Supplementary Information

Synthesis and Biological Evaluation of Novel Isoellipticine Derivatives and Salts Charlotte M. Miller, ^a Elaine C. O'Sullivan, ^a Ken J. Devine ^b and Florence O. McCarthy. ^a

^aDepartment of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Western Road, Cork, Ireland. ^bSchool of Pharmacy, University College Cork, Western Road, Cork, Ireland.

Contents

Experimental – Isoellipticinium salts
 ¹H and ¹³C NMR spectra
 HPLC
 NCI 60-cell line screen: single-dose data
 NCI 60- cell line screen: five-dose data
 Topoisomerase II assay gels
 85

1. Experimental – Isoellipticinium salts

2-(3'-Cyanopropyl)isoellipticinium chloride 17

5,11-Dimethyl-10*H*-pyrido[3,4-*b*]carbazole 5 (198 mg, 0.80 mmol) and 4-chlorobutryonitrile (0.091 mL, 0.96 mmol) in dimethylformamide (5 mL) were heated to 120 °C for 48 hours. The dark pink solution was cooled to 0 °C and excess cold ether added. The resulting dark pink precipitate was filtered and washed with cold ether to yield product as a red powder (222 mg, 79%). mp 236 - 240 °C; v_{max}/cm^{-1} (KBr): 3384 (NH), 3153 (CH, aromatic), 3091 (CH₃), 2246 (CN, nitrile), 1634 (C=C, aromatic), 1619 (C=C, aromatic), 1417, 1321; $\delta_{\rm H}$ (300 MHz, DMSO- d_6): 2.28 – 2.41 [2H, m, C(2')H₂], 2.69 [2H, t, J 7.3, C(3')CH₂], 2.91 [3H, s, $C(11)CH_3$, 2.98 [3H, s, $C(5)CH_3$]. 4.80 [2H, t, J 7.0, $C(1')H_2$], 7.18 – 7.25 [1H, m, C(7)H], 7.53 – 7.59 [2H, m, C(8)H, C(9)H], 8.25 [1H, d, J 8.1, C(6)H], 8.44 [1H, d, J 7.1, C(3)H], 8.57 [1H, d, J 7.1, C(4)H], 9.97 [1H, s, C(1)H], 12.13 (1H, s, NH); $\delta_{\rm C}$ (75.5 MHz; DMSO-d₆): 12.6 [CH₃ C(11) CH₃], 13.6 (CH₂), 14.6 [CH₃ C(5)CH₃], 26.4 (CH₂), 58.6 [CH₂ C(1')H₂], 111.4 (CH, aromatic), 115.6 (C, aromatic C), 119.7 (C, aromatic C), 119.8 (CH, aromatic), 121.4 (C, CN), 122.3 (CH, aromatic), 123.6 (C, aromatic C), 124.8 (CH, aromatic), 126.1 (C, aromatic C), 128.0 (C, aromatic C), 128.5 (CH, aromatic), 129.5 (CH, aromatic), 129.9 (C, aromatic C), 139.7 (C, aromatic C), 143.7 (C, aromatic C), 146.2 (CH, aromatic); m/z (ESI⁺): 314 $[(M^+), 100\%]$; HRMS (ESI): Exact mass calculated for $C_{21}H_{20}N_3^+$: 314.1657. Found: 314.1664

2-(4'-Cyanobutyl)isoellipticinium chloride 18

This was synthesised following the procedure described for 17 from 5,11-dimethyl-10Hpyrido[3,4-b]carbazole 5 (204 mg, 0.827 mmol) and 5-chlorovaleronitrile (0.11 ml, 0.986 mmol) in dimethylformamide (5 ml). The product was isolated as a pink solid (265 mg, 88%). mp 225 – 228; v_{max}/cm^{-1} (KBr): 3370 (NH), 3147 (CH, aromatic), 3087 (CH₃), 2868 (CH₂), 2243 (CN, nitrile), 1635 (C=C, aromatic), 1620 (C=C, aromatic), 1498, 1418, 1321; $\delta_{\rm H}$ (300 MHz; DMSO-d₆): 1.60 - 1.75 [2H, m, C(2')H or C(3')H], 2.10 - 2.22 [2H, m, C(2')H or C(3')H], 2.64 [2H, t, J 7.0, $C(4')H_2$], 2.96 [3H, s, $C(11)C\underline{H}_3$], 3.04 [3H, s, $C(5)C\underline{H}_3$], 4.83 [2H, t, J 7.2, $C(1')H_2$], 7.23 – 7.31 [1H, m, C(7)H], 7.58 – 7.64 [2H, m, C(8)H, C(9)H], 8.3 [1H, d, J 8.1, C(6)H], 8.49 [1H, d, J 7.1, C(3)H], 8.63 [1H, d, J 7.1, C(4)H], 10.01 [1H, s, C(1)H], 12.18 (1H, s, NH); δ_C (75.5 MHz; DMSO-d₆): 12.6 [CH₃, C(11)<u>C</u>H₃], 14.7 [CH₃, C(5)CH₃], 15.8 (CH₂), 21.7 (CH₂), 29.9 (CH₂), 58.9 [CH₂ C(1')H₂], 111.4 (CH, aromatic), 115.5 (C, aromatic C), 119.8 (CH, aromatic), 120.4 (C, aromatic C), 121.4 (CN), 122.4 (CH, aromatic), 123.6 (C, aromatic C), 124.8 (CH, aromatic), 126.1 (C, aromatic C), 128.0 (C, aromatic C), 128.5 (CH, aromatic), 129.4 (CH, aromatic), 129.8 (C, aromatic C), 139.7 (C, aromatic C), 143.7 (C, aromatic C), 145.8 (CH, aromatic); m/z (ESI⁺): 328 [(M⁺), 100%]; HRMS (ESI): Exact mass calculated for $C_{22}H_{22}N_3^+$: 328.1814 . Found: 328.1811.

2-(5'-Cyanopentyl)isoellipticinium bromide 19

To a stirred suspension of 5,11-dimethyl-10*H*-pyrido[3,4-*b*]carbazole **5** (194 mg, 0.788 mmol) in dimethylformamide (5 mL), was added 6-bromohexanenitrile (153 mg, 0.11 mL, 0.867 mmol). The reaction mixture was heated to 120 °C for 4 hours and subsequently stirred at room temperature overnight. The mixture was cooled to 0 °C and cold diethyl ether (3 mL) was added. The resulting precipitate was collected by vacuum filtration and washed with hexane (3 mL) and cold diethyl ether (5 mL) to give the product as a bright

orange solid (272 mg, 81.7%). mp: 274 – 275 °C; v_{max}/cm⁻¹(KBr): 3434 (NH), 3137 (CH), 3098 (CH), 2971 (asymm. CH₃ stretch), 2927 (asymm. CH₂ stretch), 2861 (symm. CH₂ stretch), 2239 (CN nitrile), 1634 (C=C arom.), 1624 (C=C arom.), 1419, 1320, 1217; $\delta_{\rm H}$ (300 MHz, DMSO- d_6): 1.42 – 1.52 [2H, m, C(3')H₂], 1.62 – 1.72 [2H, m, C(4')H₂], 2.04 – 2.14 [2H, m, C(2')H₂], 2.55 [2H, t, J 7.0, C(5')H₂], 3.05 [3H, s, C(11)CH₃], 3.21 [3H, s, C(5)CH₃], 4.81 [2H, t, J 7.4, C(1')H₂], 7.36 [1H, overlapping ddd, J 8.1, 5.2, 3.0, C(7)H], 7.69 – 7.70 [2H, m, C(8)H, C(9)H], 8.48 [1H, d, J 8.1, C(6)H], 8.59 [1H, dd, J 7.2, 1.1, C(3)H], 8.81 [1H, d, J 7.1, C(4)H], 10.08 [1H, s, C(1)H], 12.00 [1H, s, N(10)H]; δ_C (75.5 MHz, DMSO- d_6): 12.5 [CH₃, C(11)CH₃], 14.8 [CH₃, C(5)CH₃], 16.0 [CH₂, C(5')H₂], 24.2 [CH₂, C(4')H₂], 24.7 [CH₂, C(3')H₂], 30.1 [CH₂, C(2')H₂], 59.6 [CH₂, C(1')H₂], 111.4 [CH, C(8)H or C(9)H], 115.5 (C, aromatic C), 120.0 [CH, C(7)H], 120.6 (C, CN), 121.6 (C, aromatic C), 122.5 [CH, C(4)H], 123.8 (C, aromatic C), 125.0 [CH, C(6)H], 126.4 (C, aromatic C), 128.2 (C, aromatic C), 128.8 [CH, C(3)H], 129.7 [CH, C(8)H or C(9)H], 130.1 (C, aromatic C), 139.9 (C, aromatic C), 143.8 (C, aromatic C), 145.8 [CH, C(1)H]; m/z (ESI⁺): 342 [(M)⁺ 100%]; HRMS (ESI⁺): Exact mass calculated for $C_{23}H_{24}N_3^+$ 342.1970. Found 342.1967. Anal. calculated for C₂₃H₂₄N₃Br.(0.25 H₂O): C, 64.72; H, 5.79; N, 9.84. Found: C, 64.87; H, 5.73; N, 10.00.

2-(5'-Carboxypentyl)isoellipticinium bromide 20

This was synthesised following the procedure described for 19 from 5,11-dimethyl-10Hpyrido[3,4-b]carbazole 5 (211 mg, 0.857 mmol) and 6-bromohexanoic acid (184 mg, 0.943 mmol, 1.1 eq) in dimethylformamide (5 mL) to give the product as a bright orange solid (290 mg, 76.7%). mp: 302 – 304 °C; v_{max}/cm⁻¹ (KBr): 3419 (NH), 3147 (OH, broad), 3097 (CH), 3025 (CH), 2932 (asymm. CH₂ stretch), 2860 (symm. CH₂ stretch), 1721 (C=O), 1634 (C=C arom.), 1621(C=C arom.), 1418, 1157 (C-O); $\delta_{\rm H}$ (300 MHz, DMSO- d_6): 1.33 – 1.43 $[2H, m, C(3')H_2], 1.55 - 1.65 [2H, m, C(4')H_2], 2.02 - 2.11 [2H, m, C(2')H_2], 2.25 [2H, t, J]$ 7.2, $C(5')H_2$], 3.05 [3H, s, $C(11)CH_3$], 3.22 [3H, s, $C(5)CH_3$], 4.79 [2H, t, J 7.4, $C(1')H_2$], 7.37 [1H, overlapping ddd, J 8.1, 5.0, 3.1, C(7)H], 7.69 – 7.71 [2H, m, C(8)H, C(9)H], 8.50 [1H, d, J 8.0, C(6)H], 8.58 [1H, dd, J 7.2, 1.2, C(3)H], 8.81 [1H, d, J 7.1, C(4)H], 10.08 [1H, s, C(1)H], 12.00 - 12.05 [2H, s & overlapping br s, N(10)H, COOH]; $\delta_C(75.5 \text{ MHz}, \text{DMSO-}$ d_6): 12.5 [CH₃, C(11)CH₃], 14.7 [CH₃, C(5)CH₃], 23.9 [CH₂, C(4')H₂], 25.2 [CH₂, C(3')H₂], 30.7 [CH₂, C(2')H₂], 33.4 [CH₂, C(5')H₂], 59.7 [CH₂, C(1')H₂], 111.3 [CH, C(8)H or C(9)H], 115.4 (C, aromatic C), 119.9 [CH, C(7)H], 121.5 (C, aromatic C), 122.3 [CH, C(4)H], 123.6 (C, aromatic C), 124.9 [CH, C(6)H] 126.2 (C, aromatic C), 128.1 (C, aromatic C), 128.7 [CH, C(3)H], 129.5 [CH, C(8)H or C(9)H], 129.8 (C, aromatic C), 139.7 (C, aromatic C), 143.6 (C, aromatic C), 145.6 [CH, C(1)H], 174.3 (C, COOH); m/z (ESI⁺): 361 [(M)⁺ 100%]; HRMS (ESI⁺): Exact mass calculated for C₂₃H₂₅N₂O₂⁺ 361.1916. Found 361.1911. Anal. calculated for C₂₃H₂₅N₂O₂Br: C, 62.59; H, 5.71; N, 6.35. Found: C, 62.34; H, 5.72; N, 6.35.

2-(6'-Carboxamidohexyl)isoellipticinium bromide 21

This was synthesised following the procedure described for **19** from 5,11-dimethyl-10*H*-pyrido[3,4-*b*]carbazole **5** (200 mg, 0.812 mmol) and 6-bromohexanamide (173 mg, 0.893 mmol, 1.1 eq) in dimethylformamide (5 mL) to give the amide as a bright orange solid (301 mg, 84.2%). mp: 284 – 285 °C; v_{max}/cm^{-1} (KBr): 3294 (NH), 3150 (NH), 3097 (CH), 2943 (asymm. CH₂ stretch), 2856 (symm. CH₂ stretch), 1683 (C=O), 1622 (N-H bend), 1498 (C=C arom.) 1417 (C-N stretch, amide), 1321; δ_H (300 MHz, DMSO-*d*₆): 1.31 – 1.41 [2H, m, C(3')H₂], 1.54 – 1.64 [2H, m, C(4')H₂], 2.00 – 2.10 [4H, m, C(2')H₂, C(5')H₂], 3.02 [3H, s, C(11)CH₃], 3.17 [3H, s, C(5)CH₃], 4.79 [2H, t, *J* 7.4, C(1')H₂], 6.71 (1H, br s, one of

CON \underline{H}_2), 7.26 (1H, br s, one of CON \underline{H}_2), 7.26 [1H, ddd, J 8.2, 5.7, 2.5, C(7)H], 7.66 – 7.68 [2H, m, C(8)H, C(9)H], 8.44 [1H, d, J 8.1, C(6)H], 8.56 [1H, dd, J 7.2, 1.2, C(3)H], 8.76 [1H, d, J 6.9, C(4)H], 10.04 [1H, s, C(1)H], 11.96 [1H, s, N(10)H]; δ_C (75.5 MHz, DMSO- d_6): 12.4 [CH₃, C(11) \underline{C} H₃], 14.8 [CH₃, C(5) \underline{C} H₃], 24.4 [CH₂, C(4')H₂], 25.3 [CH₂, C(3')H₂], 30.8 [CH₂, C(2')H₂], 34.7 [CH₂, C(5')H₂], 59.8 [CH₂, C(1')H₂], 111.4 [CH, C(8)H or C(9)H], 115.5 (C, aromatic C), 120.0 [CH, C(7)H], 121.6 (C, aromatic C), 122.4 [CH, C(4)H], 123.7 (C, aromatic C), 125.0 [CH, C(6)H], 126.4 (C, aromatic C), 128.2 (C, aromatic C), 128.7 [CH, C(3)H], 129.6 [CH, C(8)H or C(9)H], 130.0 (C, aromatic C), 139.8 (C, aromatic C), 143.7 (C, aromatic C), 145.8 [CH, C(1)H], 174.0 (C, \underline{C} ONH₂); m/z (ESI $^+$): 360 [(M) $^+$ 100%]; HRMS (ESI $^+$): Exact mass calculated for C₂₃H₂₆N₃O $^+$ 360.2076. Found 360.2074. Anal. calculated for C₂₃H₂₆N₃OBr(0.2 H₂O): C, 62.22; H, 5.99; N, 9.46. Found: C, 62.30; H, 5.89; N, 9.40.

