Electronic supplementary information (ESI)

Synthesis of push-pull chromophores by the sequential [2+2] cycloaddition of

1-azulenylbutadiynes with tetracyanoethylene and tetrathiafulvalene

Taku Shoji, Shunji Ito, Tetsuo Okujima, and Noboru Morita

\triangleleft Contents

1. Experimental
2. Solvent dependence for UV-Vis spectra of 5-9, and $\mathbf{1 2}$.
3. Cyclic and differential pulse voltammograms of 5, 7 and $\mathbf{9}$.
4. Frontier Kohn-Sham orbitals of $\mathbf{9}$ ".

\diamond General

Melting points were determined with a Yanagimoto MPS3 micro melting apparatus and are uncorrected. High resolution mass spectra were obtained with a Bruker Daltonics APEX III instrument. IR and UV/Vis spectra were measured with JASCO FT/IR-4100 and Shimadzu UV-2550 spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker AVANCE 400 at 400 MHz and 100 MHz , or a JEOL ECA 500 at 500 MHz and 125 MHz , respectively. Voltammetry measurements were carried out with a BAS 100B/W electrochemical workstation equipped with Pt working and auxiliary electrodes and a reference electrode formed from $\mathrm{Ag} / \mathrm{AgNO}_{3}(0.01 \mathrm{M})$ in acetonitrile containing tetrabutylammonium perchlorate (0.1 M). Elemental analyses were performed at the Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University.

Methyl-7-isopropyl-3-(4-phenyl-buta-1,3-diynyl)-azulene-1-carboxylate (2)

$\mathrm{CuI}(190 \mathrm{mg}, 1.00 \mathrm{mmol})$ and tetramethylethylenediamine ($116 \mathrm{mg}, 1.00 \mathrm{mmol}$) in dichloromethane (3 mL) were added to a solution of $\mathbf{1}(252 \mathrm{mg}, 1.00 \mathrm{mmol})$ and ethynylbenzene ($510 \mathrm{mg}, 5.00 \mathrm{mmol}$) in dichloromethane $(20 \mathrm{~mL})$. The resulting mixture was stirred at room temperature for 6 h under an air. The reaction mixture was poured into a 10% aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and was extracted with dichloromethane. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with dichloromethane as an eluent to give $2(261 \mathrm{mg}, 74 \%)$ as purple crystals and $3(51 \mathrm{mg}, 20 \%)$ as green needless.
M.p. $110.0-114.0^{\circ} \mathrm{C}(\mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=9.73(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 8.64(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.0 \mathrm{~Hz}, 4-\mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 7.84(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.55(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, o-\mathrm{Ph}), 7.54$ (dd, $1 \mathrm{H}, J=10.0,10.0 \mathrm{~Hz}, 5-\mathrm{H}$), $7.58\left(\mathrm{~m}, 3 \mathrm{H}, m, p-\mathrm{Ph}\right.$), 3.95 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.24 (sept, $1 \mathrm{H}, J=6.5$ $\mathrm{Hz}, i \operatorname{Pr}), 1.43(\mathrm{~d}, 6 \mathrm{H}, J=6.5 \mathrm{~Hz}, i \mathrm{Pr}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=165.18\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, 151.42 (C-7), 146.49 (C-3a or 8a), 143.76 (C-2), 141.48 (C-3a or 8a), 139.74 (C-6), 138.61 (C-8), 136.49 (C-4), 132.33 (o-Ph), 128.92 ($p-\mathrm{Ph}$), 128.40 ($m-\mathrm{Ph}$), 128.10 (C-5), 122.13 (ipso-Ph), 115.22 (C-1), $107.20(\mathrm{C}-3), 82.36(\mathrm{C} \equiv \mathrm{C}), 78.00(\mathrm{C} \equiv \mathrm{C}), 77.54(\mathrm{C} \equiv \mathrm{C}), 74.61(\mathrm{C} \equiv \mathrm{C}), 51.24\left(\mathrm{CO}_{2} \mathrm{Me}\right), 39.28$ (iPr), 24.59 (iPr) ppm; IR (KBr disk): $v_{\max }=2960(\mathrm{w}), 2205$ (w), 2131 (w), 1693 (s), 1509 (m), 1489 (w), 1449 (s), 1415 (m), 1395 (w), 1373 (w), 1362 (w), 1334 (w), 1279 (w), 1211 (s), 1172 (m), 1117 (m), 1079 (m), 1065 (w), 1019 (w), 959 (w), 909 (w), 886 (w), 860 (w), 801 (w), 773 (m), 761 (m), $689(\mathrm{~m}), 673(\mathrm{~m}), 664(\mathrm{~m}), 643(\mathrm{~m}) \mathrm{cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=244$ (4.62), 278 (4.58), 286 sh (4.55), 314 (4.60), $324 \mathrm{sh}(4.55), 356$ (4.36), 398 (4.26), $414 \mathrm{sh}(4.22), 562$ (2.91), 610 sh (2.80) nm; HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{2}+\mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$375.1361; found: 375.1356; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 85.20; H, 5.72. Found: C, 85.14; H, 5.79.

