Supporting information

Reaction of β -alkoxyvinyl polyfluoroalkylketones with ethyl isocyanoacetate and its use for the synthesis of new polyfluoroalkyl pyrroles and pyrrolidines

Ivan S. Kondratov,^a Violetta G. Dolovanyuk,^a Nataliya A. Tolmachova,^a Igor I. Gerus,^a Klaus Bergander,^b Roland Fröhlich^b and Günter Haufe^{*b}

^a Institute of Bioorganic Chemistry and Petrochemistry, National Ukrainian Academy of Science, Murmanska 1, Kiev-94, 02660, Ukraine
^b Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40, 48149 Münster, Germany. Fax: +49-251-83-39772; Tel. +49-251-83-33-33281; E-mail: haufe@uni-muenster.de

Contents:

1. Experimental	S2
2. References	S25
2. Copies of ¹ H, ¹⁹ F, ¹³ C NMR for new compounds	S26
3. Additional data for NMR-investigation for compound 8g	S85

General

Melting points are uncorrected. NMR spectra were recorded on spectrometers from Bruker at 300 MHz (Avance II and DRX) and 400 MHz (Avance II) and from Agilent at 500 MHz (VNMRS) and 600 MHz (DD2) at 25 °C. TMS (for ¹H and ¹³C NMR) and CCl₃F (for ¹⁹F NMR) were used as internal standards. IR spectra were recorded on Bruker Vertex 70. Mass spectra (ESI-MS) were measured on a MicroTof Bruker Daltonics.The progress of reactions was monitored by TLCplates (silica gel 60 F_{254} , Merck). Column chromatography was carried out on silica gel 60 (Merck, particle size 0.040–0.063). Elemental analyses are correct within the limits of ± 0.3% for C, H, N.

All starting materials were of the highest commercial quality and were used without further purification. Starting enones **1a** [1], **1b**,**d**,**e** [2], **1c** [3], **1f** [4], **1k**,**l** [5], **1m**,**n** [6], **1o** [7] were synthesized by the described procedures.

1. Synthesis of enones 1g-j.

 F_2HC (*E*)-4-Ethoxy-1,1-difluoro-3-methyl-but-3-en-2-one (1g). A solution of difluoroacetic acid chloride (22.9 g, 0.2 mol) in anhyd CH₂Cl₂ (40 mL) was added to a mixture of 1-ethoxy-

propene (mixture of *cis/trans*-isomers) (15.5 g, 0.18 mol) and pyridine (14.2 g, 0.18 mol) in CH₂Cl₂ (200 mL) under stirring and cooling to -10 °C. The reaction mixture was then stirred for 20 h at r.t., then H₂O (200 mL) was added, the H₂O phase was extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were dried over anhyd Na₂SO₄ and the solvent was evaporated. The residue was distilled under reduced pressure (95-97 °C, 20 mm Hg) giving enone **1g** as light yellow liquid. Yield: 20.6 g (63%).

¹H NMR (500 MHz, CDCl₃): δ = 1.37 (3H, t, *J* = 7.2 Hz, CH₃), 1.73 (3H, s, CH₃), 4.17 (2H, q, *J* = 7.2 Hz, CH₂O), 5.97 (1H, t, *J* = 54.5 Hz, CHF₂), 7.59 (1H, s, CH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 7.8, 15.3, 71.2, 111.9 (t, *J* = 254.3 Hz), 113.1, 163.4 (t, *J* = 6.2 Hz), 187.5 (t, *J* = 24.4 Hz) ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): δ = -118.98 (d, *J* = 54.5 Hz, CHF₂) ppm.

ESI-MS (*m/z*): calcd. for C₇H₁₀F₂NaO₂ (187.0541). Found 187.0538.

(E)-1-Chloro-4-ethoxy-1,1-difluoro-3-methyl-but-3-en-2-one(Ih) was obtained by the same procedure as compound 1g from chlorodifluoroacetic acid chloride (29.8 g, 0.2 mol) and purified

by distillation under reduced pressure (94-96 °C, 20 mm Hg) giving enone **1h** as light yellow liquid. Yield: 31.0 g (78%).

¹H NMR (500 MHz, CDCl₃): δ = 1.40 (3H, t, *J* = 7.2 Hz, CH₃), 1.82 (3H, s, CH₃), 4.21 (2H, q, *J* = 7.2 Hz, CH₂O), 7.66 (1H, s, CH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 8.6, 15.4, 71.5, 110.4, 113.1, 120.7 (t, *J* = 305.6 Hz), 164.1 (t, *J* = 5.5 Hz), 181.5 (t, *J* = 27.5 Hz) ppm.

¹⁹F NMR (470.8 Hz, CDCl₃), δ = -68.65 (s, CF₂Cl) ppm.

ESI-MS (*m/z*): calcd. for C₇H₉ClF₂NaO₂ (221.0151). Found 221.0153.

(E)-1-Ethoxy-4,4,5,5,5-pentafluoro-2-methyl-pent-1-en-3-one
(1i) was obtained by the same procedure as compound 1g from perfluoropropionic acid chloride (36.5 g, 0.2 mol) and purified

by distillation under reduced pressure (96-98 °C, 20 mm Hg) giving enone **1i** as low yellow liquid. Yield: 32.0 g (69%).

¹H NMR (500 MHz, CDCl₃): δ = 1.37 (3H, t, *J* = 7.2 Hz, CH₃), 1.77 (3H, s, CH₃), 4.20 (2H, q, *J* = 7.2 Hz, CH₂O), 7.63 (1H, s, CH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 8.0, 15.1, 71.6, 108.9 (tq, J_1 = 268.5 Hz, J_2 = 37.1 Hz), 113.6, 118.1 (qt, = 287.1 Hz, J_2 = 35.0 Hz), 164.6 (t, J = 8.5 Hz), 182.0 (t, J = 25.4 Hz) ppm.

¹⁹F NMR (470.8 Hz, CDCl₃), δ = -82.45 (3F, s, CF₃), -113.88 (2F, s, CF₂) ppm. ESI-MS (*m/z*): calcd. for C₈H₉F₅NaO₂ (255.0415). Found 255.0417.

 C_3F_7 (*E*)-1-Ethoxy-4,4,5,5,6,6,6-heptafluoro-2-methyl-hex-1-en-3one (1j) was obtained by the same procedure as compound 1g from perfluorobutyric acid chloride (46.5 g, 0.2 mol) and

purified by distillation under reduced pressure (98-100 °C, 20 mm Hg) giving enone **1j** as light yellow liquid. Yield: 32.7 g (58%).

¹H NMR (500 MHz, CDCl₃): δ = 1.38 (3H, t, *J* = 7.2 Hz, CH₃), 1.79 (3H, s, CH₃), 4.20 (2H, q, *J* = 7.2 Hz, CH₂O), 7.61 (1H, s, CH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 8.4, 15.1, 71.6, 108.5 (tq, J_1 = 267.0 Hz, J_2 = 37.5 Hz), 110.8 (tt, J_1 = 268.4 Hz, J_2 = 30.7 Hz), 114.4, 117.6 (qt, = 288.4 Hz, J_2 = 33.8 Hz), 164.8 (t, J = 8.5 Hz), 181.6 (t, J = 24.2 Hz) ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): δ = -80.72 (3F, t, *J* = 9.5 Hz, CF₃), -112.2 (2F, q, *J* = 9.5 Hz, CF₂), -126.28 (2F, s, CF₂) ppm.

ESI-MS (*m/z*): calcd. for C₉H₉F₇NaO₂ (305.0383). Found 305.0379.

2. Reaction of enones 1a-n with ethyl isocyanoacetate.

General procedure

Ethyl isocyanoacetate (1.13 g, 10 mmol) in 10 mL of anhyd THF was added dropwise via syringe to a solution of *t*-BuOK (1.12 g, 10 mmol) in 10 mL of anhydrous THF at -78 °C. After the addition was complete, the solution was stirred for further 30 min at -78 °C. Then a solution of the corresponding enone **1a-o** (8 mmol) in THF was added dropwise via syringe. The mixture was stirred at -78 °C for 1 h, then warmed to r.t. within 1–2 h. Aqueous HCl (1 N, 10 mL) was added and the mixture was stirred for 30 min. The THF layer was separated, the aqueous layer was extracted with CH₂Cl₂ (3×50 mL), and the organic layers were combined, dried over anhyd Na₂SO₄, filtered and concentrated under reduced pressure. The products were separated and purified by column chromatography of the reaction mixture using appropriate eluent.