N^2 -(6'-Methylsulfonamido-6'-oxohexyl)isoellipticinium bromide 22

This was synthesised following the procedure described for 19 from 5,11-dimethyl-10Hpyrido[3,4-b]carbazole 5 (212 mg, 0.861 mmol) and 6-bromo-N-(methylsulfonyl)hexanamide (258 mg, 0.947 mmol, 1.1 eq) in dimethylformamide (5 mL). The product was isolated as a bright orange solid (337 mg, 75.5%). mp: 285 - 287°C; v_{max}/cm⁻¹ (KBr): 3399 (NH), 3164 (NH), 3052 (CH), 2935 (asymm. CH₂ stretch), 2865 (symm. CH₂ stretch), 1705 (C=O), 1633 (C=C arom.), 1620 (C=C arom.), 1437, 1415 (C-N stretch, amide), 1336 (asymm. SO₂ stretch), 1122 (symm. SO₂ stretch); $\delta_{\rm H}$ (300 MHz, DMSO- d_6): 1.33 – 1.43 [2H, m, C(3')H₂], 1.58 - 1.68 [2H, m, C(4')H₂], 2.00 - 2.10 [2H, m, C(2')H₂], 2.33 [2H, t, J 7.2, C(5')H₂], 2.96[3H, s, C(11)CH₃], 3.07 [3H, s, C(5)CH₃], 3.21 (3H, s, SO₂CH₃), 4.78 [2H, t, J 7.4, C(1')H₂], 7.29 [1H, overlapping ddd, J 8.1, 6.3, 1.9, C(7)H], 7.59 – 7.66 [2H, m, C(8)H, C(9)H], 8.32 [1H, d, J 8.1, C(6)H], 8.51 [1H, dd, J 7.1, 1.0, C(3)H], 8.66 [1H, d, J 7.1, C(4)H], 9.98 [1H, s, C(1)H], 11.66 (1H, br s, CONH), 11.87 [1H, s, N(10)H]; $\delta_{\rm C}$ (75.5 MHz, DMSO- $d_{\rm 6}$): 12.5 [CH₃, C(11)CH₃], 14.7 [CH₃, C(5)CH₃], 23.5 [CH₂, C(4')H₂], 25.0 [CH₂, C(3')H₂], 30.7 [CH₂, C(2')H₂], 35.1 [CH₂, C(5')H₂], 40.99 (CH₃, SO₂CH₃), 59.7 [CH₂, C(1')H₂], 111.3 [CH, C(8)H or C(9)H], 115.4 (C, aromatic C), 119.9 [CH, C(7)H], 121.4 (C, aromatic C), 122.3 [CH, C(4)H], 123.6 (C, aromatic C), 124.8 [CH, C(6)H], 126.2 (C, aromatic C), 128.0 (C, aromatic C), 128.6 [CH, C(3)H], 129.5 [CH, C(8)H or C(9)H], 129.8 (C, aromatic C), 139.7 (C, aromatic C), 143.6 (C, aromatic C), 145.6 [CH, C(1)H], 172.5 (C, CONH₂); m/z (ESI⁺): 438 $[(M)^{+} 100\%]$; HRMS (ESI⁺): Exact mass calculated for $C_{24}H_{28}N_{3}O_{3}S^{+} 438.1851$. Found 438.1833. Anal. calculated for C₂₄H₂₈N₃O₃SBr: C, 55.60; H, 5.44; N, 8.10. Found: C, 55.65; H, 5.41; N, 8.10.

2-(5'-Carboxypentyl)-7-formylisoellipticinium bromide 23

This was synthesised following the procedure described for **19** from 5,11-dimethyl-10*H*-pyrido[3,4-*b*]carbazole-7-carbaldehyde **6** (146 mg, 0.532 mmol) and 6-bromohexanoic acid (114 mg, 0.585 mmol) in dimethylformamide (5 mL). The product was isolated as a bright orange solid (123 mg, 49.3%). mp: 267 - 269°C; v_{max}/cm^{-1} (KBr): 3348 (NH), 3109 (OH broad), 2944 (CH), 2862 (CH), 1716 (C=O acid), 1684 (C=O aldehyde), 1622 (C=C arom.), 1600 (C=C arom.), 1411, 1199; δ_H (300 MHz, DMSO- d_6): 1.38 – 1.46 [2H, m, C(3')H₂], 1.58 – 1.67 [2H, m, C(4')H₂], 2.02 – 2.12 [2H, m, C(2')H₂], 2.28 [2H, t, *J* 7.2, C(5')H₂], 2.93 [3H, s, C(11)C \underline{H}_3], 3.05 [3H, s, C(5)C \underline{H}_3], 4.78 [2H, t, *J* 7.5, C(1')H₂], 7.56 [1H, d, *J* 8.5, C(9)H], 7.95 [1H, dd, *J* 8.5, 1.3, C(8)H], 8.57 [1H, dd, *J* 7.1, 0.6 C(3)H], 8.65 – 8.68 [2H, overlapping s and d, C(6)H, C(4)H respectively], 10.00 [1H, s, C(1)H], 10.03 [1H, s, C(7)C \underline{H} O], 12.04

(1H, br s, COO $\underline{\text{H}}$), 12.28 [1H, s, N(10)H]; δ_{C} (75.5 MHz, DMSO- d_{6}): 12.5 [CH₃, C(11) $\underline{\text{C}}$ H₃], 14.7 [CH₃, C(5) $\underline{\text{C}}$ H₃], 23.9 (CH₂), 25.2 (CH₂), 30.7 (CH₂), 33.4 (CH₂), 59.9 [CH₂, C(1')H₂], 111.6 (CH, aromatic CH), 116.5 (C, aromatic C), 121.2 (C, aromatic C), 122.5 (CH, aromatic CH), 122.6 (C, aromatic C), 124.0 (C, aromatic C), 126.9 (C, aromatic C), 128.7 (CH, aromatic CH), 128.8 (C, aromatic C), 129.1 (CH, aromatic CH), 129.3 (C, aromatic C), 129.4 (CH, aromatic CH), 139.9 (C, aromatic C), 146.0 (CH, aromatic CH), 147.0 (C, aromatic C), 174.3 (C, $\underline{\text{C}}$ OOH), 191.8 (CH, $\underline{\text{C}}$ HO); m/z (ESI $^{+}$): 389 [(M) $^{+}$ 100%]; HRMS (ESI $^{+}$): Exact mass calculated for C₂₄H₂₅N₂O₃ $^{+}$ 389.1865. Found 389.1853.

2-(5'-Cyanopentyl)-7-formylisoellipticinium bromide 24

This was synthesised following the procedure described for 19 from 5,11 dimethyl-10Hpyrido[3,4-b]carbazole-7-carbaldehyde 6 (149 mg, 0.543 mmol) and 6-bromohexanenitrile (105 mg, 0.597 mmol) in dimethylformamide (5 mL) to give the product as a bright orange solid (154 mg, 62.9%). mp: 300 - 302°C; v_{max}/cm⁻¹ (KBr): 3418 (NH), 3029 (CH), 2933 (CH), 2868 (CH), 2243 (CN), 1678 (C=O), 1626 (C=C arom.), 1606 (C=C arom.), 1412, 1202, 1113; δ_H (300 MHz, DMSO- d_6): 1.45 – 1.55 [2H, m, C(3')H₂], 1.65 – 1.75 [2H, m, $C(4')H_2$, 2.05 – 2.15 [2H, m, $C(2')H_2$], 2.58 [2H, t, J 7.0, $C(5')H_2$], 2.90 [3H, s, $C(11)CH_3$], 3.00 [3H, s, C(5)CH₃], 4.79 [2H, t, J 7.5, C(1')H₂], 7.52 [1H, d, J 8.5, C(9)H], 7.91 [1H, dd, J 8.5, 1.3, C(8)H], 8.56 [1H, dd, J 7.2, 0.9, C(3)H], 8.61 [1H, s, C(6)H], 8.63 [1H, d, J 7.2, C(4)H], 9.99 [1H, s, C(1)], 10.01 [1H, s, C(7)CHO], 12.22 [1H, s, N(10)H]; $\delta_{\rm C}$ (150.9 MHz, DMSO-d₆): 12.3 [CH₃, C(11)CH₃], 14.5 [CH₃, C(5)CH₃], 16.0 (CH₂), 24.1 (CH₂), 24.7 (CH₂), 30.1 (CH₂), 59.8 [CH₂, N(2)<u>C</u>H₂], 111.3 (CH, aromatic CH), 116.2 (C, aromatic C), 120.7 (C, C≡N), 120.9 (C, aromatic C), 122.4 (CH, aromatic CH), 123.8 (C, aromatic C), 126.7 (C, aromatic C), 128.3 (CH, aromatic CH), 128.5 (C, aromatic C), 128.6 (C, aromatic C), 128.9 (CH, aromatic CH), 129.0 (C, aromatic C), 129.2 (CH, aromatic CH), 139.8 (C, aromatic C), 145.5 (CH, aromatic CH), 146.7 (C, aromatic C), 191.8 (CH, CHO); m/z (ESI⁺): 370 [(M)⁺ 100%]; HRMS (ESI⁺): Exact mass calculated for $C_{24}H_{24}N_3O^+$ 370.1919. Found 370.1917.

2-(6'-Carboxamidohexyl)-7-formylisoellipticinium bromide 25

This was synthesised following the procedure described for 19 from 5,11 dimethyl-10Hpyrido[3,4-b]carbazole-7-carbaldehyde 6 (148 mg, 0.540 mmol) and 6-bromohexanamide (114 mg, 0.587 mmol) in dimethylformamide (5 mL). The product was isolated as a bright orange solid (151 mg, 59.7%). mp: >300 °C without melting; v_{max}/cm^{-1} (KBr): 3105 (NH), 2929 (asymm. CH₂ stretch), 2860 (symm. CH₂ stretch), 1664 (broad, 2 × C=O) 1600 (C=C arom.), 1409 (C=C arom.), 1319, 1273, 1199, 1112; $\delta_{\rm H}$ (300 MHz, DMSO- d_6): 1.32 – 1.42 [2H, m, $C(3')H_2$], 1.56 – 1.65 [2H, m, $C(4')H_2$], 2.00 – 2.10 [2H, m, C(2')H], 2.11 [2H, t, J 7.2, $C(5')H_2$], 2.88 [3H, s, $C(11)CH_3$], 2.99 [3H, s, $C(5)CH_3$], 4.75 [2H, t, J 7.4, $C(1')H_2$], 6.73 (1H, br s, one of CONH₂), 7.32 (1H, br s, one of CONH₂), 7.52 [1H, d, J 8.5, C(9)H], 7.92 [1H, d, J 8.5, C(8)H], 8.52 [1H, d, J 7.1, C(3)H], 8.60 [1H, d, J 6.8, C(4)H], 8.61 [1H, s, C(6)H], 9.94 [1H, s, C(1)H], 9.98 [1H, s, C(7)CHO], 12.23 [1H, s, N(10)H]; δ_C (75.5 MHz, DMSO- d_6): 12.4 [CH₃, C(11)<u>C</u>H₃], 14.6 [CH₃, C(5)<u>C</u>H₃], 24.4 (CH₂), 25.3 (CH₂), 30.8 (CH₂), 34.7 (CH₂), 60.0 [CH₂, C(1')H₂], 111.5 (CH, aromatic CH), 116.4 (C, aromatic C), 121.1 (C, aromatic C), 122.5 (CH, aromatic CH), 124.0 (C, aromatic C), 126.8 (C, aromatic C), 128.71 (CH, aromatic CH), 128.73 (C, aromatic C), 129.1 (CH, aromatic CH), 129.2 (C, aromatic C), 129.4 (CH, aromatic CH), 130.4 (C, aromatic C), 139.8 (C, aromatic C), 145.8 (CH, aromatic CH), 146.9 (C, aromatic C), 174.4 (C, CONH₂), 191.8 (CH, CHO); m/z (ESI⁺): 388 [(M)⁺ 100%]; HRMS (ESI⁺): Exact mass calculated for $C_{24}H_{26}N_3O_2^+$ 388.2025. Found 388.2021.

7-Formyl- N^2 -(6'-methylsulfonamido-6'-oxohexyl) isoellipticinium bromide 26

This was synthesised following the procedure described for 19 from 5,11 dimethyl-10Hpyrido[3,4-*b*]carbazole-7-carbaldehyde 6 (103 mg,0.375 mmol) and 6-bromo-N-(methylsulfonyl) hexanamide (112 mg, 0.412 mmol) in dimethylformamide (5 mL) to give the product as a bright orange solid (110 mg, 53.7%). mp: 270 - 271°C; v_{max}/cm^{-1} (KBr): 3108 (NH), 3000 (CH), 2861 (CH), 1704 (C=O amide), 1683 (C=O aldehyde), 1622 (C=C arom.), 1604 (C=C arom.), 1411, 1321 (asymm. SO₂ stretch), 1157 (symm. SO₂ stretch); δ_H $(300 \text{ MHz}, \text{ DMSO-}d_6)$: 1.28 – 1.38 [2H, m, C(3')H₂], 1.53 – 1.63 [2H, m, C(4')H₂], 1.96 – 2.06 [2H, m, $C(2')H_2$], 2.27 [2H, t, J 7.2, $C(5')H_2$], 2.90 [3H, s, $C(11)C\underline{H}_3$], 3.02 [3H, s, C(5)CH₃], 3.15 (3H, s, SO₂CH₃), 4.73 [2H, t, J 7.2, C(1')H₂], 7.54 [1H, d, J 8.5, C(9)H], 7.93 [1H, dd, J 8.7, 1.2, C(8)H], 8.52 [1H, dd, J 7.0, 0.7, C(3)H], 8.64 [1H, d, J 7.2, C(4)H], 8.67 [1H, d, J 0.6, C(6)H], 9.97 – 9.98 [2H, s, C(1)H, C(7)CHO], 11.61 (1H, br s, CONHSO₂), 12.26 [1H, s, N(10)H]; $\delta_{\rm C}$ (75.5 MHz, DMSO- $d_{\rm 6}$): 12.5 [CH₃, C(11)CH₃], 14.7 [CH₃, C(5)CH₃], 23.5 (CH₂), 25.0 (CH₂), 30.7 (CH₂), 35.1 (CH₂), 41.0 (CH₃, SO₂CH₃), 59.8 [CH₂, C(1')H₂], 111.7 (CH, aromatic CH), 116.5 (C, aromatic C), 121.3 (C, aromatic C), 122.6 (CH, aromatic CH), 124.1 (C, aromatic C), 127.0 (C, aromatic C), 128.8 (CH, aromatic CH), 128.9 (C, aromatic C), 129.2 (CH, aromatic CH), 129.3 (C, aromatic C), 129.5 (CH, aromatic CH), 129.6 (C, aromatic C), 140.0 (C, aromatic C), 146.1 (CH, aromatic CH), 147.1 (C, aromatic C), 172.5 (C, CONH), 191.8 (CH, CHO); m/z (ESI⁺): 466 [(M)⁺ 100%]; HRMS (ESI⁺): Exact mass calculated for $C_{25}H_{28}N_3O_4S^+$ 466.1801. Found 466.1787.

