),

2.55 (dd, J = 13.8, 9.6 Hz, 1H), 2.48 (d, J = 4.6 Hz, 1H), 2.43 – 2.35 (m, 1H), 2.24 (ddd, J = 17.8, 11.9, 6.2 Hz, 1H), 2.02 -1.92 (m, 2H), 1.76 – 1.64 (m, 1H), 1.44 – 1.35 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 172.2, 137.1, 129.6 (2C), 129.0 (2C), 127.0, 75.8, 57.4, 40.0, 31.3, 25.2, 20.0; HRMS (ESI) Calcd. for C₁₃H₁₇NO₂Na 242.1157 [M + Na]⁺, found 242.1152.

(*R*)-1-((*R*)-pyrrolidin-2-yl)propan-1-ol 24a (C₇H₁₅NO). Following the Method C, reaction of 23a (160 mg, 1.12 mmol) with LiAlH₄ (127 mg, 3.36 mmol) followed by purification by column chromatography over silica gel (*Eluent:* 30% MeOH in CHCl₃) provided 24a (117 mg, 81%) as yellow oil. IR (KBr) v (cm⁻¹): 3447, 2962, 2923, 1460, 1370, 1267, 1052, 1027; $[\alpha]_D^{25} = + 4.0$ (c = 0.25, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 5.35 (br s, 1H), 3.83 (br s, 1H), 3.62 – 3.55 (m, 1H), 3.39 – 3.35 (m, 2H), 2.14 – 1.93 (m, 3H), 1.75 – 1.63 (m, 1H), 1.62-1.49 (m, 2H), 1.02 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 72.6, 65.3, 45.0, 27.6, 27.5, 24.4, 9.8; HRMS (ESI) Calcd. for C₇H₁₅NO 130.1232 [M + H]⁺, found 130.1230.

(*R*)-1-((*R*)-pyrrolidin-2-yl)hexan-1-ol 24b ($C_{10}H_{21}NO$). Following the Method C, reaction of 23b (150 mg, 0.810 mmol) with LiAlH₄ (92 mg, 2.43 mmol) followed by purification by column chromatography over silica gel (*Eluent:* 30% MeOH in CHCl₃) provided 24b (119 mg, 86%) as yellow oil. IR (KBr) v (cm⁻¹): 3586, 3372, 2933, 1470, 1381, 1139, 1071, 1021. [α]_D²⁵ = + 4.1 (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 3.86 (td, *J* = 9.2, 3.6 Hz, 1H), 3.54 (q, *J* = 9.2 Hz, 1H), 3.26 (t, *J* = 7.8 Hz, 2H), 2.12 – 1.91 (m, 3H), 1.73 – 1.63 (m, 4H), 1.53- 1.35 (m, 4H), 1.39 – 1.23 (m, 4H), 0.86 (t, *J* = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 71.4, 65.7, 45.0, 34.5, 31.8, 27.7, 25.0, 24.4, 22.7, 14.2; HRMS (ESI) Calcd. for C₁₀H₂₁NO 172.1701 [M + H]⁺, found 172.1706.

(*R*)-3,3-dimethyl-1-((*R*)-pyrrolidin-2-yl)butan-1-ol 24c ($C_{10}H_{21}NO$). Following the Method C, reaction of 23c (150 mg, 0.81 mmol) with LiAlH₄ (92 mg, 2.43 mmol) followed by purification by column chromatography over silica gel (*Eluent:* 30% MeOH in CHCl₃) provided 24c (116 mg, 84%) as pale yellow oil. IR (KBr) v (cm⁻¹): 3301, 2951, 2858, 1478, 1370, 1181, 1081, 1021; $[\alpha]_D^{25} = +5.4$ (*c* = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 3.95 (t, *J* = 9.0 Hz, 1H), 3.59 - 3.50 (m, 1H), 3.40 - 3.36 (m, 2H), 2.10 - 1.98 (m, 3H), 1.71 - 1.62 (m, 1H), 1.51 (dd, *J* = 14.4, 9.2 Hz, 1H), 1.31 - 1.20 (m, 1H), 1.02 (s, 9H); ; ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 69.5, 66.2, 48.0, 45.2, 30.5, 30.2 (3C), 28.0, 24.4; HRMS (ESI) Calcd. for C₁₀H₂₁NO 172.1701 [M + H]⁺, found 172.1703.