1,4-Di(7-isopropyl-1-methoxycarbonylazulen-3-yl)butadiyne (3)

$\mathrm{CuI}(190 \mathrm{mg}, 1.00 \mathrm{mmol})$ and tetramethylethylenediamine ($116 \mathrm{mg}, 1.00 \mathrm{mmol}$) in dichloromethane $(3 \mathrm{~mL})$ were added to a solution of $\mathbf{1}(252 \mathrm{mg}, 1.00 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$. The resulting mixture was stirred at room temperature for 3 h under an air. The reaction mixture was poured into a 10% aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and was extracted with dichloromethane. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with dichloromethane as an eluent to give 3 ($229 \mathrm{mg}, 91 \%$) as green needless.
M.p. $165.0-167.0^{\circ} \mathrm{C}(\mathrm{AcOEt}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=9.73(\mathrm{~s}, 2 \mathrm{H}, 8-\mathrm{H}), 8.68(\mathrm{~d}, 2 \mathrm{H}, J=$ $10.0 \mathrm{~Hz}, 4-\mathrm{H}), 8.46(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{H}), 7.83(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.54(\mathrm{dd}, 2 \mathrm{H}, J=10.0,10.0 \mathrm{~Hz}$, $5-\mathrm{H}$), 3.96 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.24 (sept, $2 \mathrm{H}, J=6.5 \mathrm{~Hz}, i \operatorname{Pr}$), 1.43 (d, $12 \mathrm{H}, J=6.5 \mathrm{~Hz}, i \operatorname{Pr}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=165.23\left(\mathrm{CO}_{2} \mathrm{Me}\right), 151.28(\mathrm{C}-7), 146.37(\mathrm{C}-3 \mathrm{a}$ or 8 a$), 143.68(\mathrm{C}-2)$, 141.47 (C-3a or 8a), 139.70 (C-6), 138.57 (C-8), 136.56 (C-4), 127.98 (C-5), 115.25 (C-1), 107.68 (C-3), $78.65(\mathrm{C} \equiv \mathrm{C}), 78.25(\mathrm{C} \equiv \mathrm{C}), 51.25\left(\mathrm{CO}_{2} \mathrm{Me}\right), 39.28$ (iPr), 24.61 (iPr) ppm; IR (KBr disk): $v_{\max }$ $=2964(\mathrm{w}), 2126(\mathrm{w}), 1685(\mathrm{~s}), 1524(\mathrm{w}), 1498(\mathrm{w}), 1437(\mathrm{~m}), 1420(\mathrm{~m}), 1397(\mathrm{w}), 1365(\mathrm{w}), 1310$ (w), 1205 (s), 1194 (m), 1175 (s), 1137 (w), 1119 (m), 1072 (w), 1057 (w), 1037 (w), 959 (w), 916 (w), $879(\mathrm{w}), 869(\mathrm{w}), 806(\mathrm{~m}), 777(\mathrm{~m}), 757(\mathrm{w}), 677(\mathrm{w}) \mathrm{cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=$ 246 (4.71), 296 (4.86), 328 (4.71), 344 (4.49), 396 sh (4.40), 420 (4.47), 450 sh (4.32), 570 (3.27) nm ; HRMS (ESI): calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{O}_{4}+\mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 525.2042$; found: 525.2036; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{O}_{4}$: C, 81.25; H, 6.02. Found: C, 81.11; H, 6.18.

Methyl 7-isopropyl-3-(4-trimethylsilanyl-buta-1,3-diynyl)-azulene-1-carboxylate (4)

$\mathrm{CuI}(190 \mathrm{mg}, 1.00 \mathrm{mmol})$ and tetramethylethylenediamine ($116 \mathrm{mg}, 1.00 \mathrm{mmol}$) in dichloromethane (3 mL) were added to a solution of $\mathbf{1}(252 \mathrm{mg}, 1.00 \mathrm{mmol}$) and trimethylsilylacetylene ($491 \mathrm{mg}, 5.00$ $\mathrm{mmol})$ in dichloromethane (20 mL). The resulting mixture was stirred at room temperature for 12 h under an air. The reaction mixture was poured into a 10% aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and was extracted with dichloromethane. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with dichloromethane as an eluent to give $4(262 \mathrm{mg}, 76 \%)$ as purple oil and $\mathbf{3}(43 \mathrm{mg}, 17 \%)$ as green needless.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=9.71(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 8.57(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, 4-\mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}$, $2-\mathrm{H}), 7.81(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.50(\mathrm{dd}, 1 \mathrm{H}, J=10.0,10.0 \mathrm{~Hz}, 5-\mathrm{H}), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right)$, 3.21 (sept, $1 \mathrm{H}, J=6.5 \mathrm{~Hz}, i \operatorname{Pr}), 1.40(\mathrm{~d}, 6 \mathrm{H}, J=6.5 \mathrm{~Hz}, i \operatorname{Pr}), 0.27$ (s, 9H, TMS) ppm; ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=165.06,151.45,146.73,143.92,141.42,139.72,138.58,136.41,128.09,115.20$, $106.69,91.19,88.58,78.43,72.78,51.15,39.21,24.51,-0.29 \mathrm{ppm}$; IR (KBr disk): $v_{\max }=2961(\mathrm{~m})$, 2899 (w), 2870 (m), 2191 (m), 1679 (s), 1523 (w), 1508 (w), 1446 (s), 1425 (m), 1410 (m), 1371 (m), 1250 (m), 1217 (s), 1176 (w), 1163 (w), 1130 (m), 1091 (m), 1074 (m), 1020 (w), 951 (w), 910 (m), $860(\mathrm{~m}), 843(\mathrm{~s}), 802(\mathrm{w}), 775(\mathrm{w}), 760(\mathrm{w}), 669(\mathrm{w}), 638(\mathrm{w}) \mathrm{cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\max }(\log \varepsilon)=$ 238 (4.61), 266 (4.42), 300 (4.67), 330 (4.58), 392 (4.16), 410 (4.13), 560 (2.88), 604 sh (2.79), 674 sh (2.22) nm; HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$371.1443; found: 371.1438; Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$: C, $75.82 ; \mathrm{H}, 6.94$. Found: C, $75.72 ; \mathrm{H}, 6.86$.