2-(5'-Carboxypentyl)-7-hydroxyisoellipticinium bromide 27

A stirred suspension of 5,11-dimethyl-10H-pyrido[3,4-b]carbazol-7-ol **7** (85 mg, 0.324 mmol) in dimethylformamide (5 mL) was treated with 6-bromohexanoic acid (69 mg, 0.354 mmol) and heated to 120 °C for 4 hours followed by stirring at room temperature overnight. The mixture was cooled to 0 °C and cold diethyl ether (3 mL) was added. The resulting precipitate was collected by vacuum filtration under nitrogen as the product was highly hygroscopic. The solid was quickly washed with hexane (3 mL) and cold diethyl ether (5 mL) to give the product as a red solid which was dried at 0.1 mmHg for 7 days (47 mg, 31.7%). mp: 291 -293°C; v_{max}/cm⁻¹ (KBr): 3166 (OH), 3050 (NH), 2927 (asymm. CH₂ stretch) 2860 (symm. CH₂ stretch), 1719 (C=O), 1635 (C=C arom.), 1492 (C=C arom.), 1413, 1380, 1220 (C-O), 1152; $\delta_{\rm H}$ (300 MHz, DMSO- d_6): 1.32 – 1.42 [2H, m, C(3')H₂], 1.55 – 1.64 [2H, m, C(4')H₂], 2.01 - 2.09 [2H, m, C(2')H₂], 2.25 [2H, t, J 7.2, C(5')H₂], 2.99 [3H, s, C(11)CH₃], 3.13 [3H, s, C(5)CH₃], 4.77 [2H, t, J 7.2, C(1')H₂], 7.21 [1H, dd, J 8.7, 2.3, C(8)H], 7.51 [1H, d, J 8.8, C(9)H], 7.78 [1H, d, J 1.5, C(6)H], 8.51 [1H, d, J 7.2, C(3)H], 8.72 [1H, d, J 7.0, C(4)H], 9.34 [1H, s, C(7)OH], 10.00 [1H, s, C(1)H], 11.68 [1H, s, N(10)H], 12.02 (1H, br s, COOH); δ_C (75.5 MHz, DMSO-d₆): 12.3 [CH₃, C(11)<u>C</u>H₃] 14.6 [CH₃, C(5)<u>C</u>H₃], 23.9 (CH₂), 25.1 (CH₂), 30.6 (CH₂), 33.4 (CH₂), 59.7 [CH₂, C(1')H₂], 109.4 (CH, aromatic CH), 111.9 (CH, aromatic CH), 115.3 (C, aromatic C), 119.2 (CH, aromatic CH), 122.2 (C, aromatic C), 122.4 (CH, aromatic CH), 123.5 (C, aromatic C), 126.2 (C, aromatic C), 127.5 (C, aromatic C), 128.3 (CH, aromatic CH), 129.9 (C, aromatic C), 137.6 (C, aromatic C), 140.4 (C, aromatic C), 145.7 (CH, aromatic CH), 151.3 (C, aromatic C), 174.3 (C, COOH); m/z (ESI⁺): 377 $[(M)^{+} 100\%]$; HRMS (ESI⁺): Exact mass calculated for $C_{23}H_{25}N_{2}O_{3}^{+} 377.1865$. Found 377.1859.

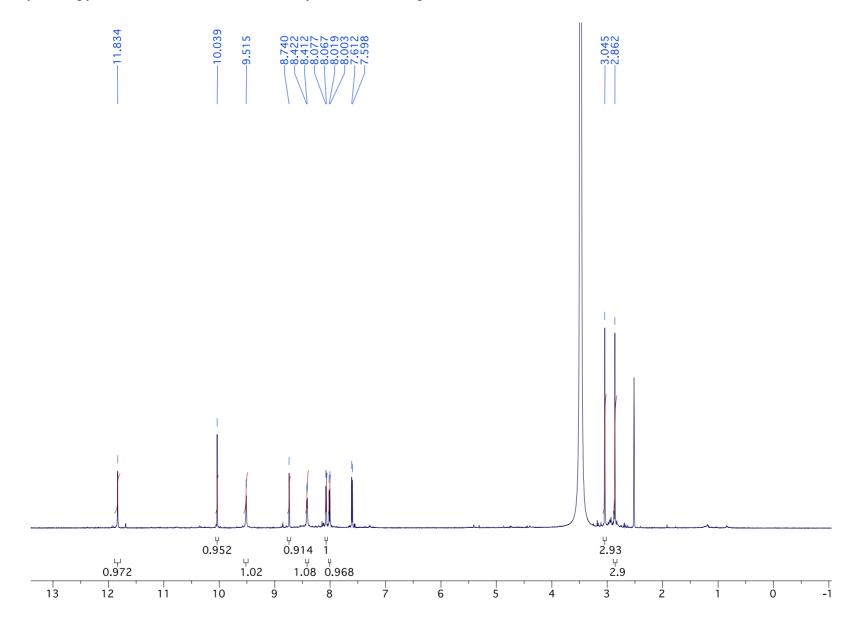
2-(5'-Cyanopentyl)-7-hydroxyisoellipticinium bromide 28

This was synthesised following the procedure described for 27 from 5,11-dimethyl-10H-

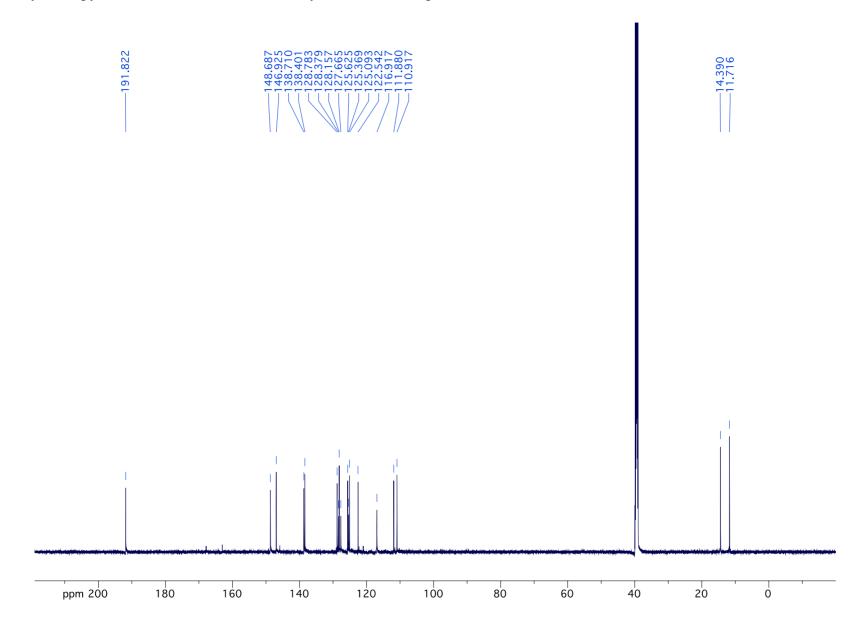
pyrido[3,4-b]carbazol-7-ol 7 (79 mg, 0.301 mmol) and 6-bromohexanenitrile (0.04 mL, 0.331 mmol) in dimethylformamide (5 mL) to give the product as a red solid (41 mg, 31.1%). mp: 245 – 248 °C; v_{max}/cm⁻¹ (KBr): 3169 (broad, OH & NH), 2932 (asymm. CH₂ stretch), 2861 (symm. CH₂ stretch), 2242 (CN), 1633 (C=C arom.), 1492 (C=C arom.), 1468, 1413, 1221 (C-O), 1147; $\delta_{\rm H}$ (400 MHz, DMSO- d_6): 1.41 – 1.48 [2H, m, C(3')H₂], 1.62 – 1.69 [2H, m, $C(4')H_2$], 2.03 - 2.11 [2H, m, $C(2')H_2$], 2.54 [2H, t, J 7.0, $C(5')H_2$], 3.03 [3H, s, C(11)CH₃], 3.16 [3H, s, C(5)CH₃], 4.79 [2H, t, J 7.6, C(1')H₂], 7.22 [1H, dd, J 8.8, 2.2, C(8)H], 7.52 [1H, d, J 8.7, C(9)H], 7.81 [1H, d, J 2.2, C(6)H], 8.54 [1H, d, J 7.1, C(3)H], 8.77 [1H, d, J 7.0, C(4)H], 9.37 [1H, s, C(7)OH], 10.04 [1H, s, C(1)H], 11.67 [1H, s, N(10)H]; δ_C (75.5 MHz, DMSO- d_6): 12.4 [CH₃, C(11)CH₃], 14.6 [CH₃, C(5)CH₃], 16.0 (CH₂), 24.2 (CH₂), 24.7 (CH₂), 30.1 (CH₂), 59.5 [CH₂, C(1')H₂], 109.4 (CH, aromatic CH), 111.9 (CH, aromatic CH), 115.3 (C, aromatic C), 119.2 (CH, aromatic CH), 120.6 (C, C≡N), 122.2 (C, aromatic C), 122.4 (CH, aromatic CH), 123.5 (C, aromatic C), 126.2 (C, aromatic C), 127.5 (C, aromatic C), 128.3 (CH, aromatic CH), 130.0 (C, aromatic C), 137.6 (C, aromatic C), 140.4 (C, aromatic C), 145.7 (CH, aromatic CH), 151.3 (C, aromatic C); m/z (ESI⁺): 358 [(M)⁺ 100%]; HRMS (ESI⁺): Exact mass calculated for $C_{23}H_{24}N_3O^+$ 358.1919. Found 358.1929.

2-(6'-Carboxamidohexyl)-7-hydroxyisoellipticinium bromide 29

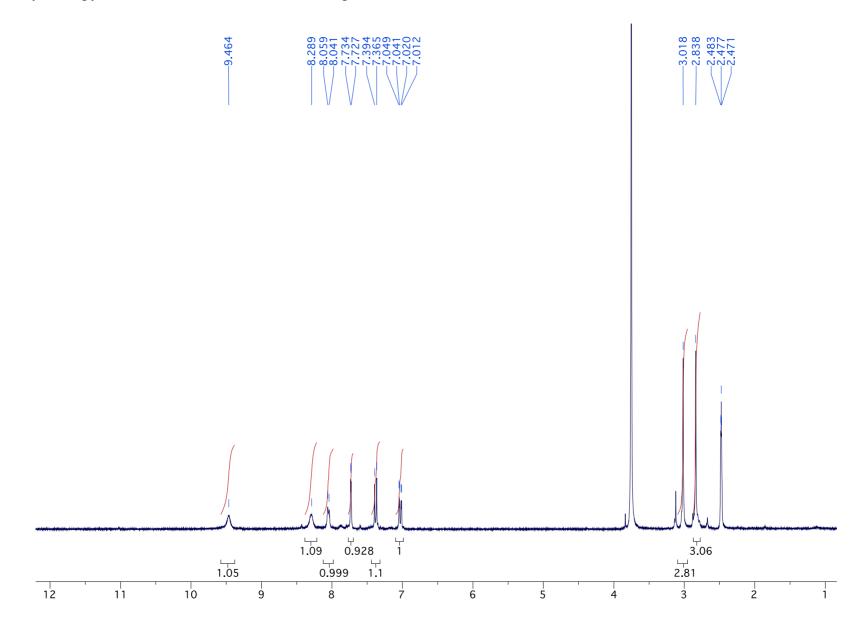
This was synthesised following the procedure described for 27 from 5,11-dimethyl-10Hpyrido[3,4-b]carbazol-7-ol 7 (233 mg, 0.888 mmol) and 6-bromohexanamide (190 mg, 0.979 mmol) in dimethylformamide (5 mL) to give the product as a red solid (186 mg, 45.9%). mp: 278 – 279 °C; v_{max}/cm⁻¹ (KBr): 3177 (broad, NH & OH), 2928 (asymm. CH₂ stretch), 2858 (symm. CH₂ stretch), 1654 (C=O), 1635 (C=C arom.), 1493 (C=C arom.), 1466, 1413, 1381, 1218 (C-O), 1151; $\delta_{\rm H}$ (400 MHz, DMSO- d_6): 1.30 – 1.37 [2H, m, C(3')H₂], 1.54 - 1.61 [2H, m, C(4')H₂], 1.99 - 2.09 (4H, m, C(2')H₂, C(5')CH₂], 2.95 [3H, s, $C(11)CH_3$, 3.08 [3H, s, $C(5)CH_3$], 4.75 [2H, t, J 7.1, $C(1')H_2$], 6.73 (1H, br s, one of $CONH_2$), 7.18 [1H, dd, J 8.7, 2.2, C(8)H], 7.28 (1H, br s, one of $CONH_2$) 7.47 [1H, d, J 8.6, C(9)H], 7.72 [1H, d, J 1.8, C(6)H], 8.49 [1H, d, J 7.1, C(3)H], 8.68 [1H, d, J 7.1, C(4)H], 9.35 [1H, s, C(7)OH], 9.96 [1H, s, C(1)H], 11.66 [1H, s, N(10)H]; $\delta_{\rm C}$ (75.5 MHz, DMSO- $d_{\rm 6}$): 12.4 [CH₃, C(11)<u>C</u>H₃], 14.5 [CH₃, C(5)<u>C</u>H₃], 24.4 (CH₂), 25.3 (CH₂), 30.7 (CH₂), 34.8 (CH₂), 59.7 [CH₂, C(1'v)H₂], 109.3 (CH, aromatic CH), 111.9 (CH, aromatic CH), 115.3 (C, aromatic C), 119.1 (CH, aromatic CH), 122.1 (C, aromatic C), 122.3 (CH, aromatic CH), 123.4 (C, aromatic C), 126.1 (C, aromatic C), 127.4 (C, aromatic C), 128.3 (CH, aromatic CH), 129.8 (C, aromatic C), 137.6 (C, aromatic C), 140.3 (C, aromatic C), 145.6 (CH, aromatic CH), 151.2 (C, aromatic C), 174.1 (C, CONH₂); m/z (ESI⁺): 376 [(M)⁺ 100%]; HRMS (ESI⁺): Exact mass calculated for $C_{23}H_{26}N_3O_2^+$ 376.2025. Found 376.2018.