(*R*)-2-phenyl-1-((*R*)-pyrrolidin-2-yl)ethanol 24d (C₁₂H₁₇NO). Following the Method C, reaction of 23d (120 mg, 0.58 mmol) with LiAlH₄ (102 mg, 1.74 mmol) followed by purification by column chromatography over silica gel (*Eluent:* 30% MeOH in CHCl₃) provided 24d (81 mg, 72%) as colorless oil. IR (KBr) v (cm⁻¹): 3410, 3238, 2921, 1605, 1498, 1370, 1280, 1132, 1042; $[\alpha]_D^{25} = + 3.3$ (*c* = 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.23 – 7.15 (m, 5H), 3.87 (td, *J* = 8.2, 3.6 Hz, 1H), 3.35 (q, *J* = 9.2 Hz, 1H), 3.09- 3.04 (m, 2H), 2.74 (dd, *J* = 13.7, 3.2 Hz, 1H), 2.68 – 2.62 (m, 1H), 1.89- 1.82 (m, 2H), 1.81 – 1.73 (m, 1H), 1.59 – 1.50 (m, 1H), 1.27 – 1.23 (m, 1H): ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 138.1, 129.7 (2C), 128.4 (2C), 126.4, 72.8,

64.1, 45.4, 41.1, 28.0, 25.0; HRMS (ESI) Calcd. for $C_{12}H_{18}NO$ 192.1388 $[M + H]^+$, found 192.1384.

(*R*)-1-((*R*)-piperidin-2-yl)hexan-1-ol 26b (C₁₁H₂₃NO). Following the Method C, reaction of 25b (180 mg, 0.90 mmol) with LiAlH₄ (102 mg, 2.71 mmol) followed by purification by column chromatography over silica gel (*Eluent:* 30% MeOH in CHCl₃) provided 26b (122 mg, 73%) as colorless oil. IR (KBr) v (cm⁻¹): 3404, 2932, 2856, 1458, 1331, 1306, 1130, 1115, 1054; $[\alpha]_D^{25} =$ + 12.9 (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 3.28 (td, *J* = 7.8, 1.8 Hz, 1H), 3.10 - 3.05 (m, 1H), 2.81 - 2.56 (br s, 1H), 2.57 (dt, *J* = 11.7, 2.7 Hz, 1H), 2.34 (ddd, *J* = 10.6, 7.7, 2.7 Hz, 1H), 1.81 - 1.73 (m, 1H), 1.67 - 1.56 (m, 2H), 1.50 - 1.43 (m, 2H), 1.34 - 1.26 (m, 8H), 1.17 - 1.08 (m, 1H), 0.87 (t, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 74.0, 61.4, 46.4, 33.7, 32.0, 29.1, 26.2, 25.5, 24.4, 22.7, 14.2; HRMS (ESI) Calcd. For C₁₁H₂₃NO 186.1858 [M + H]⁺, found 186.1858.

(*R*)-3,3-dimethyl-1-((*R*)-piperidin-2-yl)butan-1-ol 26c (C₁₁H₂₃NO). Following the Method C, reaction of 25c (50 mg, 0.25 mmol) with LiAlH₄ (57 mg, 1.50 mmol) followed by purification by column chromatography over silica gel (*Eluent:* 30% MeOH in CHCl₃) provided 26c (36 mg, 77%) as colorless oil. IR (KBr) v (cm⁻¹): 3439, 3161, 2954, 1480, 1448, 1363, 1223, 1117, 1052; $[\alpha]_D^{25} = + 14.8$ (*c* = 0.75, CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ (ppm): 3.43 (td, *J* = 7.7, 2.5 Hz, 1H), 3.14 - 3.07 (m, 2H), 2.57 (dt, *J* = 11.5, 3.0 Hz, 1H), 2.26 (ddd, *J* = 10.6, 7.9, 2.7 Hz, 1H), 1.81 - 1.42 (m, 4H), 1.41 - 1.19 (m, 4H), 1.19 - 1.08 (m, 1H), 0.97 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 72.0, 62.8, 48.4, 47.0, 31.0 (3C), 30.9, 29.7, 26.4, 25.0; HRMS (ESI) Calcd. for C₁₁H₂₄NO 186.1858 [M + H]⁺, found 186.1853.