Compound 5

TCNE ($96 \mathrm{mg}, 0.75 \mathrm{mmol}$) was added to a solution of $\mathbf{2}(176 \mathrm{mg}, 0.50 \mathrm{mmol})$ in ethyl acetate $(5 \mathrm{~mL})$. The resulting mixture was stirred at room temperature for 3 h under an Ar atmosphere. The solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ethyl acetate ($20: 1$) as an eluent and on Bio-Beads with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to give $5(228 \mathrm{mg}, 95 \%)$ as purple crystals.
M.p. $208.0-211.0{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=10.02(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 8.52$ ($\mathrm{s}, 1 \mathrm{H}, 2-\mathrm{H}$), $8.41(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, 4-\mathrm{H}), 8.14(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.95(\mathrm{dd}, 1 \mathrm{H}, J=10.0$, $10.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.72(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, o-\mathrm{Ph}), 7.58(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, p-\mathrm{Ph}), 7.48(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}$, $m-\mathrm{Ph}), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.36$ (sept, $1 \mathrm{H}, J=6.5 \mathrm{~Hz}, i \mathrm{Pr}$), $1.48(\mathrm{~d}, 6 \mathrm{H}, J=6.5 \mathrm{~Hz}, i \mathrm{Pr}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=164.44\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $156.86(\mathrm{C}-7), 156.78\left(\underline{C}=\mathrm{C}(\mathrm{CN})_{2}\right), 150.60$ $\left(\underline{C}=\mathrm{C}(\mathrm{CN})_{2}\right), 145.99(\mathrm{C}-3 \mathrm{a}), 142.72(\mathrm{C}-2), 142.32(\mathrm{C}-6), 140.83(\mathrm{C}-8), 137.03(\mathrm{C}-4), 133.63(o-\mathrm{Ph})$, 132.82 ($p-\mathrm{Ph}$), 132.10 (C-5), 129.07 ($m-\mathrm{Ph}$), 119.31 (ipso-Ph), 119.19 (C-1), 118.78 (C-3), 113.68 (CN), $112.27(\mathrm{CN}), 111.58(\mathrm{CN}), 109.95(\mathrm{CN}), 95.20\left(\underline{\mathrm{C}}(\mathrm{CN})_{2}\right), 85.87\left(\underline{\mathrm{C}}(\mathrm{CN})_{2}\right), 80.62(\mathrm{C} \equiv \mathrm{C}), 51.73$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 39.52(i \mathrm{Pr}), 24.50(i \mathrm{Pr}) \mathrm{ppm}$. The one signal of $\mathrm{C} \equiv \mathrm{C}$ moiety was overlapped with signals of CDCl_{3}. IR (KBr disk): $v_{\text {max }}=2962$ (w), 2223 (w), 2190 (s), 1698 (s), 1541 (m), 1508 (s$), 1445$ (s$)$, 1424 (s), 1375 (s), 1245 (w), 1217 (s), 1176 (m), 1159 (w), 1132 (w), 1109 (w), 1059 (m), 1016 (w), 997 (w), 932 (w), 895 (w), 877 (w), 848 (w), 810 (w), 776 (w), 760 (m), 726 (w), 713 (w), 688 (m), $652(\mathrm{w}) \mathrm{cm}^{-1} ;$ UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=236(4.53), 266$ (4.47), 300 (4.58), 388 (4.47), 530 (3.93) nm; UV/Vis ($10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane): $\lambda_{\max }(\log \varepsilon)=264$ (4.47), 297 (4.58), 373 (4.43), 513 (3.87) nm; HRMS (ESI): calcd for $\mathrm{C}_{31} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}+\mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$503.1484; found: 503.1478; Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 77.49; H, 4.20; N, 11.66. Found: C, 77.58; H, 4.37; N 11.70.