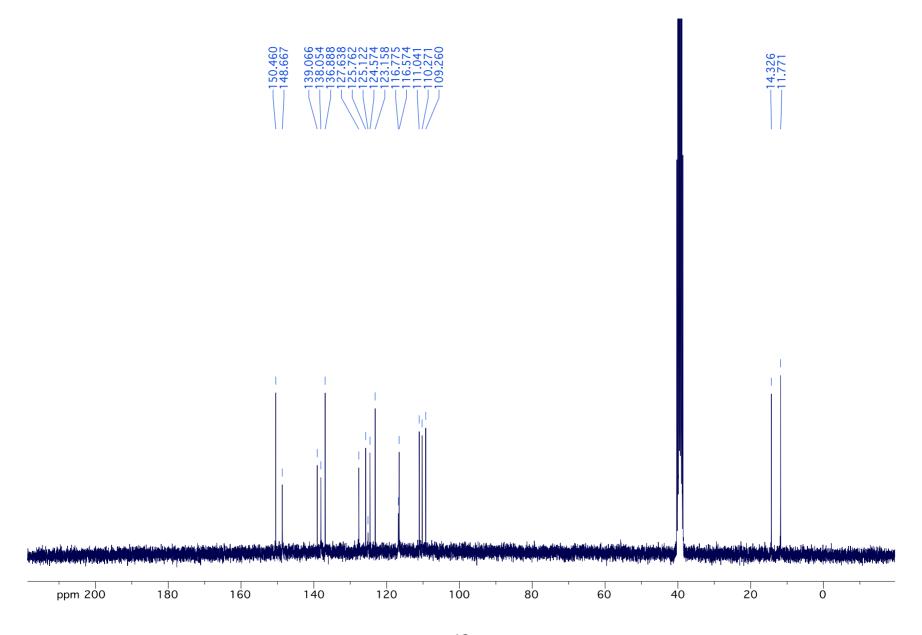

7-Hydroxy- N^2 -(6'-methylsulfonamido-6-oxohexyl) isoellipticinium bromide 30

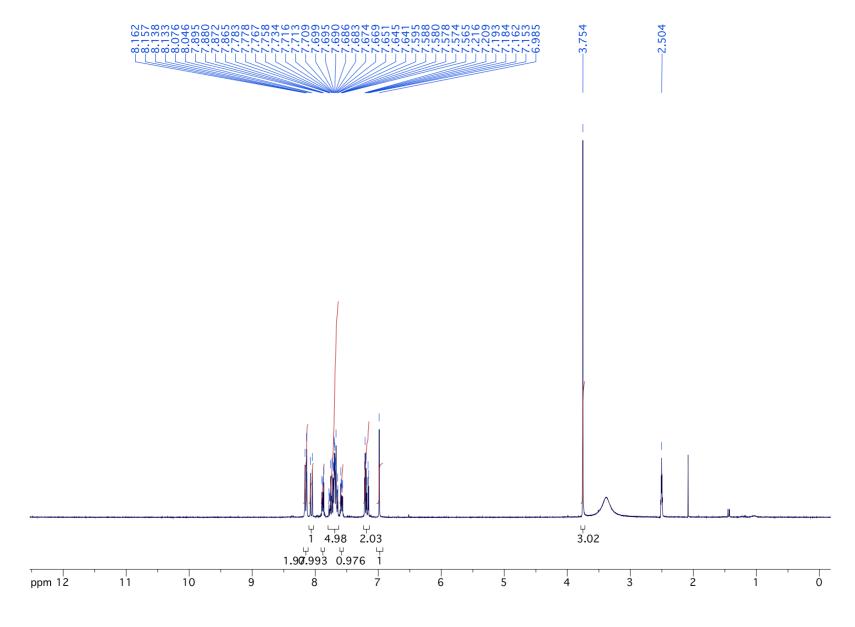
This was synthesised following the procedure described for **27** from 5,11-dimethyl-10*H*-pyrido[3,4-*b*]carbazol-7-ol **7** (137 mg, 0.522 mmol) and 6-bromo-*N*-(methylsulfonyl) hexanamide (157 mg, 0.577 mmol) in dimethylformamide (5 mL) to give the product as a red solid (145 mg, 52.1%). mp: 238 – 240 °C; v_{max}/cm^{-1} (KBr): 3177 (broad, OH & NH), 2931 (asymm. CH₂ stretch), 2862 (symm. CH₂ stretch), 1708 (C=O), 1651 (C=C arom.), 1593 (C=C arom.), 1493, 1439, 1415, 1382, 1325 (asymm. SO₂ stretch), 1222 (C-O), 1156, 1113 (symm. SO₂ stretch); δ_H (400 MHz, DMSO- d_6): 1.31 – 1.39 [2H, m, C(3')H₂], 1.58 – 1.65 [2H, m, C(4')H₂], 2.01 – 2.09 [2H, m, C(2')H₂], 2.31 [2H, t, *J* 7.2, C(5')H₂], 3.01 [3H, s,


C(11)C \underline{H}_3], 3.16 [3H, s, C(5)C \underline{H}_3], 3.21 (3H, s, SO₂C \underline{H}_3), 4.78 [2H, t, *J* 7.4, C(1')H₂], 7.23 [1H, dd, *J* 8.7, 2.2, C(8)H], 7.53 [1H, d, *J* 8.7, C(9)H], 7.82 [1H, d, *J* 2.1, C(6)H], 8.53 [1H, dd, *J* 7.3, 0.4, C(3)H], 8.77 [1H, d, *J* 7.1, C(4)H], 9.38 [1H, s, C(7)O \underline{H}], 10.04 [1H, s, C(1)H], 11.69 (1H, br s, CON \underline{H} SO₂), 11.73 [1H, s, N(10)H]; δ_C (75.5 MHz, DMSO- d_6): 12.4 [CH₃, C(11) \underline{C} H₃], 14.6 [CH₃, C(5) \underline{C} H₃], 23.5 (CH₂), 25.0 (CH₂), 30.6 (CH₂), 35.1 (CH₂), 41.0 (CH₃, SO₂ \underline{C} H₃) 59.6 [CH₂, C(1')H₂], 109.5 (CH, aromatic CH), 112.0 (CH, aromatic CH), 115.4 (C, aromatic C), 119.2 (CH, aromatic CH), 122.2 (C, aromatic C), 122.4 (CH, aromatic CH), 123.5 (C, aromatic C), 126.3 (C, aromatic C), 127.5 (C, aromatic C), 128.3 (CH, aromatic CH), 130.0 (C, aromatic C), 137.7 (C, aromatic C), 140.4 (C, aromatic C), 145.8 (CH, aromatic CH), 151.3 (C, aromatic C), 172.4 (C, \underline{C} ONH); m/z (ESI⁺): 454 [(M)⁺ 100%]; HRMS (ESI⁺): Exact mass calculated for C₂₄H₂₉N₃O₄S⁺ 454.1801. Found 454.1783.

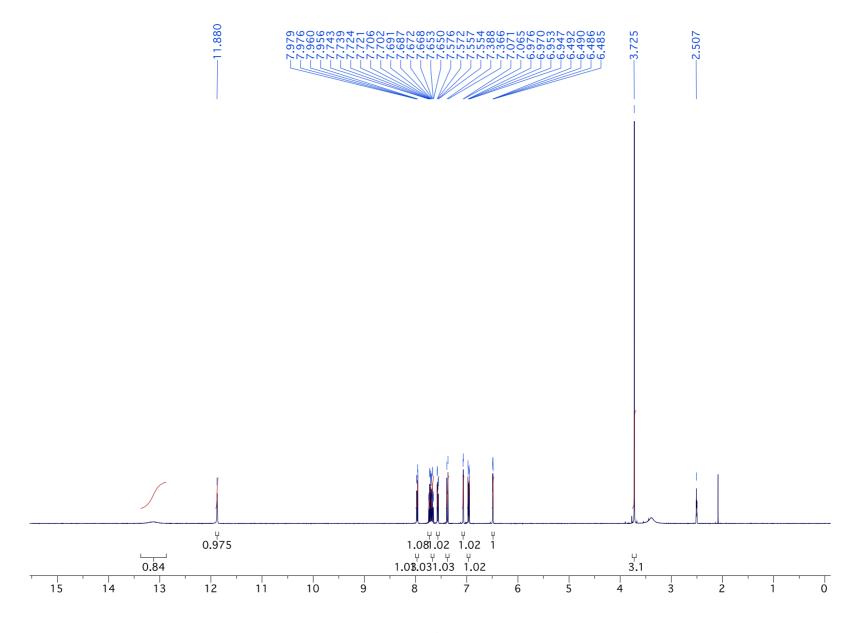
Note: Despite through drying at 0.1 mmHg (min. 48 h, max. 7 days), several of the 7-formyl and 7-hydroxy isoellipticinium salts contain traces of dimethylformamide. DMF signals in ¹H & ¹³C NMR spectra: ¹H: 2.73 (s), 2.89 (s), 7.95 (s); ¹³C: 30.7, 35.7, 162.3 ppm.

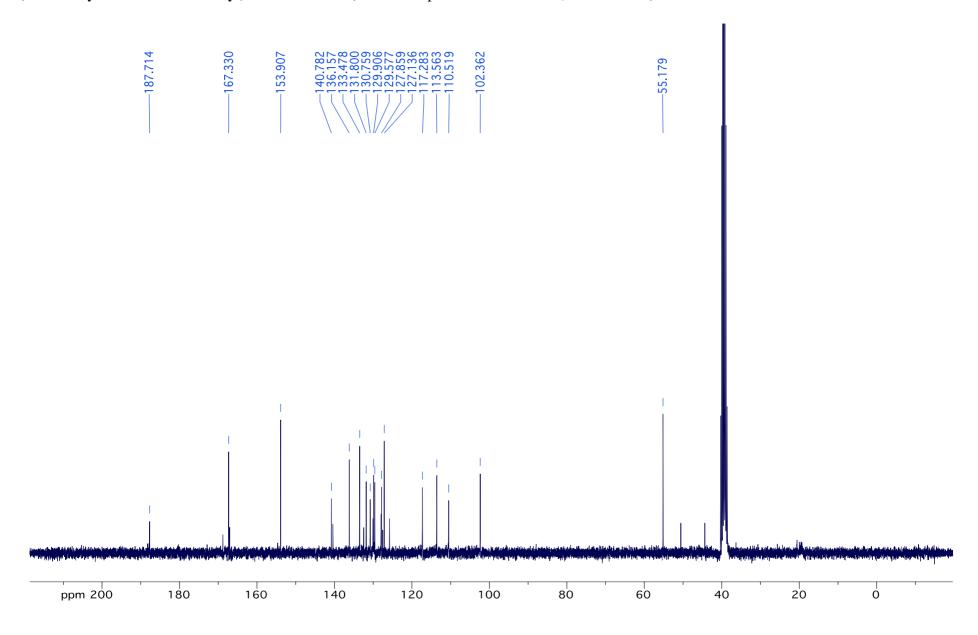

5,11-Dimethyl-10*H*-pyrido[3,4-*b*]carbazole-7-carbaldehyde **6** (¹H NMR spectrum in DMSO-*d*₆ at 600 MHz)

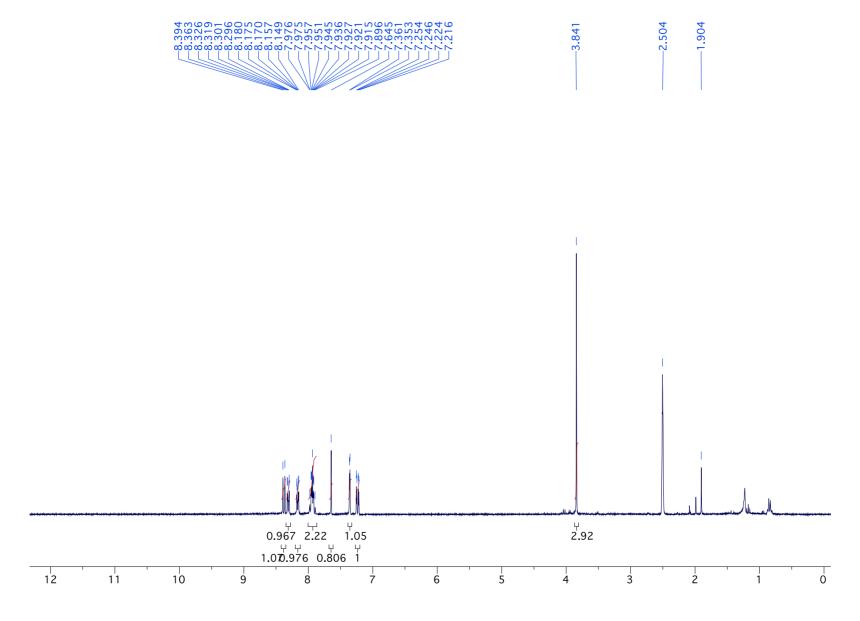

5,11-Dimethyl-10*H*-pyrido[3,4-*b*]carbazole-7-carbaldehyde **6** (13 C NMR spectrum in DMSO- d_6 at 150.9 MHz)

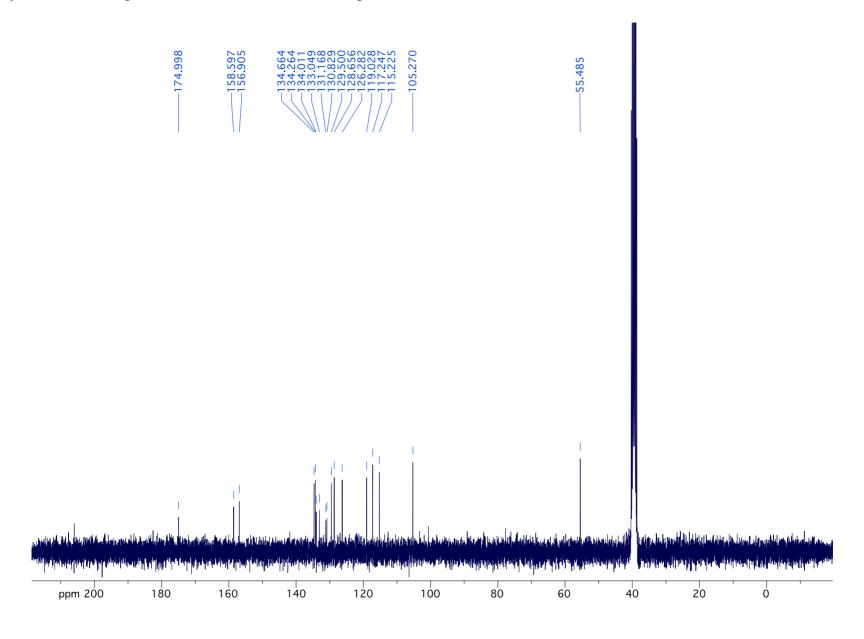

5,11-Dimethyl-10*H*-pyrido[3,4-*b*]carbazol-7-ol **7** (1 H NMR spectrum in DMSO- d_{6} at 300 MHz)