Hex, 1:2, $R_f = 0.36$) giving compound **4a** as light yellow oil. Yield: 0.25g (11%). ¹H NMR (500 MHz, CDCl₃): $\delta = 1.29$ (3H, t, J = 7.1 Hz, CH₃), 1.31 (3H, t, J = 7.1Hz, CH₃), 3.84 (2H, q, J = 7.1 Hz, OCH₂), 4.30 (2H, q, J = 7.1 Hz, OCH₂), 5.46 (1H, d, J = 12.7 Hz, CH), 6.65 (1H, d, J = 12.7 Hz, CH), 7.71 (1H, s, NH), 8.17 (1H, s, CHO) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 13.7, 14.5, 62.2, 66.1, 95.7, 117.4 (q, *J* = 29.9 Hz), 123.4 (q, *J* = 276.6 Hz), 127.3, 153.0, 158.8, 164.1 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): $\delta = -60.58$ (s, CF₃) ppm.

ESI-MS (*m/z*): calcd. for C₁₁H₁₄F₃NNaO₄ (304.0767). Found 304.0768.

(EtOAc/c-Hex, 1:2, $R_f = 0.36$) giving compound **5a** as light yellow oil. Yield: 1.54 g (76%).

¹H NMR (500 MHz, DMSO-d₆): δ = 1.23 (3H, t, *J* = 6.9 Hz, CH₃), 4.17 (2H, q, *J* = 6.9 Hz, OCH₂), 5.85 (1H, d, *J* = 12.6 Hz, CH), 7.28 (1H, d, *J* = 12.6 Hz, CH), 8.14 (1H, s, CHO), 9.71 (1H, s, NH), 11.55 (1H, br. s, OH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 14.5, 61.3, 100.6, 120.9 (q, *J* = 270.5 Hz), 123.4, 126.0, 144.7 (q, *J* = 31.7 Hz), 160.5, 164.3 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃), $\delta = -70.74$ (s, CF₃) ppm.

Anal. calcd. for: C₉H₁₀F₃NO₄ (253.17): C, 42.70; H, 3.98; N, 5.53. Found C, 42.93; H, 3.82; N, 5.55.

ESI-MS (*m/z*): calcd. for C₉H₁₀F₃NNaO₄ (276.0454). Found 276.0455.

IR (CHCl₃): v = 1726, 1183, 1242, 1286, 1314, 1334, 1636, 1666, 1727 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 1.35 (3H, t, *J* = 7.2 Hz, CH₃), 2.96 (1H, d, *J* = 20.0 Hz, H_a of CH₂), 3.14 (dd, *J*₁ = 20.0 Hz, *J*₂ = 3.4 Hz, H_b of CH₂), 4.31 (2H, q, *J* = 7.2 Hz, CH₂O), 6.25 (1H, s, CH), 6.46 (1H, br.s, OH), 9.30 (1H, s, CHO) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 14.0, 38.6, 62.1, 93.3 (q, *J* = 33.6 Hz), 121.4, 127.2 (q, J = 283.4 Hz), 133.1, 159.2, 164.1 ppm. ¹⁹F NMR (470.8 Hz, CDCl₃): δ = - 84.48 (s, CF₃) ppm.

ESI-MS (*m/z*): calcd. for C₉H₁₀F₃NNaO₄ (276.0454). Found 276.0455.

Ethyl 5-(difluoromethyl)-1-formyl-5-hydroxy-4,5-dihydro-1H-pyrrole-2-carboxylate (8b) was obtained from enone 1b 1.20 g (8 mmol)and was purified by column chromatography

(EtOAc/Hex, 1:1, $R_f = 0.44$) giving compound **8b** as light yellow oil. Yield: 1.35 g (72%).

IR (CHCl₃) v = 1087, 1185, 1241, 1322, 1633, 1653, 1725, 3026, 3473 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): $\delta = 1.35$ (3H, t, J = 7.2 Hz, CH₃), 2.72 (1H, dt, $J_1 = 20.1$ Hz, $J_2 = 3.1$ Hz, Ha of CH₂), 3.21 (1H, dd, $J_1 = 3.0$ Hz, $J_2 = 20.1$ Hz, H_b of CH₂), 4.30 (2H, q, J = 7.2 Hz, OCH₂), 5.21 (1H, br. s, OH), 6.25 (1H, t, J = 3.0 Hz, CH), 9.36 (1H, s, CHO) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 14.1, 35.4, 62.0, 93.1 (t, *J* = 27.3 Hz), 111.7 (t, *J* = 248.7 Hz), 122.1, 132.2, 159.5, 163.4 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): δ = -112.89 (1F, d, *J* = 291.3 Hz, F_a of CHF₂), -136.01 (1F, d, *J* = 291.3 Hz, F_b of CHF₂) ppm.

Anal. calcd. for: C₉H₁₁F₂NO₄ (235.18): C, 45.96; H, 4.71; N, 5.96. Found C, 45.83; H, 4.78; N, 6.10.

ESI-MS (*m/z*): calcd. for C₉H₁₁F₂NNaO₄ (258.0548). Found 258.0549.

CIF₂C $\stackrel{OH}{\longrightarrow}$ $\stackrel{CO_2Et}{\longrightarrow}$ $\stackrel{CO_2Et}{\longrightarrow}$ $\stackrel{CO_2Et}{\longrightarrow}$ $\stackrel{NHCHO}{\longrightarrow}$ $\stackrel{HCHO}{\longrightarrow}$ $\stackrel{HCHO}{\longrightarrow}$ $\stackrel{CO_2Et}{\longrightarrow}$ $\stackrel{CO_2Et}{\longrightarrow}$ $\stackrel{HCHO}{\longrightarrow}$ $\stackrel{HCHO}{\longrightarrow}$

chromatography (EtOAc/Hex, 1:2, $R_f = 0.44$) giving compound **5c** as light yellow oil. Yield: 1.38 g (64%).

¹H NMR (500 MHz, DMSO-d₆): δ = 1.24 (3H, t, *J* = 7.1 Hz, CH₃), 4.17 (2H, q, *J* = 7.1 Hz, OCH₂), 5.82 (1H, d, *J* = 12.1 Hz, CH), 7.27 (1H, d, *J* = 12.1 Hz, CH), 8.14 (1H, s, CHO), 9.71 (1H, s, NH), 11.55 (1H, br. s, OH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 14.5, 61.3, 99.0, 123.4, 126.0, 148.8 (t, *J* = 26.6 Hz), 160.5, 164.3 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): $\delta = -57.81$ (s, CF₂Cl) ppm.

Anal. calcd. for: C₉H₁₀ClF₂NO₄ (269.63): C, 40,09; H, 3,74; N, 5,19. Found C, 39.98; H, 3.69; N, 5.32.

ESI-MS (*m/z*): calcd. for C₉H₁₀ClF₂NNaO₄ (292.0159). Found 292.0156.

IR (CHCl₃): v = 1635, 1320, 1020, 1047, 1188, 1241, 1287, 1376, 1666, 1726, 3022, 3389 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): $\delta = 1.36$ (3H, t, J = 6.9 Hz, CH₃), 3.00 (1H, d, J = 20.3 Hz, H_a of CH₂), 3.21 (1H, d, J = 20.3 Hz, H_b of CH₂), 4.32 (2H, q, J = 6.9 Hz, OCH₂), 6.21 (1H, s, CH), 6.78 (1H, s, OH), 9.81 (1H, s, CHO) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 14.2, 39.6, 62.1, 96.9 (t, *J* = 27.6 Hz), 121.9, 128.5 (t, *J* = 302.8 Hz), 133.5, 159.3, 164.4 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): $\delta = -72.31$ (1F, J = 164.6 Hz, F_a of CF₂Cl), -69.84 (1F, d, J = 164.6 Hz, F_b of CF₂Cl) ppm.

OH Ethyl (2Z,4Z)-6,6,7,7,7-pentafluoro-2-formamido-5hydroxyhepta-2,4-dienoate (5d) was obtained from enone NHCHO 1d (1.74 g, 8 mmol) and was purified by column

chromatography (EtOAc/Hex, 1:2, $R_f = 0.52$) giving compound **5d** as light yellow oil. Yield: 1.65 g (68 %).

IR (KBr): v = 998, 1079, 1107, 1156, 1175, 1221, 1300, 1334, 1376, 1502, 1621, 1667, 1691 2991, 3270 cm⁻¹.