Compound 6

TTF ($104 \mathrm{mg}, 0.50 \mathrm{mmol}$) was added to a solution of $\mathbf{5}(120 \mathrm{mg}, 0.25 \mathrm{mmol})$ in acetonotrile $(10 \mathrm{~mL})$. The resulting mixture was heated at reflux temperature for 24 h under an Ar atmosphere. The solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl acetate (20:1) as an eluent and on Bio-Beads with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to give $6(158 \mathrm{mg}, 92 \%)$ as red crystals.
M.p. $133.0-137.0^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) ;{ }^{1} \mathrm{H}$ NMR (600 MHz , tetrachloroethane $\left.-d_{2}, 110{ }^{\circ} \mathrm{C}\right): \delta_{\mathrm{H}}=9.96$ ($\mathrm{s}, 1 \mathrm{H}, 8-\mathrm{H}$), 8.57 (br s, $2 \mathrm{H}, 2,4-\mathrm{H}$), $8.14(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.56$ (br s, $2 \mathrm{H}, o-\mathrm{Ph}), 7.41$ (br s, 2H, $m-\mathrm{Ph}$), 7.56 (br s, 1H, $p-\mathrm{Ph}$), 7.01 (br s, 2H, dithiolylidene), 6.55-6.50 (m, 2 H , dithiolylidene), $4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right.$), 3.36 (br s, $1 \mathrm{H}, i \mathrm{Pr}$), 1.54 (br s, $6 \mathrm{H}, i \mathrm{Pr}$) ppm; ${ }^{13} \mathrm{C}$ NMR (150 MHz , tetrachloroethane $-d_{2}, 110{ }^{\circ} \mathrm{C}$): $\delta_{\mathrm{C}}=171.31$ (dithiolylidene), $164.41\left(\mathrm{CO}_{2} \mathrm{Me}\right), 160.61$ $\left(\underline{C}=\mathrm{C}(\mathrm{CN})_{2}\right), 157.27\left(\underline{\mathrm{C}}=\mathrm{C}(\mathrm{CN})_{2}\right), 156.41(\mathrm{C}-7), 146.33$ (dithiolylidene), $143.34(\mathrm{C}-2), 142.40(\mathrm{C}-3 \mathrm{a})$, 141.67 (C-6), 139.97 (C-8), 138.34 (C-4), 136.22 (ipso-Ph), 131.74 (C-5), 128.77 (m-Ph), 127.24 (o-Ph), 126.45 ($o-\mathrm{Ph}$), 125.45 (dithiolylidene), 119.73 (dithiolylidene), 119.58 (C-1), 118.53 (dithiolylidene), $117.84(\mathrm{C}-3), 115.56(\mathrm{CN}), 114.65(\mathrm{CN}), 114.27(\mathrm{CN}), 113.24(\mathrm{CN}), 81.41$ $\left(\underline{C}(\mathrm{CN})_{2}\right), 51.46\left(\mathrm{CO}_{2} \mathrm{Me}\right), 39.31(i \mathrm{Pr}), 24.32(i \mathrm{Pr}) \mathrm{ppm}$. The one signal of $\mathrm{C}(\mathrm{CN})_{2}$ moiety was overlapped with signals of CDCl_{3}.; IR (KBr disk): $v_{\text {max }}=3084$ (w), 2960 (w), 2203 (m), 1699 (m), 1497 (m), 1439 (m), 1417 (m), 1364 (s), 1213 (m), 1180 (m), 1135 (w), 1087 (w), 1051 (w), 1017 (w), $901(\mathrm{w}), 806(\mathrm{w}), 767(\mathrm{w}), 727(\mathrm{~m}), 705(\mathrm{w}), 675(\mathrm{w}) \mathrm{cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\max }(\log \varepsilon)=242$ (4.52), 266 sh (4.46), 300 (4.35), 337 sh (4.31), 348 (4.32), 471 (4.52) nm; UV/Vis (10% $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $): \lambda_{\max }(\log \varepsilon)=240(4.52), 266$ sh (4.43), 301 (4.34), 332 sh (4.30), 345 (4.31), 463 (4.48) nm; HRMS (ESI): calcd for $\mathrm{C}_{37} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{4}+\mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 707.0680$; found: 707.0674; Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{4}$: C, 64.89; H, 3.53; N, 8.18. Found: C, 64.77; H, 3.67; N 8.11.