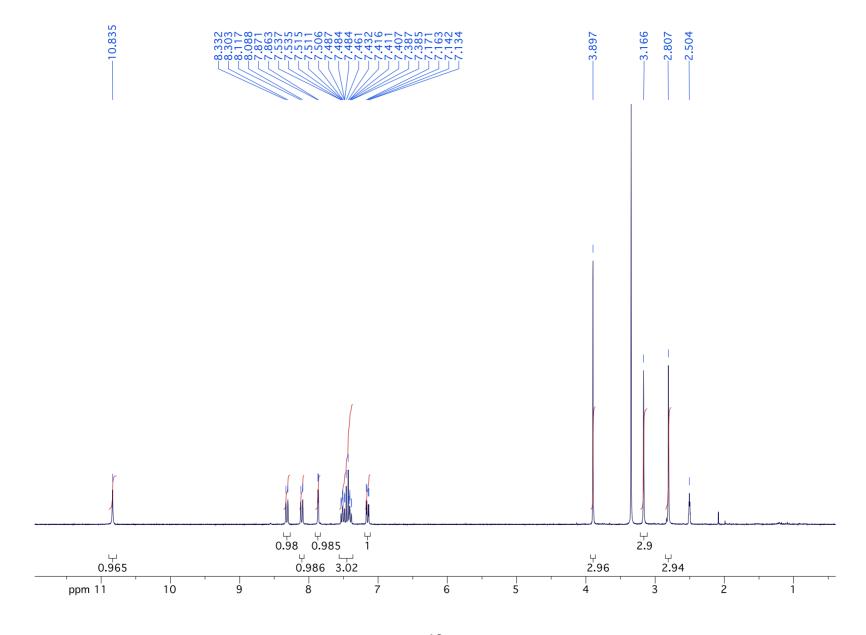
5,11-Dimethyl-10*H*-pyrido[3,4-*b*]carbazol-7-ol **7** (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

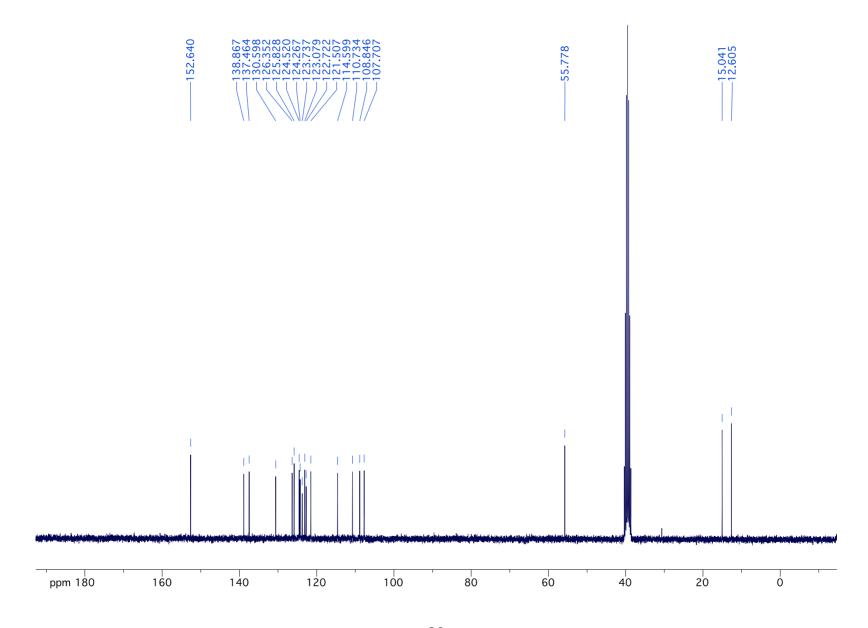

2-(5-Methoxy-1-(phenylsulfonyl)-1H-indole-2-carbonyl)benzoic acid **11** (¹H NMR spectrum in DMSO-*d*₆ at 300 MHz)

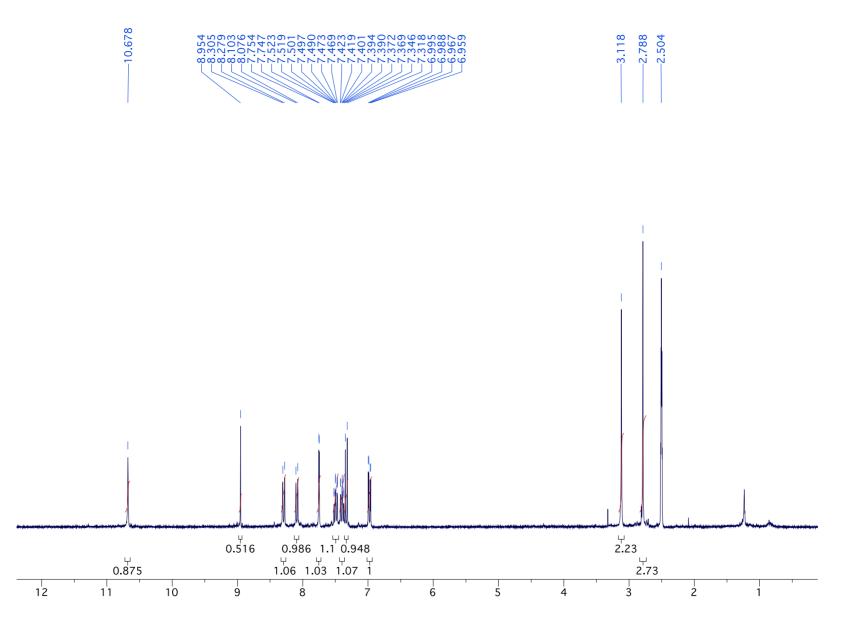

2-(5-Methoxy-1-(phenylsulfonyl)-1H-indole-2-carbonyl) benzoic acid **11** (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

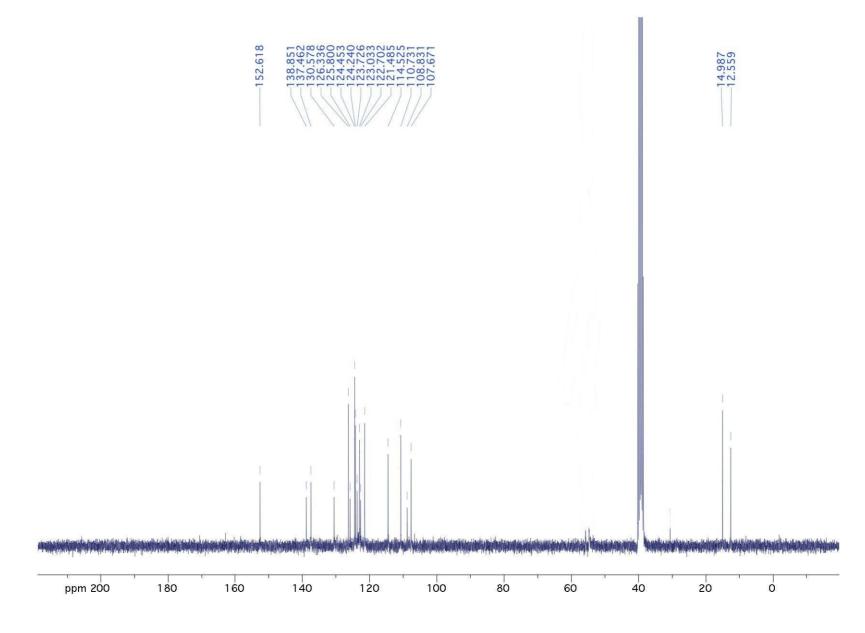

2-(5-Methoxy-1*H*-indole-2-carbonyl)benzoic acid **12** (1 H NMR spectrum in DMSO- d_{6} at 400 MHz)

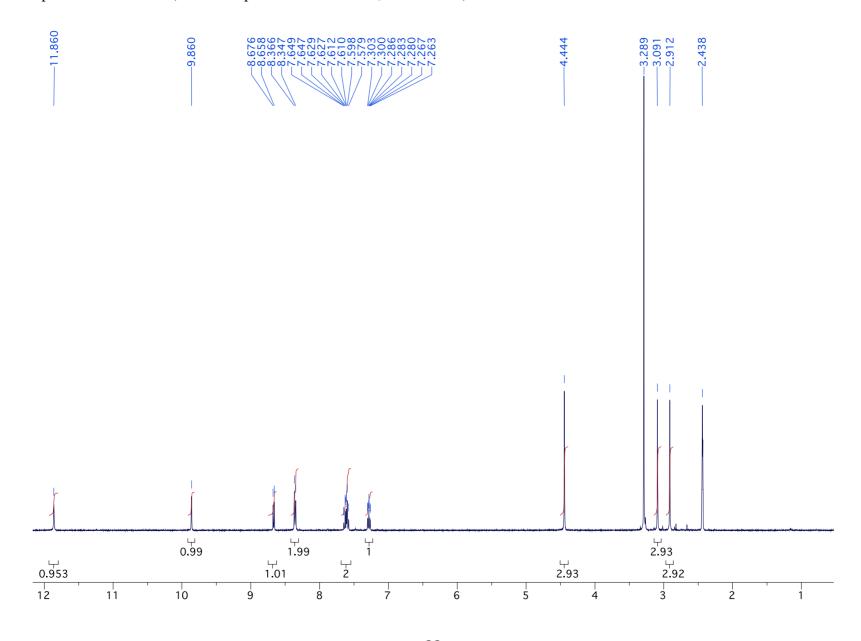

2-(5-Methoxy-1*H*-indole-2-carbonyl)benzoic acid **12** (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

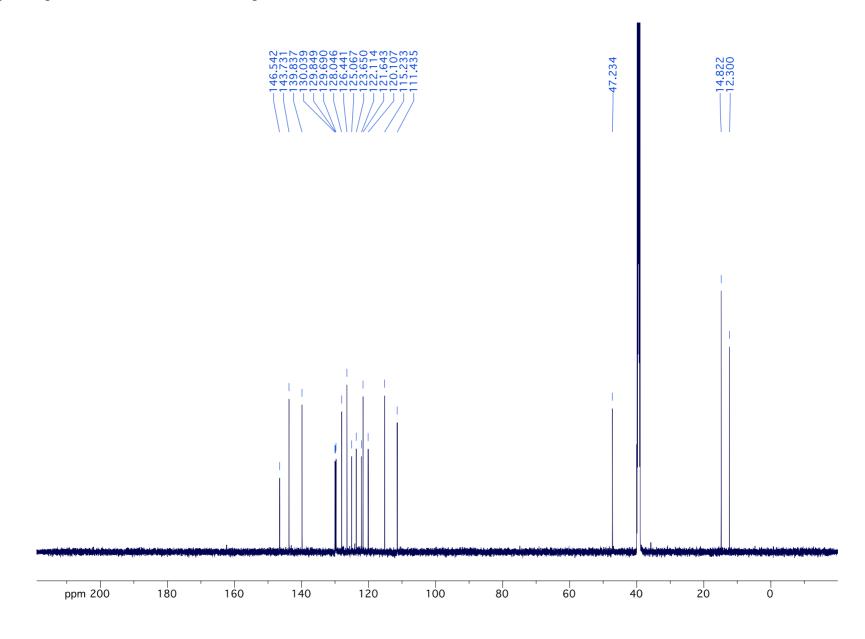

2-Methoxyindolo[1,2-*b*]isoquinoline-6,11-dione **13** (¹H NMR spectrum in DMSO-*d*₆ at 300 MHz)

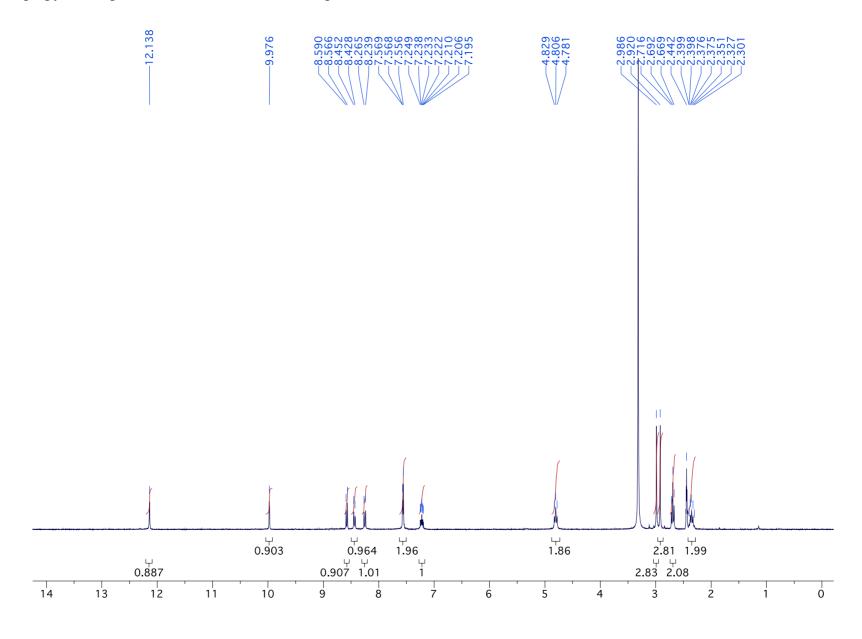

2-Methoxyindolo[1,2-b]isoquinoline-6,11-dione **13** (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

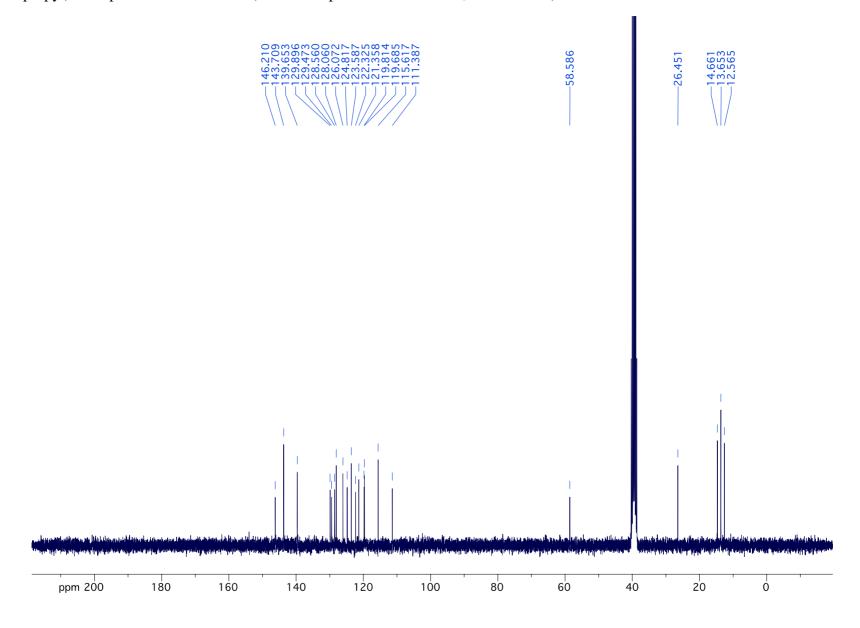

2-Methoxy-6,11-dimethyl-5*H*-benzo[*b*]carbazole **14** (¹H NMR spectrum in DMSO-*d*₆ at 300 MHz)