(*R*)-2-phenyl-1-((*R*)-piperidin-2-yl)ethanol 8c (C₁₃H₁₉NO). Following the Method C, reaction of 25d (120 mg, 0.55 mmol) with LiAlH₄ (104 mg, 2.74 mmol) followed by purification by column chromatography over silica gel (*Eluent:* 30% MeOH in CHCl₃) provided 8c (88 mg, 78%) as oil. IR (KBr) v (cm⁻¹): 3415, 3290, 2933, 2851, 1599, 1495, 1424, 1306, 1298, 1120, 1042; $[\alpha]_D^{25} = +16.4$ (c = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.29 – 7.26 (m, 2H), 7.22 – 7.17 (m, 3H), 3.58 – 3.47 (m, 2H), 3.07 – 3.01 (m, 1H), 2.86 (dd, J = 13.7, 3.6 Hz, 1H), 2.60 – 2.42 (m, 3H), 1.78 – 1.69 (m, 2H), 1.55- 1.53 (m, 1H), 1.38 – 1.18 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 139.4, 130.3 (2C), 129.1 (2C), 127.0, 75.5, 61.4, 46.8, 40.8, 29.2, 26.3, 24.7; HRMS (ESI) Calcd. for C₁₃H₂₀NO 206.1545 [M + H]⁺, found 206.1541.

III. Theoretical Calculations.

The molecular geometries of **16** were fully optimized at a level of density functional theory employing the hybrid functional $B3LYP^{S1}$ with Pople's basis set 6-311G(d,p) where polarization

functions were added to all the atoms and diffuse functions to the heavy atoms. All the calculations were performed with the development version of Gaussian 03.^{S2}

Atom #	Atom Type	X	У	Z
1	С	2.198 -1.977		-1.666
2	С	0.766	766 -1.685	
3	С	0.546	-0.209	-0.991
4	0	0.750	-2.203	0.154
5	С	2.126	-2.577	0.537
6	0	2.935	-1.968	-0.460
7	С	2.228	-4.097	0.521
8	С	2.455	-1.961	1.880
9	Ν	-0.530	0.462	-1.188
10	С	0.585	2.531	-0.207
11	С	1.603	3.127	-0.960
12	С	2.711	3.685	-0.328
13	С	2.809	3.651	1.062
14	С	1.797	3.065	1.820
15	С	0.688	2.508	1.190
16	С	-0.618	1.943	-0.883
17	С	-2.857	-0.205	-0.589
18	С	-2.648	-1.019	0.530
19	С	-3.628	-1.114	1.513
20	С	-4.822	-0.405	1.385
21	С	-5.036	0.403	0.272
22	С	-4.054	0.506	-0.712
23	С	-1.815	-0.120	-1.684
24	Н	2.230	-2.947	-2.172
25	Н	2.611	-1.216	-2.330
26	Н	0.005	-2.176	-1.776
27	Н	1.387	0.342	-0.577
28	Н	1.525	-4.527	1.235
29	Н	2.001	-4.504	-0.466
30	Н	3.240	-4.399	0.798
31	Н	1.788	-2.355	2.648
32	Н	3.483	-2.203	2.154
33	Н	2.351	-0.876	1.837
34	Н	1.522	3.172	-2.042
35	Н	3.490	4.154	-0.917
36	Н	3.668	4.092	1.554
37	Н	1.865	3.054	2.902
38	Н	-0.106	2.066	1.783
39	Н	-0.809	2.420	-1.848

Table S1. Atomic coordinates calculated for 16 from DFT B3LYP/6-311G(d,p) geometry optimization.

40	Н	-1.515	2.051	-0.272
41	Н	-1.726	-1.582	0.639
42	Н	-3.463	-1.749	2.376
43	Н	-5.585	-0.486	2.150
44	Н	-5.964	0.951	0.165
45	Н	-4.229	1.131	-1.582
46	Н	-1.603	-1.096	-2.113
47	Н	-2.155	0.530	-2.491

Fig. S1 View of the frontier molecular orbitals (MOs), HOMO (**A**) and LUMO (**B**) of the iminium cation **16** generated from DFT B3LYP/6-311G(d,p) geometry optimization.