¹H NMR (500 MHz, DMSO-d₆): δ = 1.24 (3H, t, *J* = 7.0 Hz, CH₃), 4.18 (2H, q, *J* = 7.0 Hz, OCH₂), 5.88 (1H, d, *J* = 11.9 Hz, CH), 7.32 (1H, d, *J* = 11.9 Hz, CH), 8.14 (1H, s, CHO), 9.73 (1H, s, NH), 11.55 (1H, br. s, OH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 14.5, 61.3, 102.5, 123.3, 126.0, 144.8 (t, *J* = 22.8 Hz), 160.5, 164.3 ppm. Low intensity and high multiplicity signals of C₂F₅-fragment C-atoms are in the area of 110–130 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): δ = -118.9 (2F, s, CF₂), -81.89 (3F, s, CF₃) ppm.

Anal. calcd. for: C₁₀H₁₀F₅NO₄ (303.05): C, 39.62; H, 3.32; N, 4.62. Found C, 39.48; H, 3.20; N, 4.64.

ESI-MS (*m/z*): calcd. for C₁₀H₁₀F₅NNaO₄ (326.0422). Found 326.0420.

ethyl 6,6,7,7,7-Pentafluoro-2-formylamino-5-oxo-hept-2-enoate (7d) were found to be tautomers of 5d which are major compounds in $CDCl_3$ solution (see Table 1).

IR (CHCl₃): v = 1241, 1286, 1318, 1638, 1668, 1702, 1726, 1761, 3024, 3390, 3692 cm^{-1} .

¹H NMR (500 MHz, CDCl₃), signals of **7d**: $\delta = 1.36$ (3H, t, J = 7.2 Hz, CH₃), 3.78 (2H, d, J = 6.7 Hz, CH₂), 4.32 (2H, q, J = 7.2 Hz, OCH₂), 6.90 (1H, t, J = 6.7 Hz, CH), 7.43 (1H, s, NH), 8.27 (1H, s, CHO); signals of **8d**: $\delta = 1.36$ (3H, t, J = 7.2 Hz, CH₃), 3.00 (1H, d, J = 19.8 Hz, Ha of CH₂), 3.25 (1H, d, J = 19.8 Hz, Hb of CH₂), 4.32 (2H, m, OCH₂), 6.28 (1H, s, CH), 6.63 (1H, s, OH), 9.29 (1H, s, CHO) ppm.

¹³C NMR (126 MHz, CDCl₃): (signals of **7d** and **8d**) $\delta = 14.0$, 14.1, 38.0, 39.3, 62.1, 62.5, 94.5 (t, J = 25.4 Hz), 121.7, 122.1, 126.83, 133.1, 158.5, 159.1, 163.6, 164.6, 190.5 (t, J = 27.3 Hz) ppm. Low intensity and high multiplicity signals of C₂F₅-fragment C-atoms are in the area of 110–130 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃), signals of **7d**: δ = -123.48 (2F, s, CF₂), -82.35 (3F, s, CF₃); signals of **8d**: δ = -127.0 (1F, d, *J* = 279.2 Hz, F_a of CF₂), -125.18 (1F, d, J = 279.2 Hz, F_b of CF₂), -80.36 (3F, s, CF₃) ppm.

oil. Yield: 1.44 g (51 %).

IR (KBr): v = 1091, 1198, 1225, 1290, 1522, 1618, 1642, 1665, 1697, 3315 cm⁻¹.

¹H NMR (500 MHz, DMSO-d₆): δ = 1.25 (3H, t, *J* = 7.0 Hz, CH₃), 4.18 (2H, q, *J* = 7.0 Hz, CH₂), 5.87 (1H, d, *J* = 11.9 Hz, CH), 7.32 (1H, d, *J* = 11.9 Hz, CH), 8.13 (1H, s, CHO), 9.73 (1H, s, NH), 11.56 (1H, br. s, OH) ppm.

¹³C NMR (126 MHz, DMSO-d₆): δ = 14.5, 61.4, 102.9, 123.2, 126.2, 144.8 (t, *J* = 24.0 Hz), 160.5, 164.3 ppm. Low intensity and high multiplicity signals of C₃F₇-fragment C-atoms are in the area of 110–130 ppm.

¹⁹F NMR (470.8 Hz, DMSO-d₆): δ = -126.44 (2H, s, CF₂), -117.36 (2H, q, *J* = 8.3 Hz, CF₂), -80.67 (3H, t, *J* = 8.3 Hz, CF₃) ppm.

Anal. calcd. for: C₁₁H₁₀F₇NO₄ (353.19): C, 37.41; H, 2.85; N, 3.97. Found C, 37.60; H, 2.70; N, 4.02.

ESI-MS (*m/z*): calcd. for C₁₁H₁₀F₇NNaO₄ (376.0390). Found 376.0393.

5-(perfluoropropyl)-4,5-dihydro-1H-pyrrole-2-carboxylate (8e) were found to be tautomers of **5e** which are major compounds in CDCl₃ solution (see **Table 1**). IR (CHCl₃): v = 1124, 1237, 1285, 1492, 1702, 1726, 1762, 3020, 3385 cm⁻¹. ¹H NMR (500 MHz, CDCl₃), signals of **7e**: $\delta = 1.36$ (3H, t, J = 6.5 Hz, CH₃), 3.78 (2H, d, J = 5.6 Hz, CH₂), 4.32 (2H, q, J = 6.5 Hz, CH₂O), 6.9 (1H, t, J = 5.6 Hz, CH₂), 4.32 (2H, q, J = 6.5 Hz, CH₂O), 6.9 (1H, t, J = 5.6 Hz, CH₃), 3.02 (1H, s, NH), 8.28 (1H, s, CHO); signals of **8e**: $\delta = 1.36$ (3H, t, J = 6.5 Hz, CH₃), 3.02 (1H, d, J = 19.5 Hz, H_a of CH₂), 3.24 (1H, d, J = 19.5 Hz, H_b of CH₂), 6.29 (1H, s, CH), 6.69 (1H, s, OH), 9.29 (1H, s, CHO) ppm.

¹³C NMR (126 MHz, CDCl₃): (signals of **7e** and **8e**) $\delta = 14.0$, 14.1, 38.6, 39.5, 62.2, 62.5, 95.0 (t, J = 24.5 Hz), 122.0, 122.1, 126.7, 133.1, 158.4, 159.2, 163.6, 164.8, 190.5 (t, J = 26.0 Hz) ppm. Low intensity and high multiplicity signals of C₃F₇-fragment C-atoms are in the area of 110–130 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃), signals of **7e**: $\delta = -127.00$ (2F, s, CF₂), -121.30 (2F, q, J = 9.0 Hz, CF₂), -81.00 (3F, t, J = 9.0 Hz, CF₃); signals of **8e**: -126.58 (1F, dd, $J_1 = 293.5$, $J_2 = 14.6$ Hz, F_a of CF₂), -124.65 (1F, dd, $J_1 = 293.5$, $J_2 = 13.5$ Hz, F_b

of CF₂), -123.17 (1F, d, J = 282.6 Hz, F_a of CF₂), -121.93 (1F, d, J = 282.6 Hz, F_b of CF₂), -81.44 (3F, m, CF₃) ppm.

OHCHN CO_2Et F_3C OEt Me Ethyl (2Z,4E)-5-ethoxy-2-formamido-4-methyl-3-(trifluoromethyl)penta-2,4-dienoate (4f) was obtained from enone 1f (1.46 g, 8 mmol) and was purified by column chromatography (EtOAc/Hex, 1:1, $R_f = 0.62$) giving compound 4f as light yellow

oil. Yield: 1.32 g (56%).

IR (CHCl₃) v = 1116, 1199, 1237, 1278, 1478, 1643, 1716, 2985, 3021, 3440 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 1.25 (3H, t, *J* = 7.0 Hz, CH₃), 1.29 (3H, t, *J* = 7.0 Hz, CH₃), 1.74 (3H, s, CH₃), 3.84 (2H, q, *J* = 7.0 Hz, CH₂O), 4.25 (2H, q, *J* = 7.0 Hz, CH₂O), 6.00 (1H, s, CH), 8.09 (1H, br. s, NH), 8.18 (1H, s, CHO) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 13.1, 13.7, 15.2, 61.9, 68.2, 106.0, 119.0 (q, *J* = 30.5 Hz), 123.6 (q, *J* = 276.2 Hz), 131.2 (q, *J* = 2.6 Hz), 147.6, 158.6, 163.7 ppm. ¹⁹F NMR (470.8 Hz, CDCl₃): δ = -59.93 (s, CF₃) ppm.