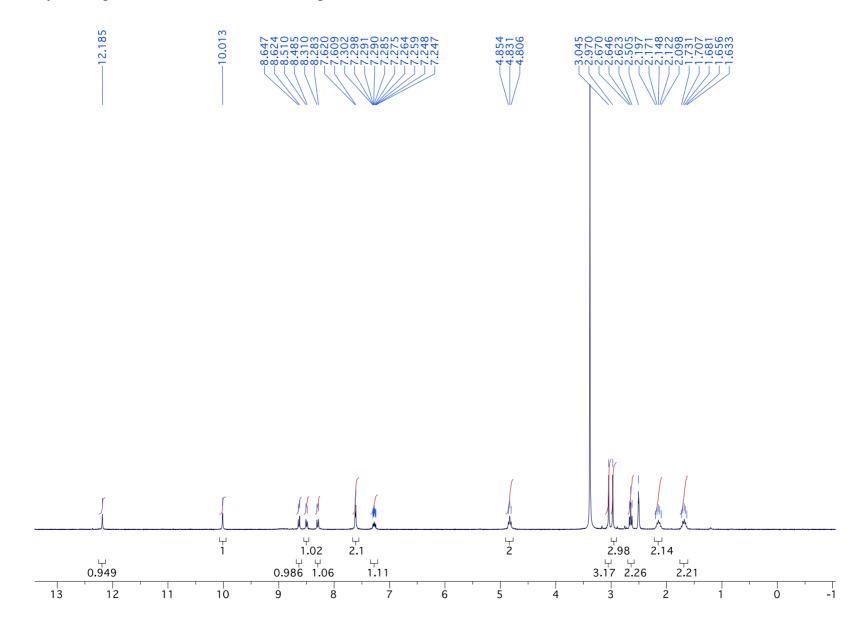

2-Methoxy-6,11-dimethyl-5*H*-benzo[*b*]carbazole **14** (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

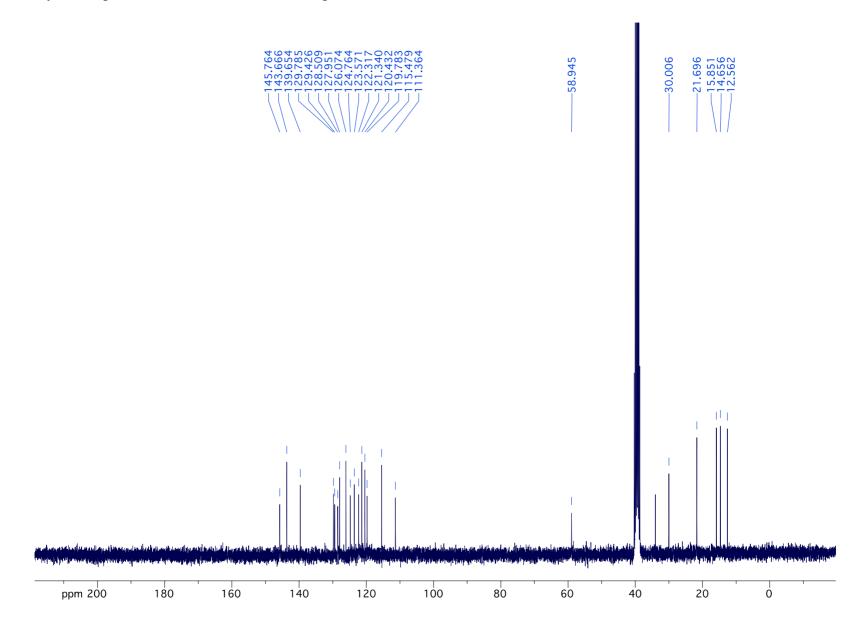

6,11-Dimethyl-5*H*-benzo[*b*]carbazol-2-ol **9** (1 H NMR water suppression in DMSO- d_{6} at 300 MHz)

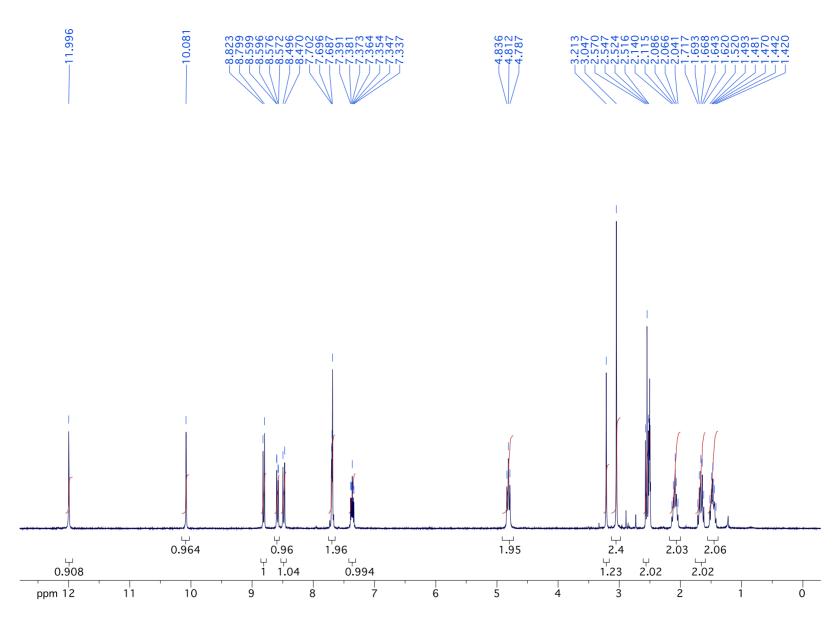

6,11-Dimethyl-5*H*-benzo[*b*]carbazol-2-ol **9** (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

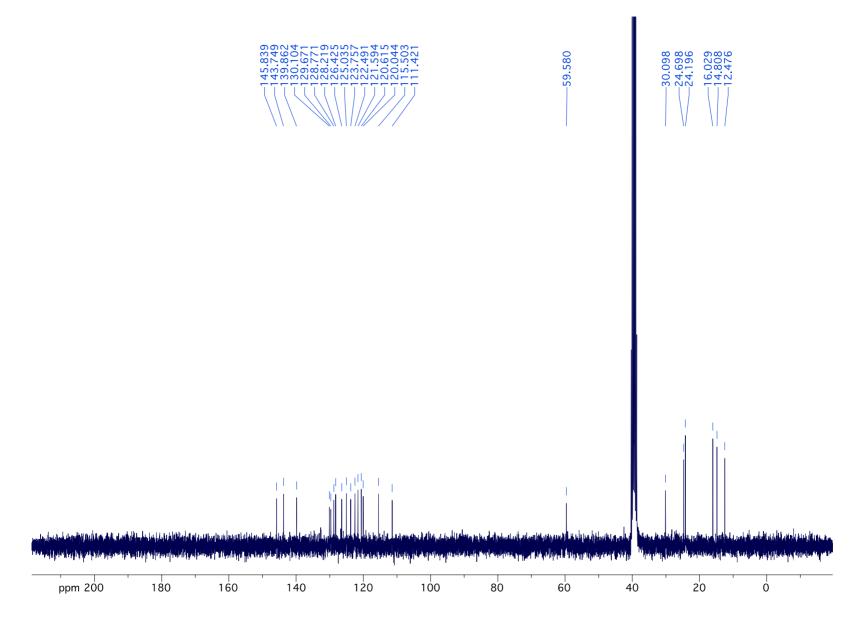

2-Methylisoellpticinium iodide **16** (1 H NMR spectrum in DMSO- d_{6} at 400 MHz)

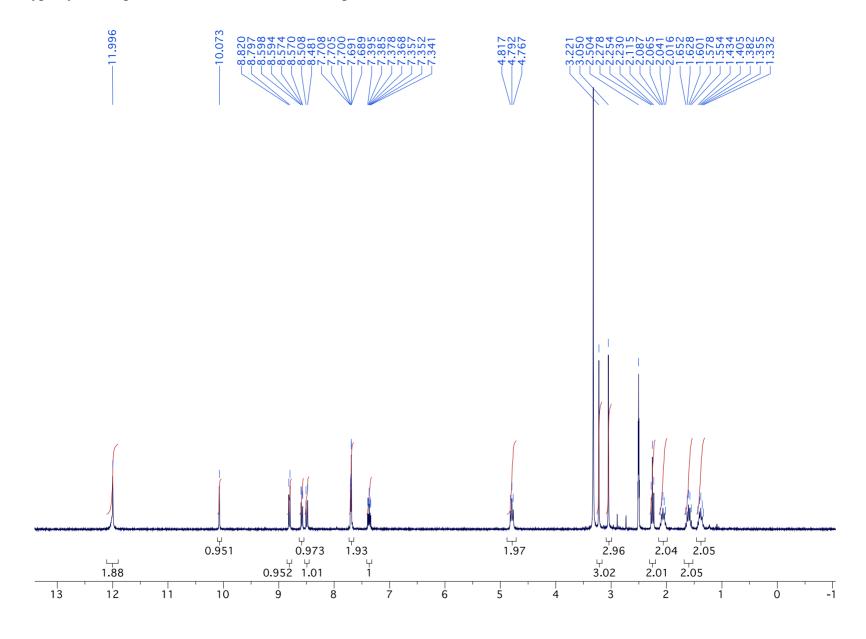

2-Methylisoellpticinium iodide **16** (13 C NMR spectrum in DMSO- d_6 at 150.9 MHz)

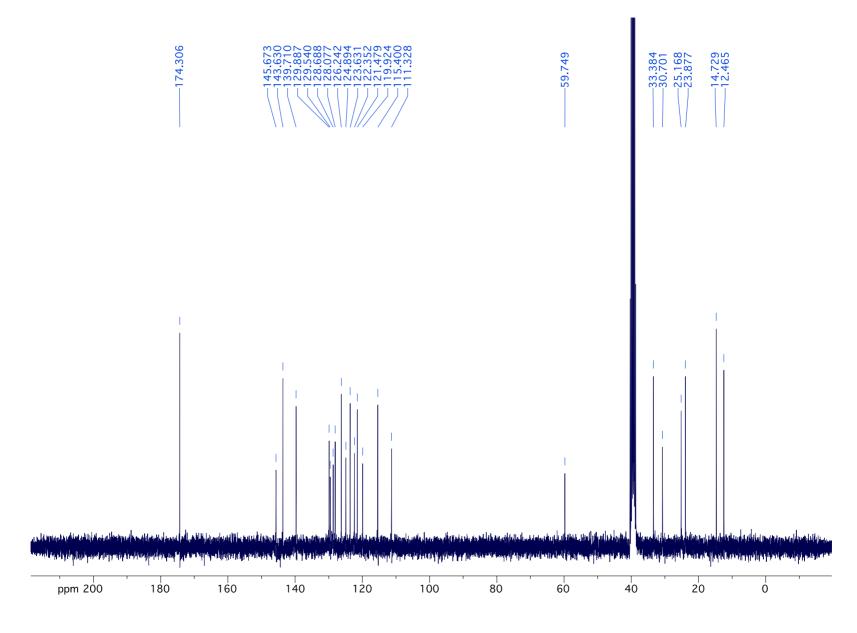

2-(3'-Cyanopropyl)isoellipticinium chloride **17** (¹H NMR spectrum in DMSO-*d*₆ at 300 MHz)

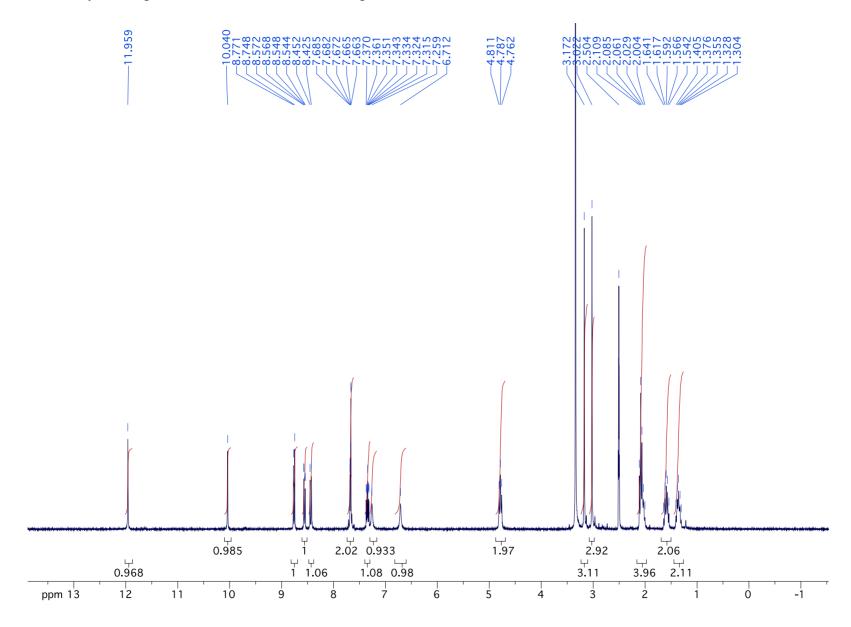

2-(3'-Cyanopropyl)isoellipticinium chloride 17 (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

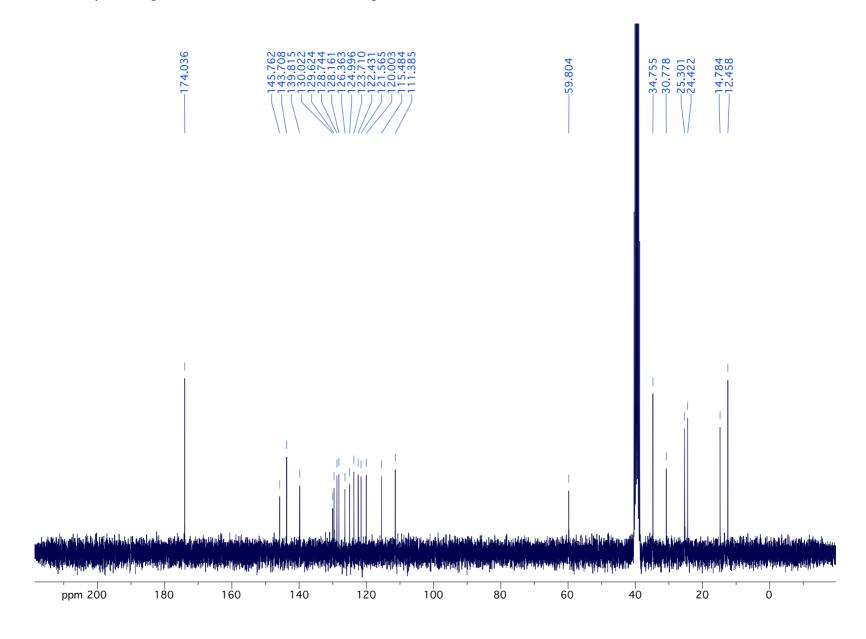

2-(4'-Cyanobutyl)isoellipticinium chloride **18** (1 H NMR spectrum in DMSO- d_{6} at 300 MHz)