Compound 7

TCNE ($96 \mathrm{mg}, 0.75 \mathrm{mmol}$) was added to a solution of $\mathbf{3}(251 \mathrm{mg}, 0.50 \mathrm{mmol})$ in ethyl acetate (10 mL). The resulting mixture was stirred at room temperature for 1 h under an Ar atmosphere. The solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl acetate (20:1) as an eluent and on Bio-Beads with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to give 7 ($306 \mathrm{mg}, 97 \%$) as purple crystals.
M.p. $145.0-148.0{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=10.02(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 9.88$ ($\mathrm{s}, 1 \mathrm{H}, 8^{\prime}-\mathrm{H}$), $8.85(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, 4-\mathrm{H}), 8.60\left(\mathrm{~s}, 2 \mathrm{H}, 2,2^{\prime}-\mathrm{H}\right), 8.48\left(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right)$, 8.11 (d, 1H, $J=10.0 \mathrm{~Hz}, 6-\mathrm{H}), 8.05\left(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 7.93(\mathrm{dd}, 1 \mathrm{H}, J=10.0,10.0 \mathrm{~Hz}, 5-\mathrm{H})$, 7.83 (dd, $1 \mathrm{H}, J=10.0,10.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}$), 3.97 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.96 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.36-3.32 (m, 2H, $i \operatorname{Pr}), 1.48(\mathrm{~d}, 6 \mathrm{H}, J=6.5 \mathrm{~Hz}, i \operatorname{Pr}), 1.47(\mathrm{~d}, 6 \mathrm{H}, J=6.5 \mathrm{~Hz}, i \operatorname{Pr}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=164.61\left(\mathrm{CO}_{2} \mathrm{Me}\right), 164.53\left(\mathrm{CO}_{2} \mathrm{Me}\right), 157.91\left(\underline{\mathrm{C}}=\mathrm{C}(\mathrm{CN})_{2}\right), 156.39\left(\mathrm{C}-7\right.$ or $\left.7^{\prime}\right), 155.78\left(\mathrm{C}-7\right.$ or $\left.7^{\prime}\right)$, $149.31\left(\underline{C}=\mathrm{C}(\mathrm{CN})_{2}\right), 148.18$ ($\left.\mathrm{C}-3 \mathrm{a}^{\prime}\right), 145.94\left(\mathrm{C}-2\right.$ or $\left.2^{\prime}\right)$, $144.58(\mathrm{C}-8 \mathrm{a}), 143.00\left(\mathrm{C}-2\right.$ or $\left.2^{\prime}\right), 142.38$ (C-3a), 142.08 (C-6), 141.57 (C-6'), 140.63 (C-8), 139.95 (C-8'), 137.71 (C-4), 137.05 (C-4'), 131.91 (C-5), 131.87 (C-5'), 119.75 (C-3 or 3'), 119.06 (C-1), 118.92 (C-1'), 118.80 (C-3 or 3'), 113.96 (CN), $113.59(\mathrm{CN}), 112.49(\mathrm{CN}), 111.10(\mathrm{CN})$, $105.48(\mathrm{C} \equiv \mathrm{C}), 96.08\left(\underline{C}(\mathrm{CN})_{2}\right), 87.86$ $\left(\underline{C}(\mathrm{CN})_{2}\right), 80.51(\mathrm{C} \equiv \mathrm{C}), 51.64\left(\mathrm{CO}_{2} \mathrm{Me}\right), 51.56\left(\mathrm{CO}_{2} \mathrm{Me}\right), 39.59$ (iPr), 39.47 (iPr), 24.53 (iPr), 24.49 (iPr) ppm; IR (KBr disk): $v_{\max }=2961$ (w), 2221 (w), 2131 (s , 1699 (m), 1489 (s), 1417 (s), 1364 (s), 1284 (w), 1212 (s), 1168 (m), 1134 (w), 1084 (w), 1058 (w), 895 (w), 808 (w), 777 (m), 729 (w) $\mathrm{cm}^{-1} ; \mathrm{UV} / \mathrm{Vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=236$ (4.72), 272 sh (4.60), 300 (4.69), 347 sh (4.38), 394 (4.33), 545 (4.52) nm; UV/Vis ($10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane): $\lambda_{\text {max }}(\log \varepsilon)=264 \operatorname{sh}(4.58), 299(4.68), 339 \mathrm{sh}$ (4.41), 392 (4.29), 515 (4.49) nm; HRMS (ESI): calcd for $\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 653.2165$; found: 653.2159; Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 76.17; H, 4.79; N, 8.88. Found: C, 76.05; H, 4.88; N 8.77.

Reaction of 7 with TCNE: TCNE ($640 \mathrm{mg}, 5.00 \mathrm{mmol}$) was added to a solution of $7(630 \mathrm{mg}, 1.00$ mmol) in 1,1,2,2-tetrachloroethane (5 mL). The resulting mixture was heated at reflux temperature for 24 h under an Ar atmosphere. The crude product was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl acetate (10:1) as an eluent and on Bio-Beads with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to give $\mathbf{8}(539 \mathrm{mg}, 71 \%)$ as brown crystals and $\mathbf{9}(139 \mathrm{mg}, 22 \%)$ as deep-blue crystals.