Anal. calcd. for: C₁₂H₁₆F₃NO₄ (295.25): C, 48.81; H, 5.46; N, 4.74. Found C, 49.01; H, 5.32; N, 4.88.

ESI-MS (*m/z*): calcd. for C₁₂H₁₆F₃NNaO₄ (318.0924). Found 318.0924.

Ethyl *cis*-1-formyl-5-hydroxy-4-methyl-5-(trifluoromethyl)-4,5-dihydro-1H-pyrrole-2-carboxylate (8f) was obtained from enone 1f (1.46 g, 8 mmol) and was purified by column chromatography (EtOAc/Hex, 1:1, $R_f = 0.44$) giving compound

8f as light yellow oil.. Yield: 0.41 g (19%).

IR (CHCl₃): v = 943, 981, 1027, 1095, 1175, 1242, 1323, 1376, 1423, 1634, 1663, 1727, 2940, 2986, 3028, 3363 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 1.19 (3H, d, *J* = 7.0 Hz, CH₃), 1.34 (3H, t, *J* = 7.0 Hz, CH₃), 3.19 (1H, q, *J* = 7.0 Hz, CH), 4.29 (2H, q, *J* = 7.0 Hz, CH₂O), 6.24 (1H, s, CH), 6.69 (1H, s, OH), 9.29 (1H, s, CHO) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 12.9, 14.0, 41.4, 62.1, 93.1 (q, *J* = 33.0 Hz), 123.7 (q, *J* = 288.4 Hz), 127.9, 131.3, 159.5, 164.4 ppm. ¹⁹F NMR (470.8 Hz, CDCl₃): δ = -85.45 (s, CF₃) ppm.

Anal. calcd. for: C₁₂H₁₆F₃NO₄ (267.20): C, 44.95; H, 4.53; N, 5.24. Found C, 45.19; H, 4.51; N, 5.02.

ESI-MS (*m/z*): calcd. for C₁₀H₁₂F₃NNaO₄ (290.0616). Found 290.0612.

compound **4g** as light yellow oil. Yield: 0.40 g (17%).

¹H NMR (500 MHz, CDCl₃): $\delta = 1.24$ (3H, t, J = 7.0 Hz, CH₃), 1.29 (3H, t, J = 7.0 Hz, CH₃), 1.76 (3H, s, CH₃), 3.83 (2H, q, J = 7.0 Hz, CH₂O), 4.24 (2H, q, J = 7.0 Hz, CH₂O), 5.99 (1H, s, CH), 6.33 (1H, t, J = 55.1 Hz, CHF₂), 7.69 (1H, br. s, NH), 8.20 (1H, s, CHO) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 13.1, 13.9, 15.4, 61.8, 68.3, 107.4, 113.4 (t, *J* = 24.5 Hz), 116.1 (t, *J* = 250.0 Hz), 130.3, 146.7, 158.8, 164.5 ppm

¹⁹F NMR (470.8 Hz, CDCl₃): δ = -115.29 (d, *J* = 55.1 Hz, CHF₂) ppm.

Anal. calcd. for: C₁₂H₁₇F₂NO₄ (277.26): C, 51.98; H, 6.18; N, 5.05. Found C, 51.79; H, 6.09; N, 5.26.

ESI-MS (*m/z*): calcd. for C₁₂H₁₇F₂NNaO₄ (300.1018). Found 300.1020.

Ethyl *cis*-5-(difluoromethyl)-1-formyl-5-hydroxy-4methyl-4,5-dihydro-1H-pyrrole-2-carboxylate (8g) was obtained from enone 1g (1.31 g, 8 mmol) and was purified by column chromatography (EtOAc/Hex, 1:2, $R_f = 0.42$) giving

compound **8g** as light yellow oil. Yield: 1.02 g (54 %).

IR (CHCl₃) v = 1025, 1085, 1186, 1210, 1241, 1323, 1630, 1652, 1725, 2986, 3026, 3418 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 1.22 (3H, d, *J* = 7.3 Hz, CH₃), 1.36 (3H, t, J = 7.1 Hz, CH₃), 3.38 (1H, q, *J* = 7.3 Hz, CH), 4.30 (2H, q, *J* = 7.1 Hz, CH₂O), 5.24 (1H, s, OH), 6.19 (1H, s, CH), 6.32 (1H, t, *J* = 56.0 Hz, CHF₂), 9.37 (1H, s, CHO) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 12.7, 14.0, 38.7, 61.9, 92.8 (t, *J* = 26.5 Hz), 112.4 (t, *J* = 249.3 Hz), 128.7, 130.5, 159.8, 163.7 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): δ = -138.15 (1F, dd, *J* = 56.0, 290.0 Hz, F_a of CHF₂), -130.25 (1F, dd, *J* = 56.0, 290.0 Hz, F_b of CHF₂) ppm.

Anal. calcd. for: $C_{10}H_{13}F_2NO_4$ (249.21): C, 48.19; H, 5.26; N, 5.62. Found C, 48.15; H, 5.45; N, 5.52.

ESI-MS (*m/z*): calcd. for C₁₀H₁₃F₂NNaO₄ (272.0705). Found 272.0709.

EtO₂C

Ethyl *cis*-5-(chlorodifluoromethyl)-1-formyl-5-hydroxy-4methyl-4,5-dihydro-1H-pyrrole-2-carboxylate (8h) was obtained from enone 1h (1.59 g, 8 mmol) and was purified by column chromatography (EtOAc/Hex, 1:2, $R_f = 0.58$) giving

compound **8h** as light yellow oil.. Yield: 1.04 g (46%).

IR (CHCl₃) v = 1027, 1094, 1137, 1189, 1220, 1316, 1316, 1634, 1664, 1726, 2939, 2986, 3027, 3354 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 1.14 (3H, d, *J* = 7.0 Hz, CH₃), 1.28 (3H, t, *J* = 7.0 Hz, CH₃), 3.20 (1H, m, CH), 4.24 (2H, q, *J* = 7.0 Hz, CH₂O), 6.22 (1H, s, CH), 6.86 (1H, br. s, OH), 9.21 (1H, s, CHO) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 13.0, 13.8, 42.4, 61.9, 96.3 (t, *J* = 27.3 Hz), 128.1, 129.0 (t, *J* = 304.5 Hz), 131.4, 159.4, 164.6 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): $\delta = -71.50$ (1F, d, J = 163.7 Hz, F_a of CF₂), -70.56 (1F, d, J = 163.7 Hz, F_b of CF₂) ppm.

Anal. calcd. for: C₁₀H₁₂ClF₂NO₄ (283.65): C, 42.34; H, 4.26; N, 4.94. Found C, 42.10; H, 4.12; N, 5.17.

ESI-MS (*m/z*): calcd. for C₁₀H₁₂ClF₂NNaO₄ (306.0315). Found 306.0312.

Ethyl *cis*-1-formyl-5-hydroxy-4-methyl-5-(perfluoroethyl)-4,5-dihydro-1H-pyrrole-2-carboxylate (8i) was obtained from enone 1i (1.86 g, 8 mmol) and was purified by column chromatography (EtOAc/Hex, 1:2, $R_f = 0.63$) giving

compound **8i** as light yellow oil. Yield: 1.67 g (66%).

IR (CHCl₃) $v = 1194, 1226, 1333, 1376, 1637, 1728, 3024, 3385 \text{ cm}^{-1}$.

¹H NMR (500 MHz, CDCl₃): $\delta = 1.19$ (3H, d, J = 7.2 Hz, CH₃), 1.35 (3H, t, J = 7.2 Hz, CH₃), 3.31 (1H, qd, $J_1 = 7.2$ Hz, $J_2 = 2.9$ Hz, CH), 4.31 (2H, q, J = 7.2 Hz, CH₂O), 6.27 (1H, d, J = 2.9 Hz, CH), 6.90 (1H, s, NH), 9.27 (1H, s, CHO) ppm.

¹³C NMR (126 MHz, CDCl₃): $\delta = 12.9$, 13.9, 41.9, 62.1, 94.6 (t, J = 23.5 Hz), 128.5, 131.3, 159.5, 165.1. Low intensity and high multiplicity signals of C₂F₅-fragment C-atoms are in the area of 110–130 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): δ = -130.82 (1F, d, *J* = 276.8 Hz, F_a of CF₂), -120.11 (1F, d, *J* = 276.8 Hz, F_b of CF₂), -82.80 (3F, s, CF₃) ppm.