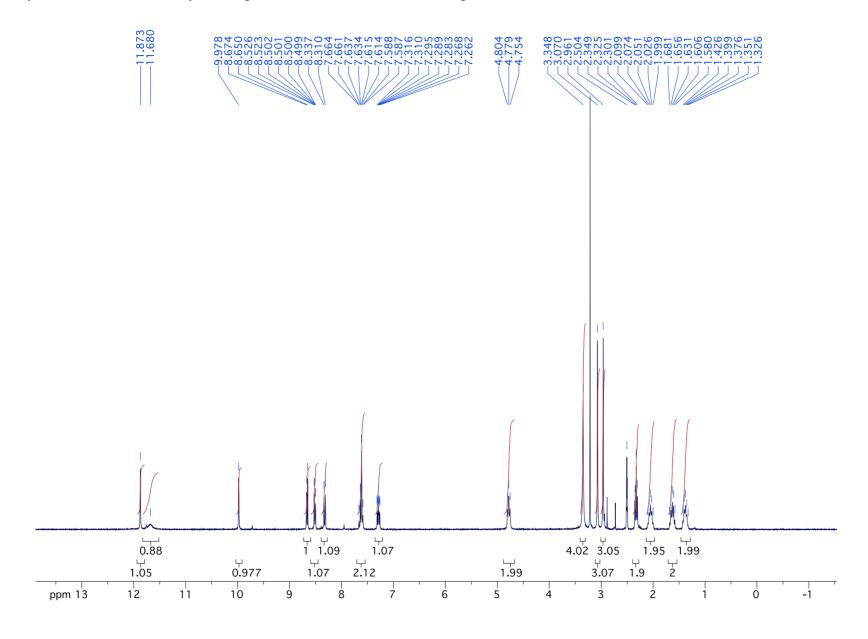

2-(4'-Cyanobutyl)isoellipticinium chloride **18** (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

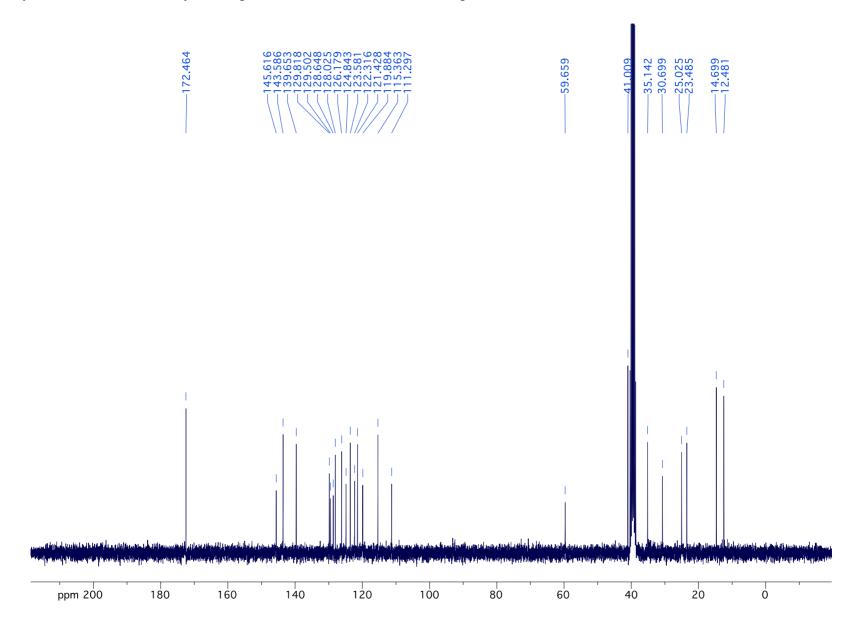

2-(5'-Cyanopentyl)isoellipticinium bromide **19** (water suppression in DMSO-*d*₆ at 300 MHz)

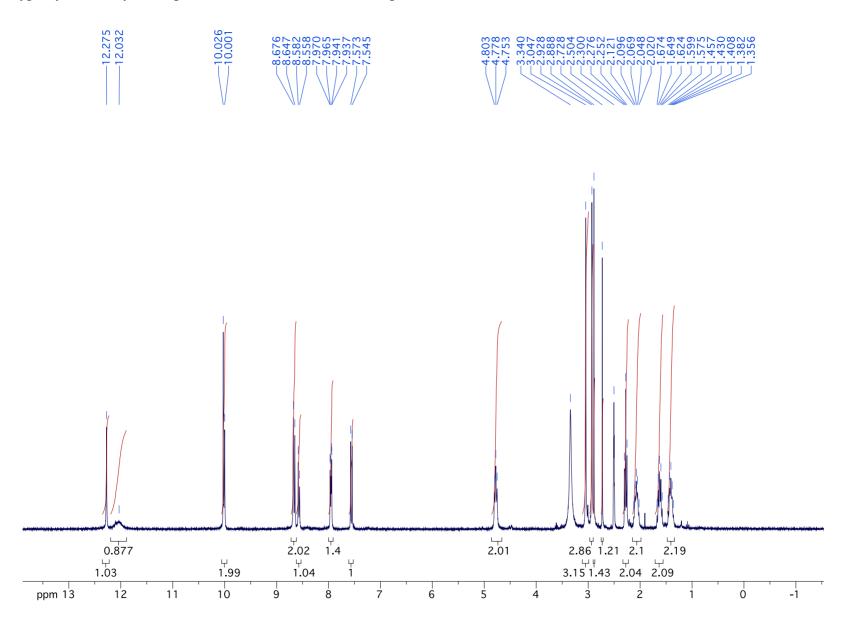

2-(5'-Cyanopentyl)isoellipticinium bromide **19** (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

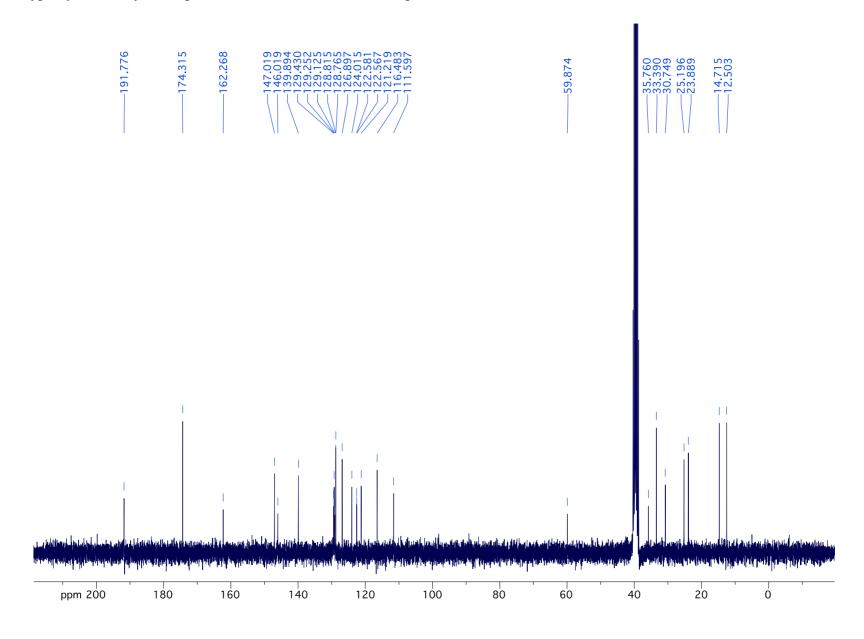

2-(5'-Carboxypentyl)isoellipticinium bromide **20** (1H NMR spectrum in DMSO-*d*₆ at 300 MHz)

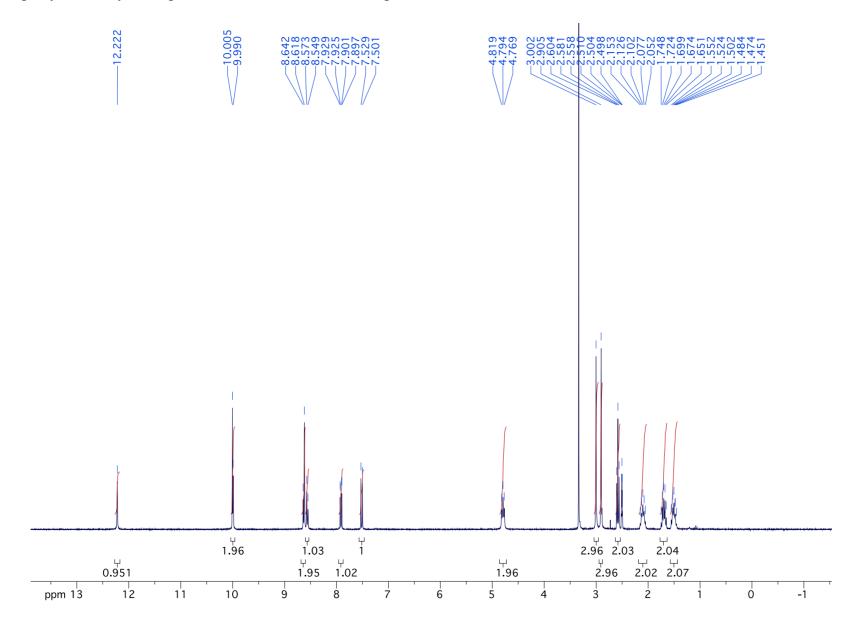

2-(5'-Carboxypentyl)isoellipticinium bromide **20** (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

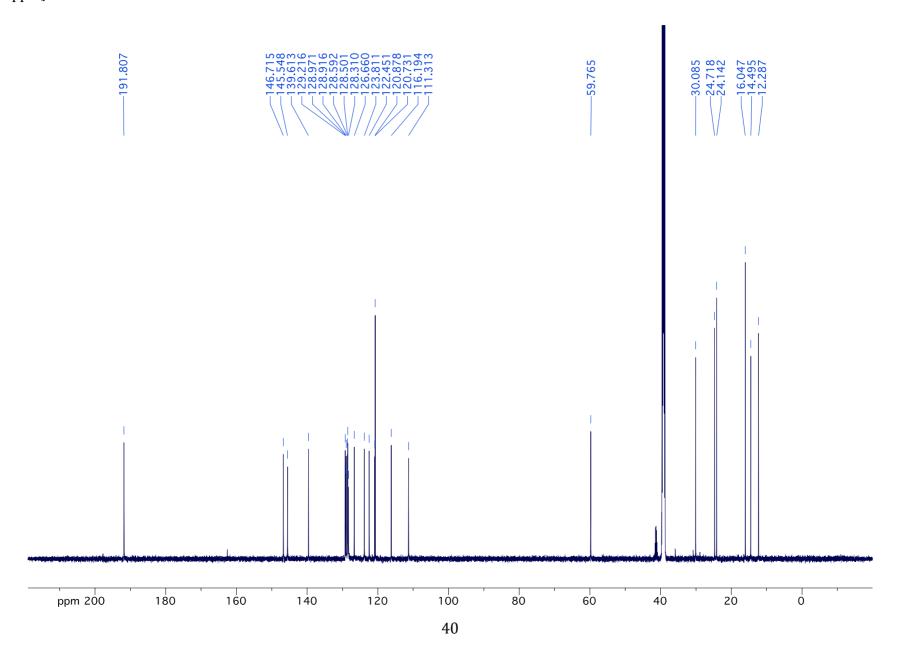

2-(6'-Carboxamidohexyl)isoellipticinium bromide **21** (¹H NMR spectrum in DMSO-*d*₆ at 300 MHz)

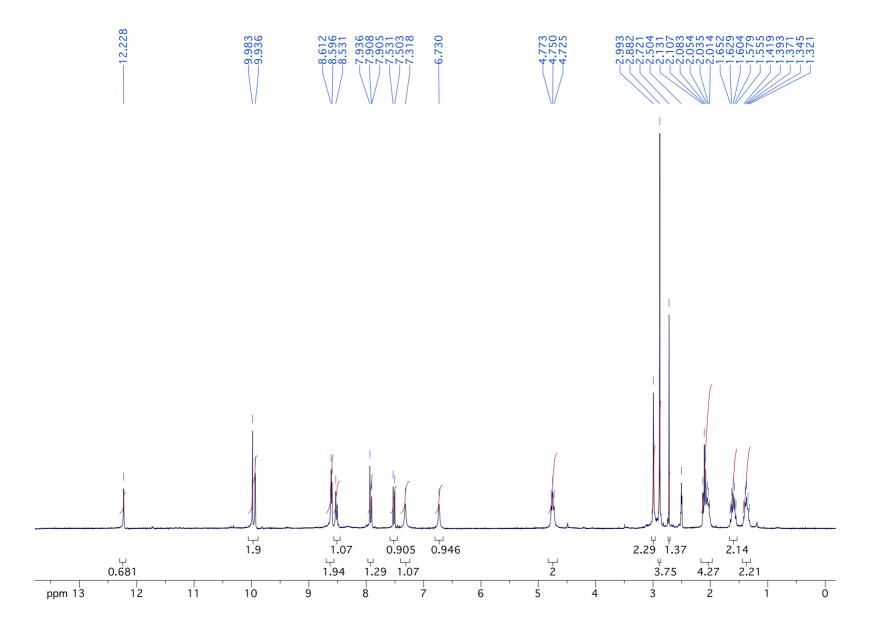

2-(6'-Carboxamidohexyl)isoellipticinium bromide **21** (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

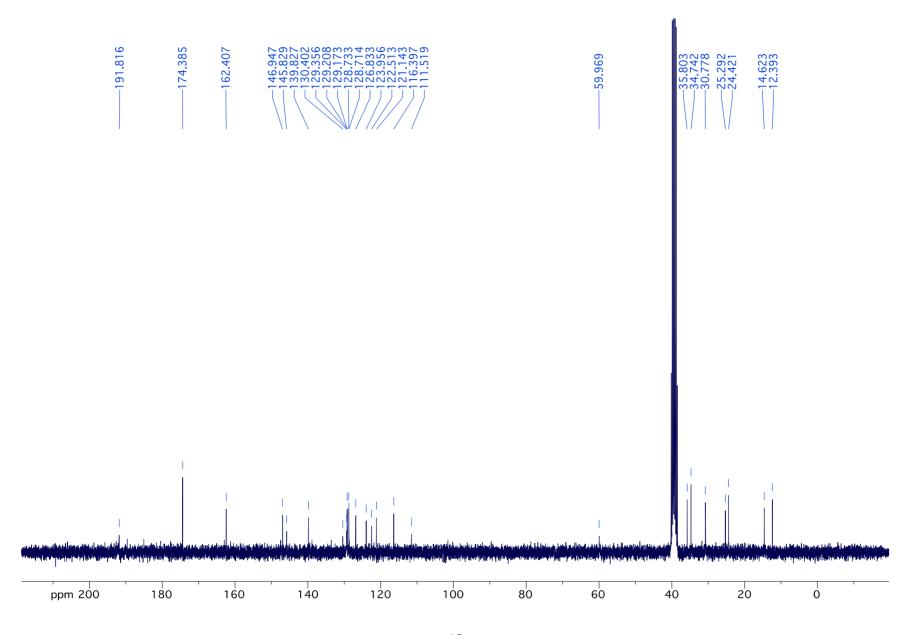

 N^2 -(6'-Methylsulfonamido-6'-oxohexyl)isoellipticinium bromide **22** (¹H NMR spectrum in DMSO- d_6 at 300 MHz)