Compound 8

M.p. $165.0-168.0{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 80^{\circ} \mathrm{C}$): $\delta_{\mathrm{H}}=9.73$ (br s, 2 H , $8-\mathrm{H}$), 8.16 (d, 2H, $J=9.5 \mathrm{~Hz}, 4-\mathrm{H}$), 7.65 (br s, $6 \mathrm{H}, 5,6,7-\mathrm{H}$), 3.87 (br s, $6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.34 (br s, 2H, $i \operatorname{Pr}), 1.45(\mathrm{~d}, 12 \mathrm{H}, J=7.0 \mathrm{~Hz}, i \mathrm{Pr}) \mathrm{ppm}$. Low solubility of the compound hampered a measurement of ${ }^{13} \mathrm{C}$ NMR. IR (KBr disk): $v_{\max }=2969(\mathrm{w}), 2221(\mathrm{w}), 1738(\mathrm{~m}), 1704(\mathrm{~m}), 1498(\mathrm{~m}), 1441(\mathrm{~m})$, 1400 (m), 1297 (w), 1212 (s), 1180 (m), 1134 (w), 1090 (w), 1023 (w), 902 (w), 810 (w), 777 (m), $729(\mathrm{w}), 669(\mathrm{w}) \mathrm{cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=245(4.71), 264$ (4.72), 348 sh (4.35), 450 (4.40), $510 \mathrm{sh}(4.19) \mathrm{nm}$; UV/Vis ($10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane): $\lambda_{\max }(\log \varepsilon)=241$ (4.71), 260 sh (4.67), 340 sh (4.34), 419 (4.25), 438 (4.24), 488 sh (4.17) nm; HRMS (FAB): calcd for $\mathrm{C}_{46} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{4}[\mathrm{M}]^{+}$ 758.2390; found: 758.2388; Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 71.12 ; \mathrm{H}, 4.15 ; \mathrm{N}, 14.43$. Found: C, 71.09; H, 4.17; N 14.38 .

Compound 9

M.p. $180.0-182.0^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 5{ }^{\circ} \mathrm{C}$): $\delta_{\mathrm{H}}=9.96(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 9.88(\mathrm{~s}$, $1 \mathrm{H}, 8^{\prime}-\mathrm{H}$), 8.46 (s, 1H, 2 or $2^{\prime}-\mathrm{H}$), 8.46 (br s, $1 \mathrm{H}, 4-\mathrm{H}$), 7.88 (d, $1 \mathrm{H}, J=10.0 \mathrm{~Hz}, 6-\mathrm{H}$), 7.75 (d, 1H, J $\left.=10.0 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 7.62\left(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 7.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.04(\mathrm{dd}, 1 \mathrm{H}, J=10.0,10.0$ $\mathrm{Hz}, 5^{\prime}-\mathrm{H}$), 6.78 ($\mathrm{s}, 1 \mathrm{H}, 2$ or $2^{\prime}-\mathrm{H}$), 4.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.98 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.31 (sept, $1 \mathrm{H}, J=6.5$ $\mathrm{Hz}, i \operatorname{Pr}$), 3.20 (sept, $1 \mathrm{H}, J=6.5 \mathrm{~Hz}, i \operatorname{Pr}$), 1.49 (d, $6 \mathrm{H}, J=6.5 \mathrm{~Hz}, i \operatorname{Pr}$), 1.41 (d, $3 \mathrm{H}, J=6.5 \mathrm{~Hz}, i \operatorname{Pr}$) , $1.40\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}, i \mathrm{Pr}\right.$ ') ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=165.29\left(\mathrm{CO}_{2} \mathrm{Me}\right), 163.91$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 160.84$ (C-5 of fulvene), 160.41 (C-2 or 4 of fulvene), 154.50 (C-7'), 151.99 (C-7), 145.32 (C-2 or 4 of fulvene), 144.24 (C-8a or $8 a^{\prime}$), 143.19 (C-8a or $8 a^{\prime}$), 142.85 (C-6'), 142.54 (C-8'), 141.74 (C-3a or 3a'), 140.93 (C-2 or 2'), 140.31 (C-6), 140.20 (C-3a or 3a'), 139.62 (C-8), 139.36 (C-4), 138.72 ($\mathrm{C}-4^{\prime}$), 136.25 (C-3 of fulvene), 130.51 (C-5), 128.77 (C-5'), 123.57 (C-3 or 3'), 122.03 ($\mathrm{C}-3$ or 3^{\prime}), $117.80\left(\mathrm{C}-2\right.$ or $\left.2^{\prime}\right), 117.50(\mathrm{C}-1$ '), $116.43(\mathrm{C}-1), 113.18(\mathrm{CN}), 112.72(\mathrm{CN})$, $111.99(\mathrm{CN}), 111.93(\mathrm{CN}), 91.39\left(\underline{\mathrm{C}}(\mathrm{CN})_{2}\right), 80.20(\mathrm{C}-1$ of fulvene $), 52.29\left(\mathrm{CO}_{2} \mathrm{Me}\right), 51.34\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, 39.30 ($i \operatorname{Pr}$), 39.13 ($i \operatorname{Pr}$), 24.56 ($i \mathrm{Pr}$), 24.27 (iPr) ppm; IR (KBr disk): $v_{\max }=2964$ (w), 2219 (w), 1707 (m), 1693 (m), 1498 (m), 1449 (s), 1418 (s), 1379 (w), 1309 (w), 1286 (w), 1212 (s), 1175 (m), 1117 (w), 1080 (w), 1040 (w), 1011 (w), 915 (w), 851 (w), 810 (w), 795 (w), 777 (m), 762 (w), 735 (m), $724(\mathrm{~m}), 696(\mathrm{w}), 647(\mathrm{w}) \mathrm{cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=243$ (4.67), 300 (4.73), 349 (4.48), 394 sh (4.37), 542 sh (4.03), 583 (4.11), 808 (3.64); UV/Vis ($10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane): $\lambda_{\max }(\log \varepsilon)=$ 242 (4.68), 298 (4.72), 338 (4.49), 375 sh (4.40), 530 sh (4.04), 570 (4.11), 755 (3.50); HRMS (FAB): calcd for $\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}[M]^{+} 630.2267$; found: 630.2278; Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 76.17; H, 4.79; N, 8.88. Found: C, 76.02; H, 4.97; N 8.74.