Anal. calcd. for: $C_{11}H_{12}F_5NO_4$ (317.21): C, 41.65; H, 3.81; N, 4.42. Found C, 41.73; H, 3.94; N, 4.69.

ESI-MS (*m/z*): calcd. for C₁₁H₁₂F₅NNaO₄ (340.1985). Found 340.1989.

Ethylcis-1-formyl-5-hydroxy-4-methyl-5-
(perfluoropropyl)-4,5-dihydro-1H-pyrrole-2-carboxylate(8j) was obtained from enone 1j (2.26 g, 8 mmol) and was
purified by column chromatography (EtOAc/Hex, 1:2, R_f =

0.49) giving compound **8j** as light yellow oil. Yield: 2.05 g (70%). IR (CHCl₃) v = 1027, 1122, 1186, 1210, 1236, 1315, 1520, 1637, 1664, 1726, 2940, 2987, 3027, 3383 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 1.20 (3H, d, *J* = 7.2 Hz, CH₃), 1.33 (3H, t, *J* = 7.0 Hz, CH₃), 3.30 (1H, m, CH), 4.30 (2H, q, *J* = 7.2 Hz, CH₂O), 6.28 (1H, s, CH), 6.98 (1H, s, NH), 9.28 (1H, s, CHO) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 12.8, 14.0, 42.1, 62.1, 95.5 (t, *J* = 25.0 Hz), 127.8, 131.3, 160.2, 165.3 ppm. Low intensity and high multiplicity signals of C₃F₇-fragment C-atoms are in the area of 110–130 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): δ = -127.39 (1F, d, *J* = 294.5 Hz, F_a of CF₂), -123.64 (2F, s, CF₂), -123.50 (1F, d, *J* = 294.5 Hz, F_b of CF₂), -81.72 (3F, t, *J* = 11.4 Hz) ppm.

Anal. calcd. for: C₁₂H₁₂F₇NO₄ (367,21): C, 39.25; H, 3.29; N, 3.81. Found C, 39.43; H, 3.11; N, 3.66.

ESI-MS (*m/z*): calcd. for C₁₂H₁₂F₇NNaO₄ (390.0547). Found 390.0548.

Ethyl (2*E*,4*Z*)-4-chloro-5-ethoxy-2-formamido-3-(trifluoromethyl)penta-2,4-dienoate (4k) was obtained from enone 1g (1.62 g, 8 mmol) and was purified by crystallization from hexane giving compound 4j as light yellow solid. Yield:

2.29 g (91%). M.p. 80-82 °C.

IR (CHCl₃): v = 1127, 1200, 1274, 1634, 1724, 2986, 3024, 3435 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 1.25-1.41 (6H, m, 2CH₃), 4.00 (2H, q, *J* = 6.9 Hz, CH₂O), 4.31 (2H, q, *J* = 6.9 Hz, CH₂O), 6.43 (1H, s, CH), 8.20 (1H, br. s, NH), 8.23 (1H, s, CHO) ppm.

¹³C (126 MHz, CDCl₃): δ = 13.7, 15.2, 62.6, 69.8, 99.8, 111.0 (q, *J* = 34.5 Hz), 122.9 (q, *J* = 276.4 Hz), 135.7, 148.4, 158.4, 162.6 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): $\delta = -59.73$ (s, CF₃) ppm.

Anal. calcd. for: $C_{12}H_{12}F_7NO_4$ (315.67): C, 41.85; H, 4.15; N, 4.44. Found C, 41.73; H, 4.01; N, 4.24.

ESI-MS (*m/z*): calcd. for C₁₁H₁₃ClF₃NNaO₄ (338.0377). Found 338.0379.

Ethyl (2*E*,4*Z*)-4-bromo-5-ethoxy-2-formamido-3-(trifluoromethyl)penta-2,4-dienoate (4l) was obtained from enone 1l (1.98 g, 8 mmol) and was purified by column chromatography (EtOAc/Hex, 1:2, $R_f = 0.54$) giving compound **4l** as light yellow oil. Yield: 1.81 g (63%).

IR (CHCl₃): v = 1125, 1200, 1272, 1298, 1631, 1725, 2986, 3028, 3435 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 1.29-1.40 (6H, m, 2CH₃), 4.03 (2H, q, *J* = 6.8 Hz, CH₂O), 4.33 (2H, *J* = 6.8 Hz, CH₂O), 6.55 (1H, s, CH), 7.69 (1H, s, NH), 8.25 (1H, s, CHO) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 13.8, 15.2, 62.6, 69.7, 87.5, 111.8 (q, *J* = 31.7 Hz), 123.0 (q, *J* = 276.0 Hz), 135.7, 150.3, 158.6, 162.7 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): δ = -59.58 (s, CF₃) ppm.

Anal. calcd. for: C₁₁H₁₃BrF₃NO₄ (360.12): C, 36.69; H, 3.64; N, 3.89. Found C, 36.81; H, 3.49; N, 3.65.

ESI-MS (*m/z*): calcd. for C₁₁H₁₃BrF₃NNaO₄ (381.9872). Found 381.9875.

OHCHN CO_2Et Ethyl (Z)-3-(4,5-dihydrofuran-3-yl)-4,4,4-trifluoro-2-formamidobut-2-enoate (4m) was obtained from enone 1m (1.32 g, 8 mmol) and was purified by column chromatography

(EtOAc/Hex, 1:2, $R_f = 0.40$) giving compound **4m** as light yellow oil. Yield: 1.37 g (62%).

IR (CHCl₃): v = 1018, 1119, 1219, 1352, 1374, 1478, 1631, 1717, 2901, 2986, 3020, 3440 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 1.31 (3H, t, *J* = 7.0 Hz, CH₃), 2.77 (2H, t, *J* = 9.0 Hz, CH₂), 4.28 (2H, q, *J* = 7.0 Hz, CH₂O), 4.45 (2H, t, *J* = 9.0 Hz, CH₂O), 6.39 (1H, s, CH), 8.04 (1H, br. s, NH), 8.18 (1H, s, CHO) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 13.6, 32.0, 62.2, 71.4, 106.0, 111.7 (q, *J* = 31.5 Hz), 123.3 (q, *J* = 275.3 Hz), 130.8, 148.6, 158.2, 163.5 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): δ = -60.08 (s, CF₃) ppm.

Anal. calcd. for: $C_{11}H_{12}F_3NO_4$ (279.21): C, 47.32; H, 4.33; N, 5,02. Found C, 47.51; H, 4.51; N, 4.84.

ESI-MS (*m/z*): calcd. for C₁₁H₁₂F₃NNaO₄ (302.0611). Found 302.0612.

yellow oil. Yield: 1.31 g (56%).

¹H NMR (500 MHz, CDCl₃): $\delta = 1.33$ (3H, t, J = 7.2 Hz, CH₃), 1.88 (2H, m, CH₂), 2.17 (2H, t, J = 5.6 Hz, CH₂), 3.97 (2H, t, J = 5.0 Hz, CH₂O), 4.29 (2H, t, J = 7.2 Hz, CH₂O), 6.35 (1H, s, CH), 7.70 (1H, s, NH), 8.19 (1H, s, CHO) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 13.9, 21.6, 23.5, 62.1, 65.5, 105.7, 117.3 (q, *J* = 30.0 Hz), 123.7 (q, *J* = 275.6), 131.9, 146.0, 158.1, 163.3 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): δ = -55.59 (s, CF₃) ppm.

Anal. calcd. for: C₁₂H₁₄F₃NO₄ (293.24): C, 49.15; H, 4.81; N, 4.78. Found C, 49.11; H, 4.97; N, 4.60.

ESI-MS (*m/z*): calcd. for C₁₂H₁₄F₃NNaO₄ (302.0611). Found 302.0612.

Ethyl (2Z,4E)-2-formamido-5-methoxy-3-(trifluoromethyl)hexa-2,4-dienoate 40 and ethyl (Z)-2-formamido-5-oxo-3-(trifluoro-

methyl)hex-2-enoate (10) was obtained as

mixture 59:41 (1.60 g) from enone **1n** (1.34 g, 8mmol). The ratio of **4o/10** 50:50 (1.62 g) was obtained when 15% citric acid was used instead 1N HCl. Only compound **10** was isolated by column chromatography (EtOAc/c-Hex, 1:1, $R_f = 0.47$) Yield: 1.05 g (49%).