IV. Crystal Structures

Single-crystal X-ray diffraction analysis. Single crystals of **15c**, **22a**, **23d** and **25b** suitable for X-ray diffraction study were grown as mentioned below. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, U.K. (fax +44 1223 336033).

Crystal structure of compound 15c (CCDC 861123): Compound **15a** was crystallized from ethyl acetate / chloroform (1:1) at 25 °C. A colorless rectangular shaped crystal with approximate dimensions 0.09 x 0.07 x 0.08 mm gave an Monoclinic with space group P4₃; a = 13.877 (5) b =

13.877 (5) c = 12.453 (5) Å, $\alpha = 90^{\circ} \beta = 90^{\circ} \gamma = 90^{\circ}$; V = 2398.09; T = 296 (2) K; Z = 4; $\rho_{calc} = 1.084 \text{ Mgm}^{-3}$; $2\theta_{max} = 56.74^{\circ}$; $MoK\alpha\lambda = 0.71073$ Å. Fine-focus sealed tube source with graphite monochromator. R = 0.0368 (for 2459 reflection $I > 2\sigma(I)$), wR = 0.1046 which was refined against IF2I and S = 0.855 for 268 parameters and 4900 unique reflections. The structure was obtained by direct methods using SHELXS-97.⁸³ All non-hydrogen atoms were refined isotropically. The hydrogen atoms were fixed geometrically in the idealized position and refined in the final cycle of refinement as riding over the atoms to which they are bonded. $\mu = 0.067 \text{ mm}^{-1}$; Minimum/maximum residual electron density 0.171 / -0.157 eÅ⁻³.

Crystal structure of compound 22a (CCDC 856727): Compound **22a** was crystallized from chloroform at 25 °C. A colorless needle shaped crystal with approximate dimensions 0.09 x 0.08 x 0.07 mm gave an monoclinic with space group C2; a = 24.717 (2) b = 4.8349 (4) c = 15.6744 (13) Å, $\alpha = 90^{\circ}$ $\beta = 113.833^{\circ}$ $\gamma = 90^{\circ}$; V = 1713.4 (2); T = 296 (2) K; Z = 2; $\rho_{calc} = 2.009$ Mgm⁻³; $2\theta_{max} = 56.74^{\circ}$; $MoKa\lambda = 0.71073$ Å. Fine-focus sealed tube source with graphite monochromator. R = 0.0300 (for 2729 reflection $I > 2\sigma(I)$), wR = 0.0716 which was refined against IF2I and S = 0.904 for 188 parameters and 3078 unique reflections. The structure was obtained by direct methods using SHELXS-97.^{S3} All non-hydrogen atoms were refined isotropically. The hydrogen atoms were fixed geometrically in the idealized position and refined in the final cycle of refinement as riding over the atoms to which they are bonded. $\mu = 3.688$ mm⁻¹; Minimum/maximum residual electron density 0.659 / -0.853 eÅ⁻³.

Crystal structure of compound 23d (CCDC 859884): $C_{12}H_{15}NO_2$; Compound 23d was crystallized from ethyl acetate and chloroform (1:1) at 25 °C. A colorless rectangular shaped

crystal with approximate dimensions 0.14 x 0.13 x 0.12 mm gave an Triclinic with space group P2₁2₁2₁; *a* = 5.4457 (9) *b* = 8.3138 (13) *c* = 23.660 (4) Å, $\alpha = 90^{\circ} \beta = 90^{\circ} \gamma = 90^{\circ}$; *V* = 1071.2 (3); *T* = 296 (2) K; *Z* = 4; $\rho_{calc} = 1.273$ Mgm⁻³; $2\theta_{max} = 57.04^{\circ}$; *MoKaλ* = 0.71073 Å. Fine-focus sealed tube source with graphite monochromator. *R* = 0.0396 (for 2361 reflection *I*>2 σ (*I*)), *wR* = 0.1059 which was refined against 1*F2*1 and S = 1.064 for 138 parameters and 2731 unique reflections. The structure was obtained by direct methods using SHELXS-97.^{S3} All non-hydrogen atoms were refined isotropically. The hydrogen atoms were fixed geometrically in the idealized position and refined in the final cycle of refinement as riding over the atoms to which they are bonded. $\mu = 0.087$ mm⁻¹; Minimum/maximum residual electron density 0.168 / -0.221 eÅ⁻³.