1,4-di(1-[7-isopropyl-1-methoxycarbonyl-3-azulenyl]butadiyne-4-yl)benzene (11)

Potassium carbonate ($414 \mathrm{mg}, 3.00 \mathrm{mmol}$) was added to a solution of $4(349 \mathrm{mg}, 1.00 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$. The resulting mixture was stirred at room temperature for 2 h . After an addition of diethyl ether and water to the reaction mixture, the organic layer was separated, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure up to 5 mL . 1,4-Diiodobenzene ($165 \mathrm{mg}, 0.50 \mathrm{mmol}$), CuI ($19 \mathrm{mg}, 0.10 \mathrm{mmol}$), triethylamine (10 mL), and THF (10 mL) were added to the solution of $\mathbf{1 0}$. After an addition of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(58 \mathrm{mg}, 0.050 \mathrm{mmol})$ to the degassed mixture, it was stirred at room temperature for 5 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed successively with 10% $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with dichloromethane to afford $\mathbf{1 1}$ ($272 \mathrm{mg}, 87 \%$) as green crystals.
M.p. $207.0-209.0^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=9.74(\mathrm{~s}, 2 \mathrm{H}, 8-\mathrm{H}), 8.64(\mathrm{~d}, 2 \mathrm{H}, J=$ $10.0 \mathrm{~Hz}, 4-\mathrm{H}), 8.45(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{H}), 7.85(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.55(\mathrm{dd}, 2 \mathrm{H}, J=10.0,10.0 \mathrm{~Hz}$, $5-\mathrm{H}), 7.51(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ph}), 3.96\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.25$ (sept, $2 \mathrm{H}, J=6.5 \mathrm{~Hz}, i \operatorname{Pr}$), 1.43 (d, 12H, $J=6.5$ $\mathrm{Hz}, i \operatorname{Pr}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=165.17\left(\mathrm{CO}_{2} \mathrm{Me}\right), 151.61(\mathrm{C}-7), 146.60(\mathrm{C}-3 \mathrm{a}$ or 8a), 143.88 (C-2), 141.61 (C-3a or 8a), 139.81 (C-6), 138.72 (C-8), 136.51 (C-4), 132.27 (Ph), 128.21 (C-5), 122.66 (ipso-Ph), 115.42 (C-1), 107.03 (C-3), 81.91 ($\mathrm{C} \equiv \mathrm{C}$), 79.11 ($\mathrm{C} \equiv \mathrm{C}$), $78.00(\mathrm{C} \equiv \mathrm{C})$, $77.31(\mathrm{C} \equiv \mathrm{C}), 51.24\left(\mathrm{CO}_{2} \mathrm{Me}\right), 39.28$ (iPr), 24.57 (iPr) ppm; IR (KBr disk): $v_{\max }=2957(\mathrm{~m}), 2868(\mathrm{w})$, 2203 (m), 2137 (w), 1693 (s), 1597 (w), 1576 (w), 1523 (m), 1514 (m), 1448 (s), 1412 (m), 1396 (w), 1371 (w), 1284 (w), 1213 (s), 1172 (m), 1126 (m), 1078 (w), 1049 (w), 1012 (w), 962 (w), 906 (w), $887(\mathrm{w}), 835(\mathrm{w}), 804(\mathrm{w}), 777(\mathrm{w}), 673(\mathrm{w}), 578(\mathrm{w}) \mathrm{cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=240$ (4.83), 294 (4.87), 308 sh (4.84), 324 (4.81), 358 sh (4.63), 384 (4.73), 412 (4.79), 432 (4.81), 558 (3.34), 606 sh (3.20), 684 sh (2.47) nm; HRMS (ESI): calcd for $\mathrm{C}_{44} \mathrm{H}_{34} \mathrm{O}_{4}+\mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 649.2355; found: 649.2349; Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{34} \mathrm{O}_{4}$: C, 84.32; H, 5.47. Found: C, 84.19; H, 5.47.