Compound **4o**:

¹H NMR (500 MHz, CDCl₃): δ = 1.40 (3H, t, *J* = 7.0 Hz, CH₃), 1.78 (3H, s, CH₃), 3.61 (3H, s, CH₃O), 4.36 (3H, q, *J* = 7.0 Hz, CH₂O), 4.81 (1H, s, CH), 6.73 (1H, s, NH), 9.14 (1H, s, CHO) ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): δ = -57.78 (s, CF₃) ppm.

Compound 10:

IR (CHCl₃): v = 1040, 1131, 1192, 1273, 1658, 1734, 3019, 3437 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): $\delta = 1.29$ (3H, t, J = 6.8 Hz, CH₃), 2.22 (3H, s, CH₃), 3.62 (3H, s, CH₃O), 4.27 (2H, q, J = 6.8 Hz, CH₂O), 7.98 (1H, br. s, NH), 8.22 (1H, s, CHO) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 13.7, 29.3, 41.2, 62.5, 116.9 (q, *J* = 30.6 Hz), 123.2 (q, *J* = 274.6 Hz), 132.9, 158.9, 162.5, 202.6 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): δ = -61.86 (s, CF₃) ppm.

ESI-MS (*m/z*): calcd. for C₁₀H₁₂F₃NNaO₄ (290.0611). Found 290.0609.

3. Preparation of pyrroles 11-14.

Ethyl 5-(trifluoromethyl)-1H-pyrrole-2-carboxylate (11a). $F_3C \longrightarrow_{H} CO_2Et$ A mixture of compound **8a** (1.27 g, 5.0 mmol) [8] and 50 mL of 15% aqueous HCl were vigorously stirred for 24 h at r.t.

The precipitate obtained was filtered, washed with water, dried and purified by column chromatography (EtOAc/Hex, 1:2, $R_f = 0.64$), giving compound **11a** as white solid. Yield: 0.65 g (63%). M.p. > 80 °C (sublimation).

IR (CHCl₃): $v = 1132, 1175, 1279, 1333, 1578, 1709, 3021, 3434 \text{ cm}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ = 1.39 (3H, t, *J* = 7.0 Hz, CH₃), 4.38 (2H, q, *J* = 7.0 Hz, CH₂O), 6.59 (1H, s, CH), 6.88 (1H, s, CH), 10.20 (1H, br. s, NH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 14.3, 61.3, 110.8, 114.8, 120.4 (q, *J* = 267.2 Hz), 124.6 (q, *J* = 39.2 Hz), 125.4, 160.9 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): $\delta = -60.86$ (s, CF₃) ppm.

Anal. calcd. for: C₈H₈F₃NO₂ (207.15): C, 46.38; H, 3.89; N, 6.76. Found C, 46.56; H, 3.99; N, 6.62.

ESI-MS (*m/z*): calcd. for C₈H₈F₃NNaO₂ (230.0399). Found 230.0403.

 $F_{2}HC \longrightarrow_{H} CO_{2}Et$ Ethyl 5-(difluoromethyl)-1H-pyrrole-2-carboxylate (11b) was obtained by the same procedure as compound 11a from compound 8b (1.18 g, 5 mmol) and was purified

by column chromatography (EtOAc/Hex, 1:1, $R_f = 0.73$), giving compound **11b** as white solid. Yield: 0.71 g (75%). M.p. 72-73 °C.

IR (CHCl₃): $v = 1027, 1077, 1165, 1229, 1314, 1369, 1706, 3022, 3440 \text{ cm}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ = 1.38 (3H, t, *J* = 7.1 Hz, CH₃), 4.38 (2H, q, *J* = 7.1 Hz, CH₂O), 6.45 (1H, s, CH), 6.70 (1H, t, *J* = 55.2 Hz, CHF₂), 6.88 (1H, s, CH), 10.51 (1H, br. s, NH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 14.2, 61.0, 109.6 (t, *J* = 235.5 Hz), 110.2 (t, *J* = 5.2 Hz), 115.0, 124.7, 129.2 (t, *J* = 26.5 Hz), 161.4 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): δ = -110.80 (d, *J* = 55.2 Hz, CHF₂) ppm.

Anal. calcd. for: C₈H₉F₂NO₂ (189.16): C, 50.80; H, 4.80; N, 7.40. Found C, 50.66; H, 4.82; N, 7.58.

ESI-MS (*m/z*): calcd. for C₈H₉F₂NNaO₂ (212.0494). Found 212.0491.

chromatography (EtOAc/Hex, 1:2, $R_f = 0.60$), giving compound **11d** as white solid. Yield: 0.98 g (76%). M.p. 68-70 °C.

IR (CHCl₃): v = 1024, 1045, 1207, 1211, 1219, 1225, 1261, 1323, 1707, 2985, 3023, 3269, 3435 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 1.37 (3H, t, *J* = 6.8 Hz, CH₃), 4.38 (2H, q, *J* = 6.8 Hz, CH₂O), 6.60 (1H, s, CH), 6.93 (1H, s, CH), 10.72 (1H, br. s, NH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 14.1, 61.2, 110.3 (tq, *J*₁ = 251.6 Hz, *J*₂ = 40.0 Hz), 112.2, 115.3, 118.7 (qt, *J*₁ = 286.5 Hz, *J*₂ = 38.6 Hz), 122.9 (t, *J* = 29.6 Hz), 126.2, 161.3 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): δ = -112.25 (2F, s, CF₂), -85.37 (3F, s, CF₃) ppm. ESI-MS (*m/z*): calcd. for C₉H₈F₅NNaO₂ (280.0367). Found 280.0365.

 C_3F_7 , N_H , CO_2Et **Ethyl 5-(perfluoropropyl)-1H-pyrrole-2-carboxylate** (11e) was obtained by the same procedure as compound 11a from compound **8e** (1.77 g, 5 mmol) and was purified by column chromatography (EtOAc/Hex, 1:2, $R_f = 0.57$), giving compound **11e** as white solid. Yield: 0.80 g (52%). M.p. 50-52 °C (sublimation).

IR (CHCl₃): v = 981, 1017, 1093, 1114, 1184, 1208, 1257, 1323, 1370, 1636, 1707, 3020, 3276, 3434 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 1.38 (3H, t, *J* = 6.8 Hz, CH₃), 4.38 (2H, q, *J* = 6.8 Hz, CH₂O), 6.61 (1H, s, CH), 6.94 (1H, s, CH), 10.56 (1H, br. s, NH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 14.1, 61.1, 108.5 (tq, *J*₁ = 265.3 Hz, *J*₂ = 37.9 Hz), 112.2 (tt, *J*₁ = 253.5 Hz, *J*₂ = 31.9 Hz), 112.7, 115.2, 117.3 (qt, *J*₁ = 289.6 Hz, *J*₂ = 34.0 Hz), 122.7 (t, *J* = 30.4 Hz), 128.2, 160.8 ppm.

¹⁹F NMR (470.8 Hz, CDCl₃): δ = -127.20 (2F, s, CF₂), -109.81 (2F, q, *J* = 9.4 Hz, CF₂), -80.70 (3F, t, *J* = 9.4 Hz, CF₃) ppm.

Anal. calcd. for: C₁₀H₈F₇NO₂ (307.16): C, 39.10; H, 2.63; N, 4.56. Found C, 38.96; H, 2.72; N, 4.58.

ESI-MS (*m/z*): calcd. for C₁₀H₈F₇NNaO₂ (330.0335). Found 330.0336.

 F_3C N_H CO_2Et CO_2Et

purified by crystallization from EtOH, giving compound **11f** as white solid. Yield: 0.53 g (48%). M.p. > 80 °C (sublimation).

¹H NMR (500 MHz, CDCl₃): δ = 1.30 (3H, t, *J* = 7.2 Hz, CH₃), 2.12 (3H, q, *J* = 2.3 Hz, CH₃), 4.28 (2H, q, *J* = 7.2 Hz, CH₂O), 6.62 (1H, s, CH), 9.26 (1H, br. s, NH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 10.9, 13.9, 60.9, 117.3, 119.8 (q, *J* = 270.5 Hz), 121.6 (q, *J* = 38.5 Hz), 123.9, 124.5, 160.3 ppm.