Crystal structure of compound 25b (CCDC 865442): Compound **25b** was crystallized from chloroform at 25 °C. A colorless needle shaped crystal with approximate dimensions 0.8 x 0.7 x 0.7 mm gave an Monoclinic with space group P2₁; a = 5.1574 (8) b = 7.2509 (11) c = 15.552 (3) Å, $\alpha = 90^{\circ} \beta = 94.590$ (3) ° $\gamma = 90^{\circ}$; V = 579.714 (3); T = 296 (2) K; Z = 2; $\rho_{calc} = 1.142$ Mgm⁻³; $2\theta_{max} = 56.82^{\circ}$; $MoKa\lambda = 0.71073$ Å. Fine-focus sealed tube source with graphite monochromator. R = 0.0361 (for 2329 reflection $I > 2\sigma(I)$), wR = 0.0892 which was refined against IF21 and S = 1.082 for 130 parameters and 2657 unique reflections. The structure was obtained by direct methods using SHELXS-97.^{S3} All non-hydrogen atoms were refined isotropically. The hydrogen atoms were fixed geometrically in the idealized position and refined in the final cycle of refinement as riding over the atoms to which they are bonded. $\mu = 0.077$ mm⁻¹; Minimum/maximum residual electron density 0.112 / -0.097 eÅ⁻³.

Fig. S2 ORTEP diagram of 15c.

Fig. S3 ORTEP diagram of 22a.

Fig. S4 ORTEP diagram of 23d.

Fig. S5 ORTEP diagram of 25b.

Fig. S6 The extended sheet type assembly of 23d (A) and that of 25b (B) represented in the Capped sticks models.

Table S2. Non-covalent interactions in the crystal structures of 23d and 25b.

Compound		D-HA	DA	D-HA	Type of H-
		[Å]	[Å]	[deg]	bonding
23d	N1O1	2.036	2.855	159	NHCO
	O2HO1	1.984	2.797	171	ОНСО
25b	N1O1	2.218	3.049	162	NHCO
	O2HO1	1.966	2.782	173	ОНСО

V. NMR Spectra.

Fig. S8 ¹H-NMR of **15a**.

Fig. S10¹H-NMR of 15b

Fig. S12 ¹³C-NMR of 15c.

Fig. S14¹³C-NMR of 15d.

Fig. S16 ¹³C-NMR of 15e.

Fig. S18¹³C-NMR of 15f.

Fig. S20¹³C-NMR of 15g.

Fig. S22¹³C-NMR of 17.

Fig. S24 ¹³C-NMR of 18a.

Fig. S26¹³C-NMR of 19a.

Fig. S28 ¹³C-NMR of 20a.

Fig. S30 ¹³C-NMR of 21a.

Fig. S34 ¹³C-NMR of **19b**.

Fig. S36 ¹³C-NMR of 20b.

Fig. S38 ¹³C-NMR of **21b**.

Fig. S40 ¹³C-NMR of 22a.

Fig. S42 ¹³C-NMR of **22b**.

Fig. S44 ¹³C-NMR of **22c**.

Fig. S46¹³C-NMR of 23a.

Fig. S48 ¹³C-NMR of 23b.

Fig. S50 ¹³C-NMR of 23c.

Fig. S52 ¹³C-NMR of **23d**.

Fig. S54 ¹³C-NMR of **24a**.

Fig. S56 ¹³C-NMR of **24b**.

Fig. S58 ¹³C-NMR of 24c.

Fig. S60 ¹³C-NMR of **24d**.

Fig. S62 ¹³C-NMR of 25a.

Fig. S64 ¹³C-NMR of **25b**.

Fig. 866 ¹³C-NMR of 25c.

80 70

60 50 40 30 20

10

ò

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

Fig. S70 ¹³C-NMR of 8a.

S50

Fig. S74 ¹³C-NMR of **26c**.

Fig. S76¹³C-NMR of **26d**.

VI. References

- S1 (a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864. (b) Kohn, W.; Sham, L. Phys. Rev. 1965, 140, A1133. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (d) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
- S2 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03, Revision C.02*, 2003.
- S3 SHELXS-97: (a) Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr., 1990,
 46, 467; (b) G. M. Sheldrick, SHELXL-97, Universität Göttingen (Germany), 1997.