Compound 12

TCNE ($256 \mathrm{mg}, 2.00 \mathrm{mmol}$) was added to a solution of $\mathbf{1 1}(313 \mathrm{mg}, 0.50 \mathrm{mmol})$ in ethyl acetate (10 mL). The resulting mixture was heated at reflux temperature for 6 h under an Ar atmosphere. The solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl acetate $(10: 1)$ as an eluent and on Bio-Beads with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to give 12 ($419 \mathrm{mg}, 95 \%$) as red crystals.
M.p. $>300{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}=10.05(\mathrm{~s}, 2 \mathrm{H}, 8-\mathrm{H}), 8.44(\mathrm{~d}, 2 \mathrm{H}, J$ $=10.0 \mathrm{~Hz}, 4-\mathrm{H}), 8.24(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{H}), 8.20(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}, 6-\mathrm{H}), 8.03(\mathrm{dd}, 2 \mathrm{H}, J=10.0,10.0 \mathrm{~Hz}$, $5-\mathrm{H}$), 7.92 (s, 4H, Ph), 3.97 (s, 6H, CO2 Me), 3.38 (sept, $2 \mathrm{H}, J=6.5 \mathrm{~Hz}, i \operatorname{Pr}$), 1.48 (d, 12H, $J=6.5$ $\mathrm{Hz}, i \operatorname{Pr}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=166.77\left(\mathrm{CO}_{2} \mathrm{Me}\right), 164.21\left(\underline{\mathrm{C}}=\mathrm{C}(\mathrm{CN})_{2}\right), 158.98$ $\left(\underline{C}=\mathrm{C}(\mathrm{CN})_{2}\right), 157.80(\mathrm{C}-7), 146.58(\mathrm{C}-3 \mathrm{a}$ or 8 a$), 143.04(\mathrm{C}-6), 142.07(\mathrm{C}-3 \mathrm{a}$ or 8 a$), 141.99(\mathrm{C}-2)$, 141.18 (C-8), 137.75 (C-4), 136.40 (ipso-Ph), 132.69 (C-5), 130.65 (Ph), 120.00 (C-3), 118.41 (C-1), $113.32(\mathrm{CN}), 112.51(\mathrm{CN}), 111.18(\mathrm{CN}), 110.55(\mathrm{CN}), 90.83\left(\underline{C}(\mathrm{CN})_{2}\right), 80.31\left(\underline{C}(\mathrm{CN})_{2}\right), 77.20$ $(\mathrm{C} \equiv \mathrm{C}), 51.81\left(\mathrm{CO}_{2} \mathrm{Me}\right), 39.57(i \mathrm{Pr}), 24.46(i \mathrm{Pr}) \mathrm{ppm}$. The one signal of $\mathrm{C} \equiv \mathrm{C}$ moiety was overlapped with signals of CDCl_{3}; IR (KBr disk): $v_{\text {max }}=2964(\mathrm{w}), 2225(\mathrm{w}), 1693(\mathrm{~s}), 1506(\mathrm{~s}), 1439(\mathrm{~m}), 1417$ (s), 1365 (w), 1314 (w), 1239 (s), 1219 (s), 1183 (m), 1135 (w), 1047 (w), 887 (w), 808 (w), 781 (m), $738(\mathrm{w}), 693(\mathrm{w}) \mathrm{cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=264$ (4.73), 299 (4.75), 332 (4.64), 443 (4.46), 544 sh (4.11) nm; UV/Vis ($20 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane): $\lambda_{\max }(\log \varepsilon)=262$ (4.71), 297 (4.74), 331 (4.63), 438 (4.46), 544 sh (4.04) nm; HRMS (MALDI-TOF): calcd for $\mathrm{C}_{56} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{4}{ }^{+}[\mathrm{M}]^{+} 882.2703$; found: 882.4985; Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$: C, 74.66; H, 4.03; N, 12.44. Found: C, 74.59; H, 4.11; N 12.38.

Figure S-1. UV/Vis spectra of $\mathbf{5}$ in dichloromethane and dichloromethane/hexane.

Figure S-2. UV/Vis spectra of 6 in dichloromethane and dichloromethane/hexane.

Figure S-3. UV/Vis spectra of 7 in dichloromethane and dichloromethane/hexane.

Figure S-4. UV/Vis spectra of $\mathbf{8}$ in dichloromethane and dichloromethane/hexane.

Figure S-5. UV/Vis spectra of $\mathbf{9}$ in dichloromethane and dichloromethane/hexane.

Figure S-6. UV/Vis spectra of $\mathbf{1 2}$ in dichloromethane and dichloromethane/hexane.

Figure S-7. Cyclic voltammogram of $\mathbf{5}(1 \mathrm{mM})$ in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ as a supporting electrolyte; scan rate $=100 \mathrm{mVs}^{-1}$.

Figure S-8. Differential pulse voltammogram of $5(1 \mathrm{mM})$ in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1$ M) as a supporting electrolyte; scan rate $=10 \mathrm{mVs}^{-1}$.

Figure S-9. Cyclic voltammogram of $7(1 \mathrm{mM})$ in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ as a supporting electrolyte; scan rate $=100 \mathrm{mVs}^{-1}$.

Figure S-10. Differential pulse voltammogram of $7(1 \mathrm{mM})$ in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1$ M) as a supporting electrolyte; scan rate $=10 \mathrm{mVs}^{-1}$.

Figure S-11. Cyclic voltammogram of $9(1 \mathrm{mM})$ in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ as a supporting electrolyte; scan rate $=100 \mathrm{mVs}^{-1}$.

Figure S-12. Differential pulse voltammogram of $9(1 \mathrm{mM})$ in benzonitrile containing $\mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1$ M) as a supporting electrolyte; scan rate $=10 \mathrm{mVs}^{-1}$.

HOMO

HOMO-1

HOMO-2

LUMO+2

LUMO+1

LUMO

Figure S-13. Frontier Kohn-Sham orbitals of $\mathbf{9}$ " at the B3LYP/6-31G** level.