¹⁹F NMR (282 MHz, CDCl₃): $\delta = -54.30$ (s, CF₃) ppm.

Anal. calcd. for: C₉H₁₀F₃NO₂ (221.18): C, 48.87; H, 4.56; N, 6.33. Found C, 48.99; H, 4.47; N, 6.51.

ESI-MS (*m/z*): calcd. for C₉H₁₀F₃NNaO₂ (244.0556). Found 244.0556.

Ethyl4-methyl-5-(perfluoroethyl)-1H-pyrrole-2-carboxylate (11i) was obtained by the same procedure ascompound 11a from compound 8i (1.59 g, 5 mmol) and was

purified by column chromatography (EtOAc/Hex, 1:2, $R_f = 0.83$), giving compound **11i** as white solid. Yield: 0.82 (61%). M.p. 66-68 °C (sublimation).

¹H NMR (500 MHz, CDCl₃): δ = 1.37 (3H, t, *J* = 7.1 Hz, CH₃), 2.12 (3H, s, CH₃), 4.34 (2H, q, *J* = 7.1 Hz, OCH₂), 6.73 (1H, s, CH), 9.40 (1H, br. s, NH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 11.0, 14.4, 61.1, 117.3, 118.2 (t, *J* = 29.4 Hz), 124.0, 124.7, 160.6 ppm. Low intensity and high multiplicity signals of C₂F₅-fragment C-atoms are in the area of 110–130 ppm.

¹⁹F NMR (282 MHz, CDCl₃): $\delta = -85.44$ (3F, t, J = 3.3 Hz, CF₃), -113.65 (2F, q, J = 3.3 Hz, CF₂) ppm.

ESI-MS (*m/z*): calcd. for C₁₀H₁₀F₅NNaO₂ (294.0524). Found 294.0526.

purified by column chromatography (EtOAc/Hex, 1:2, $R_f = 0.73$), giving compound **11j** as white solid. Yield: 0.90 g (56%). M.p. 70-71 °C (sublimation).

¹H NMR (500 MHz, CDCl₃): δ = 1.38 (3H, t, *J* = 7.2 Hz, CH₃), 2.20 (3H, s, CH₃), 4.36 (2H, q, *J* = 7.2 Hz, OCH₂), 6.75 (1H, s, CH), 9.54 (1H, br. s, NH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 11.1, 14.3, 61.0, 117.2, 118.5 (t, *J* = 29.4 Hz), 124.4, 124.8, 160.6 ppm.

¹⁹F NMR (282 MHz, CDCl₃): δ = -127.14 (2F, s, CF₂), -110.48 (2F, q, *J* = 9.8 Hz, CF₂), -80.84 (3F, t, *J* = 9.8 Hz, CF₃) ppm.

Anal. calcd. for: $C_{11}H_{10}F_7NO_2$ (221.18): C, 48.87; H, 4.56; N, 6.33. Found C, 48.99; H, 4.47; N, 6.51.

ESI-MS (*m/z*): calcd. for C₁₁H₁₀F₇NNaO₂ (294.0524). Found 294.0526.

S21

HO₂C N H

5-(Ethoxycarbonyl)-1H-pyrrole-2-carboxylic acid (12a) CO₂Et was obtained by the same procedure as compound **11a** from 1.35 g of compound **8c** and was purified by column

chromatography (EtOAc/Hex, 1:2 $R_f = 0.86$), giving compound **12a** as white solid. Yield: 0.48 g (52%). M.p. 98-100 °C.

IR (CHCl₃): v = 944, 1022, 1210, 1216, 1257, 1369, 1713, 1801, 3022, 3426 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 1.41 (3H, t, *J* = 7.2 Hz, CH₃), 4.44 (2H, q, *J* = 7.2

Hz, OCH₂), 6.94 (1H, s, CH), 7.09 (1H, s, CH), 10.47 (2H, br. s, NH, OH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 14.3, 61.8, 115.7, 120.1, 129.7, 129.8, 151.9, 160.1 ppm.

Anal. calcd. for: C₈H₉NO₄ (183.16): C, 52.46; H, 4.95; N, 7.65. Found C, 52.38; H, 4.81; N, 7.87.

ESI-MS (*m/z*): calcd. for C₈H₉NNaO₄ (206.0424). Found 206.0420.

crystallization from EtOH, giving compound **12b** as white solid. Yield: 0.63 g (64%). M.p. 103-105 °C.

IR (CHCl₃): v = 1023, 1102, 1225, 1337, 1469, 1659, 1712, 3020, 3431 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 1.36 (3H, t, *J* = 6.8 Hz, CH₃), 2.38 (3H, s, CH₃), 4.35 (2H, q, *J* = 6.8 Hz, CH₂O), 6.71 (1H, s, CH), 9.78 (1H, s, NH), 9.97 (1H, br. s, OH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 10.5, 14.2, 61.2, 116.7, 127.6, 131.0, 131.2, 160.4, 179.1 ppm.

ESI-MS (*m/z*): calcd. for C₉H₁₁NNaO₄ (220.0580). Found 220.0577.

Ethyl 5-formyl-4-methyl-1H-pyrrole-2-carboxylate (13) was obtained by the same procedure as compound 11a from compound 8g (1.25 g, 5 mmol) and was purified by crystallization from EtOH, giving compound **13** as white solid. Yield: 0.52 g (58%). M.p. > 60 °C (sublimation).

¹H NMR (500 MHz, CDCl₃): δ = 1.37 (3H, t, *J* = 7.2 Hz, CH₃), 2.39 (3H, s, CH₃), 4.36 (2H, q, *J* = 7.2 Hz, CH₂O), 6.72 (1H, s, CH), 9.79 (2H, br. s, CHO, NH) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 10.5, 14.2, 61.3, 116.7, 127.6, 131.0, 131.2, 160.3, 179.0 ppm.

ESI-MS (*m/z*): calcd. for C₉H₁₁NNaO₃ (204.0631). Found 204.0630.

 $\begin{array}{c|c} CF_{3} & Ethyl & 5-methyl-3-(trifluoromethyl)-1H-pyrrole-2-carboxy-\\ Iate (14) was obtained by the same procedure as compound 11a from compound 9 (1.33 g, 5 mmol) and was purified by crystallization from EtOH, giving compound 14 as white solid. Yield: 0.32 g (29%). M.p. > 80 °C (sublimation). \end{array}$

IR (CHCl₃): v = 1105, 1129, 1173, 1276, 1339, 1695, 2985, 3023, 3439 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 1.39 (3H, t, *J* = 6.9 Hz, CH₃), 2.35 (3H, s, CH₃),

4.37 (2H, q, J = 6.9 Hz, CH₂O), 6.43 (1H, s, CH), 9.44 (1H, br. s, NH) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 12.6, 14.3, 60.9, 112.6, 120.6 (q, *J* = 267.4 Hz), 121.8, 123.4 (q, *J* = 39.9 Hz), 127.4, 161.8 ppm.

¹⁹F NMR (282 MHz, CDCl₃): δ = -61.24 (s, CF₃) ppm.

ESI-MS (*m/z*): calcd. for C₉H₁₀F₃NNaO₂ (244.0556). Found 244.0553.

F₃C N CO₂E

Ethyl 5-(trifluoromethyl)pyrrolidine-2-carboxylate \sim_{CO_2Et} hydrochloride (15). A mixture of compound 11a (0.62 g, 3 HCl mmol) and 60 mg of 10% Pd/C in 30 mL of ethanol were

stirred in autoclave (Hydrogen preassure: 100 atm) at 80 °C for 48 h. The reaction progress was monitored by ¹⁹F NMR spectroscopy and by TLC. After complete hydrogenation, the mixture was filtered and 1 mL 6 N HCl was added. The mixture was stirred for 15 min, extracted with diethyl ether and the water layer was evaporated under reduced pressure giving crude compound **15** (contains ~ 10% of

compound **16** by NMR) as white hydrophilic solid which was used for the following step without additional purification. Yield 0.38 g (51%).

¹H NMR (500 MHz, D₂O): δ = 1.34 (3H, t, *J* = 7.2 Hz, CH₃), 2.21-2.62 (4H, m, CH₂CH₂), 4.37 (2H, q, *J* = 7.2 Hz, CH₂O), 4.61 (1H, m, CH), 4.73 (1H, m, CH) ppm.

¹³C NMR (126 MHz, D₂O): δ = 13.2, 23.9, 27.2, 59.8 (q, J = 32.0), 61.6, 64.2, 123.0 (q, J = 282 Hz), 168.6 ppm.

¹⁹F NMR (282 MHz, D₂O): δ = -71.59 (d, *J* = 7.0 Hz, CF₃) ppm.

ESI-MS (*m/z*): calcd. for C₈H₁₂F₃NNaO₂ (234.0712). Found 234.0715.

5-Trifluoromethyl-pyrrolidine-2-carboxylic acid

CO₂H hydrochloride (16). A Solution of compound 15 (0.25 g, 1 HCl mmol) in 6 N HCl (10 mL) was refluxed. The reaction

progress was monitored by ¹H and ¹⁹F NMR spectroscopy. When complited the solution was evaporated, treated with CCl_4 and the precipitate formed was filtered giving compound **16** as white hydrophilic solid. Yield: 0.16 g (69%). M.p. 95-97 °C.

¹H NMR (500 MHz, D₂O): δ = 2.06-2.52 (4H, m, CH₂CH₂) 4.41-4.55 (1H, m, CHCF₃), 4.56 (1H, t, *J* = 6.5 Hz, CHCO₂H) ppm.

¹³C NMR (126 MHz, D₂O): δ = 23.6, 26.8, 59.5 (q, *J* = 32.1), 61.1, 64.2, 122.9 (q, *J* = 281 Hz), 170.7 ppm.

¹⁹F NMR (282 MHz, D₂O): δ = -71.16 (d, *J* = 7.0 Hz, CF₃) ppm.

ESI-MS (*m/z*): calcd. for C₆H₈F₃NNaO₂ (206.0399). Found 206.0398.

References:

- [1] Hojo, M.; Masuda, R.; Kokuryo, Y.; Shioda, H.; Matsuo, S. *Chem. Lett.* 1976, 499.
- [2] Gerus, I. I.; Gorbunova, M. G.; Kukhar, V. P. J. Fluorine Chem. 1994, 69, 195.
- Bravo, P.; Bruche, L.; Farina, A.; Gerus, I. I.; Kolytcheva, M. T.; Kukhar, V. P.; Meille, S. V.; Viani, F. J. Chem. Soc., Perkin Trans. 1 1995, 1667.
- [4] Colla, A.; Martins, M. A. P.; Clar, G.; Krimmer, S.; Fischer, P. Synthesis 1991, 483-486.
- [5] Gerus, I. I.; Kacharova, L. M.; Vdovenko, S. I. Synthesis 2001, 431-436.
- [6] Hojo, M.; Masuda, R.; Sakaguchi, S.; Takagawa, M. Synthesis 1986, 1016-1017.
- [7] Tarasenko, K. V.; Kukhar, V. P.; Gerus, I. I.; Manoylenko, O. V.; Röschenthaler, G.-V. *Tetrahedron Lett.* 2010, *51*, 4623-4626.
- [8] For clearness just tautomers 8 are mentioned in order to avoid complication of schemes and text with other tautomers 5 and 7.

240 230 220 210 200 150 160 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1(4a,)

Compound 1h.¹H NMR (CDCl₃)

Compound 1h.¹⁹F NMR (CDCl₃)

о -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 ff (м.д.)

Compound 1i.¹³C NMR (CDCl₃)

Compound 1j.¹H NMR (CDCl₃)

S30

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 [1 (H.A.]

Compound 4a.¹H NMR (CDCl₃)

Compound 5a.¹H NMR (DMSO-d₆)

60 50

40

20 10

30

Compound 5a.¹⁹F NMR (DMSO-d₆)

 -10 -20

30 20 10 0 -10 -20 -30 -60 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 f1 (w.a.)

Compound 8b. ¹³C NMR (CDCl₃)

Compound 8b. ¹H NMR (CDCl₃)

Compound 8b. ¹⁹F NMR (CDCl₃)

Compound 5c. ¹³C NMR (DMSO-d₆)

Compound 8c. ¹H NMR (CDCl₃)

Compound 8c. ¹⁹F NMR (CDCl₃)

Compound 5d. ¹³C NMR (DMSO-d₆)

Compound 5d. ¹⁹F NMR (DMSO-d₆)

S43

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ma.)

0 -10

Compounds 7d and 8d. ¹³C NMR (CDCl₃)

Compounds 7d and 8d. ¹⁹F NMR (CDCl₃)

Compound 5e. ¹H NMR (DMSO-d₆) _CO2Et C₂F₂ Т NHCHO Ţ T Tao ۲ Т. T -15 8 5 14 11 10 9 т 1 (на.) 13 12 4 5 à **Compound 5e.** ¹³C NMR (DMSO-d₆) _CO2Et инсно

240 230 220 210 200 150 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f3(4ma)

Compound 5e. ¹⁹F NMR (DMSO-d₆)

Compounds 7e and 8e. ¹³C NMR (CDCl₃)

Compound 4f. ¹H NMR (CDCl₃)

Compounds 7e and 8e. ¹⁹F NMR (CDCl₃)

S48

Compounds 4f. ¹⁹F NMR (CDCl₃)

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

30 20 10 0 -10

Compound 8f. ¹H NMR (CDCl₃)

-120

-130

-150

-140

-170

-160

-180

-190

Compound 4g. ¹H NMR (CDCl₃)

Compound 4g. ¹³C NMR (CDCl₃)

30 20 10 0 -10 -20 -30 -40 -50 -50 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -220 -2210 -220 -220 f1 (+.α.)

Compound 8g. ¹³C NMR (CDCl₃)

Compound 8g. ¹H NMR (CDCl₃)

Compound 8h. ¹⁹F NMR (CDCl₃)

Compound 8i. ¹H NMR (CDCl₃)

Compound 8i. ¹³C NMR (CDCl₃)

Compound 8j. ¹H NMR (CDCl₃)

Compound 8j. ¹⁹F NMR (CDCl₃)

Compound 4k. ¹³C NMR (CDCl₃)

S59

Compound 4l. ¹H NMR (CDCl₃)

Compound 4l. ¹⁹F NMR (CDCl₃)

Compound 4l. ¹³C NMR (CDCl₃)

Compound 4m. ¹³C NMR (CDCl₃)

Compound 4n. ¹H NMR (CDCl₃)

40

Compound 4n. ¹⁹F NMR (CDCl₃)

Compound 9. ¹³C NMR (CDCl₃)

Compound 11a. ¹H NMR (CDCl₃)

Compound 11a. ¹⁹F NMR (CDCl₃)

30 20 10 0 <10 -20 -30 -40 60 -60 -70 -80 -90 -110 -120 -130 -140 -150 -150 -170 -180 -190 -200 -210 -220 -230 f()+4.2)

Compound 11b. ¹³C NMR (CDCl₃)

Compound 11b. ¹⁹F NMR (CDCl₃)

Compound 11d. ¹H NMR (CDCl₃)

C₂F₅ 5 2.99 L-92-0 1.62 2.00 15 13 -1 14 12 11 7 f1 (м.д.) 3 2 10 9 8 6 5 4 1 ò

30 20 10 0 <10 -20 -30 -40 60 -60 -70 -80 -90 -100 -110 -120 -130 4.40 -150 -160 -170 -180 -190 -200 -210 -220 -230 f1 (+a.)

Compound 11d. ¹⁹F NMR (CDCl₃)

Compound 11e. ¹H NMR (CDCl₃)

Compound 11e. ¹³C NMR (CDCl₃)

Compound 11f. ¹H NMR (CDCl₃)

Compound 11f. ¹⁹F NMR (CDCl₃)

30 20 10 0 -10 -20 -30 -40 -50 -50 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 fl(wa)

Compound 11g. ¹H NMR (CDCl₃)

Compound 11g. ¹³C NMR (CDCl₃)

Compound 11h. ¹H NMR (CDCl₃)

Compound 11h. ¹⁹F NMR (CDCl₃)

Compound 12a. ¹³C NMR (CDCl₃)

Compound 12b. ¹³C NMR (CDCl₃)

Compound 13. ¹³C NMR (CDCl₃)

Compound 14. ¹³C NMR (CDCl₃)

20 10 0 -10

30

70

60 50 40

-160

-170

-180

-190

-200

-210

Compound 15. 19 F NMR (D₂O)

-40

ò

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1(mg)

Compound 15. ¹³C NMR (D₂O)

S83

Compound 16. 13 C NMR (D₂O)

Compound 16. 19 F NMR (D₂O)

у страна с

NMR investigations of compound 8g.

S86