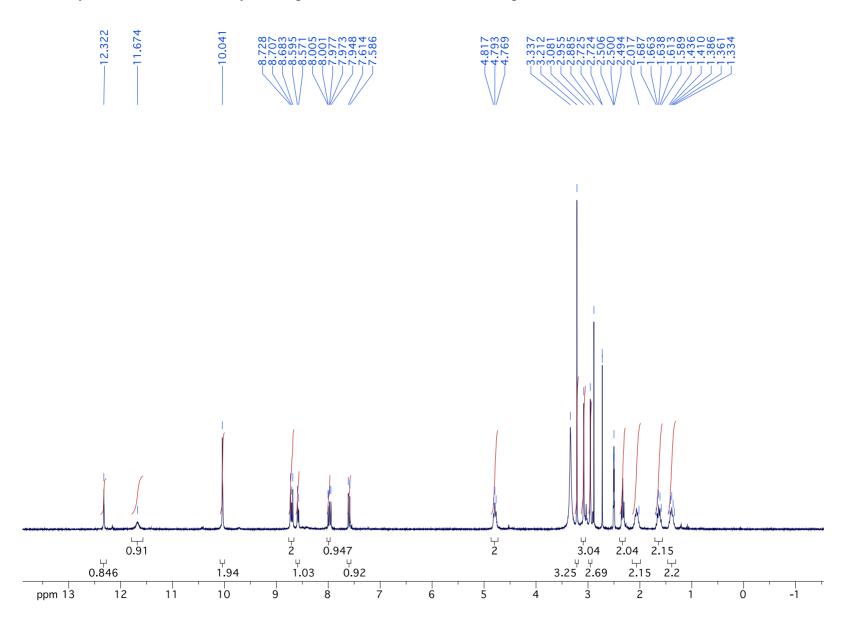

 N^2 -(6'-Methylsulfonamido-6'-oxohexyl)isoellipticinium bromide **22** (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

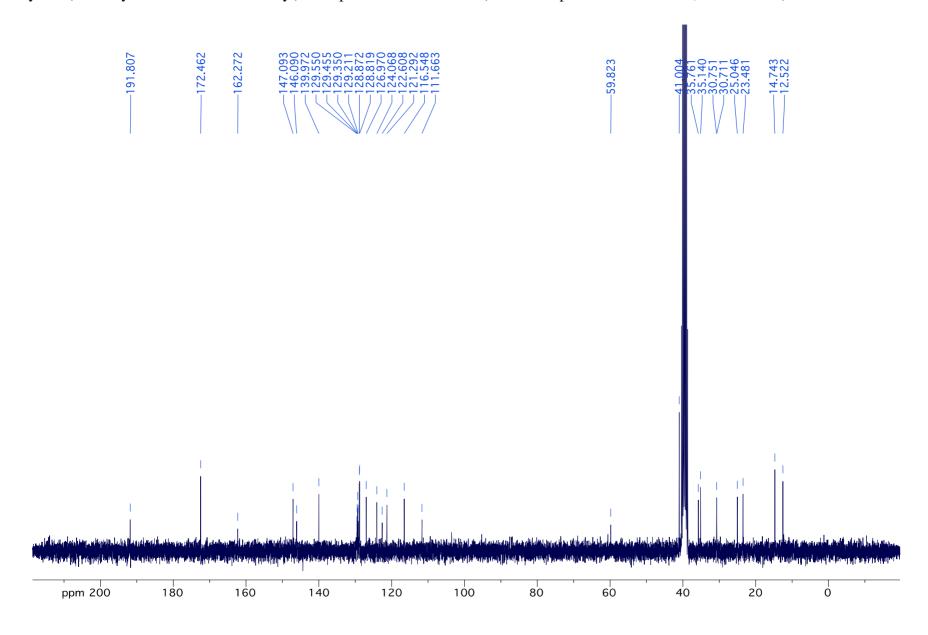

2-(5'-Carboxypentyl)-7-formylisoellipticinium bromide **23** (¹H NMR spectrum in DMSO-*d*₆ at 300 MHz, with trace DMF)

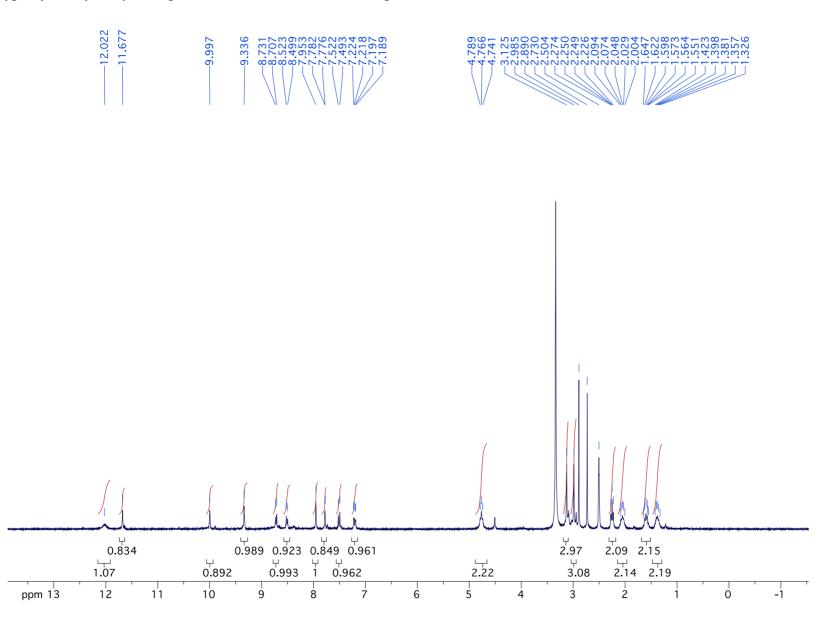

2-(5'-Carboxypentyl)-7-formylisoellipticinium bromide 23 (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz, with trace DMF)

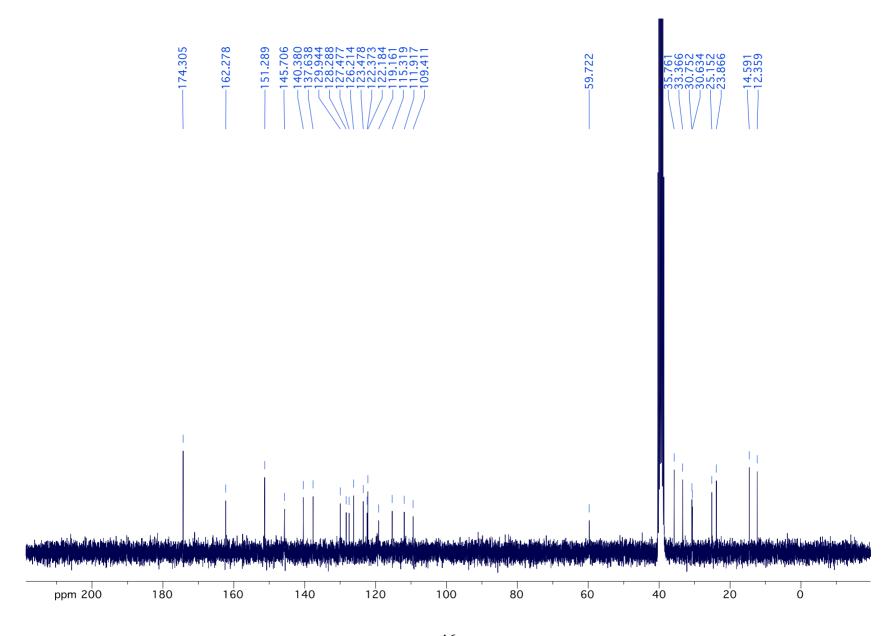

2-(5'-Cyanopentyl)-7-formylisoellipticinium bromide **24** (1 H NMR spectrum in DMSO- d_{6} at 300 MHz)

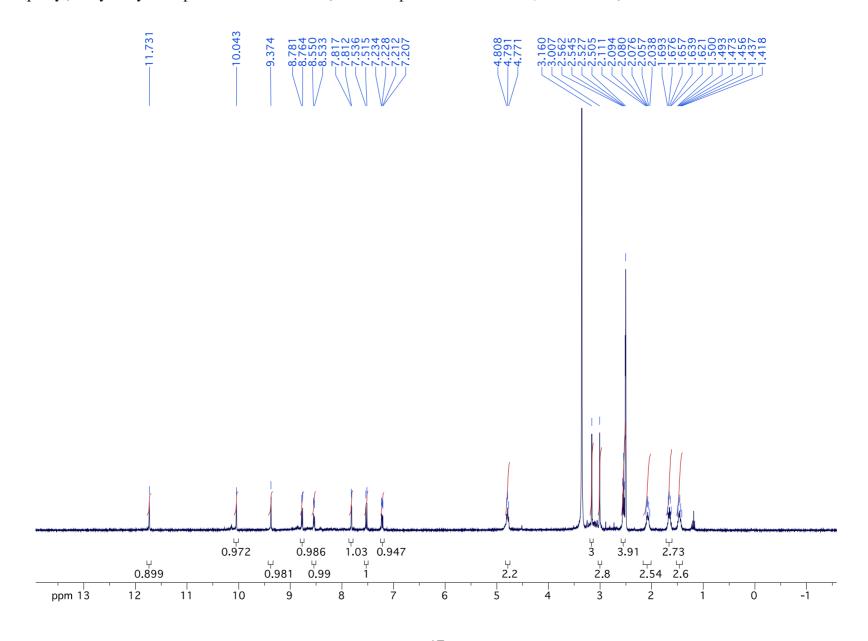

2-(5'-Cyanopentyl)-7-formylisoellipticinium bromide **24** [13 C NMR spectrum in DMSO- d_6 at 150.9 MHz, with trace dimethyl sulfoxide (undeuterated) at 40.5 ppm]

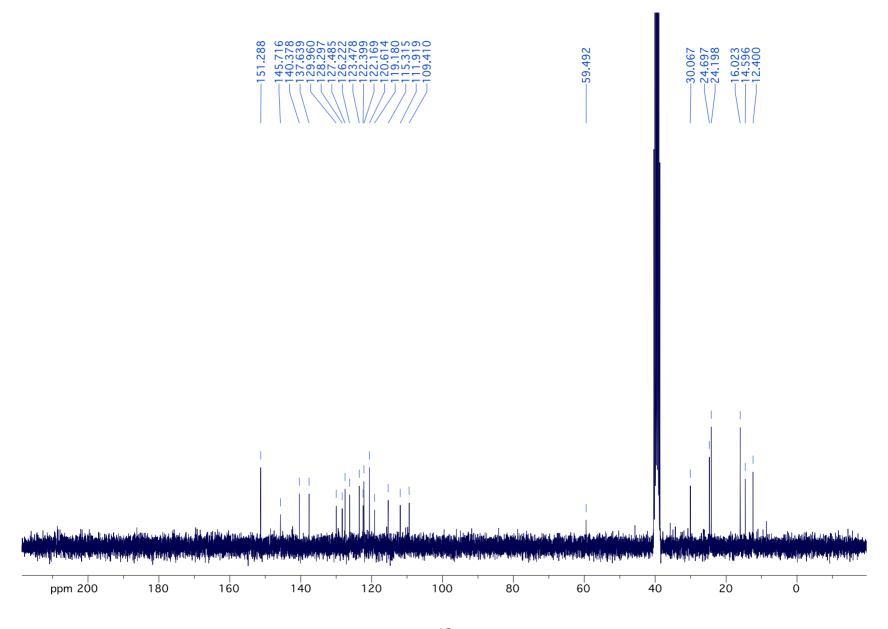

2-(6'-Carboxamidohexyl)-7-formylisoellipticinium bromide **25** (¹H NMR spectrum in DMSO-*d*₆ at 300 MHz)

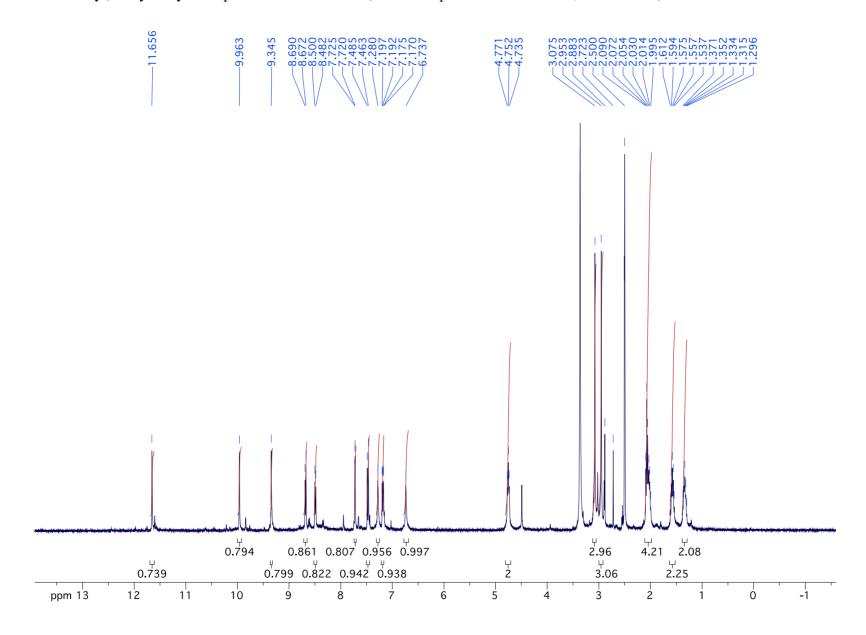

2-(6'-Carboxamidohexyl)-7-formylisoellipticinium bromide **25** (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

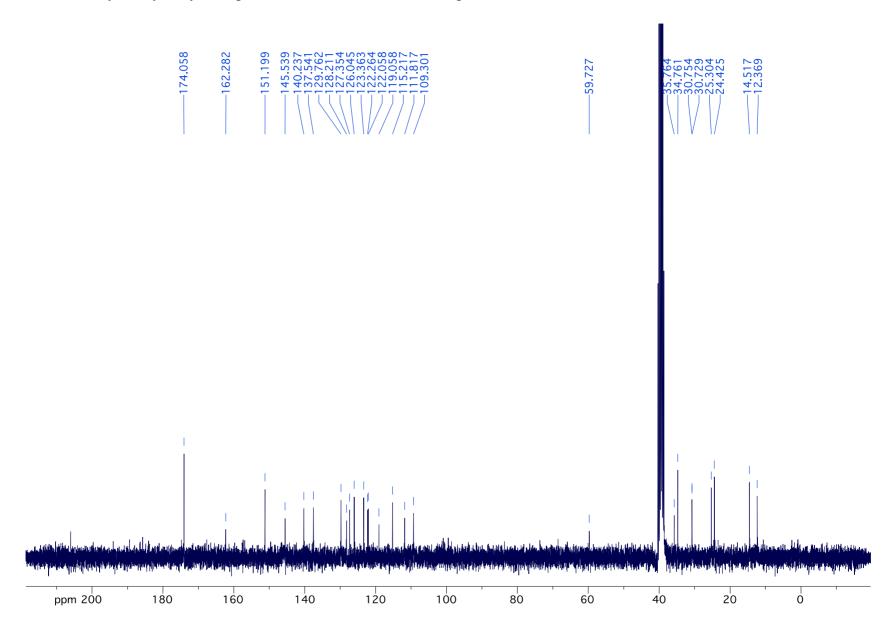

7-Formyl- N^2 -(6'-methylsulfonamido-6'-oxohexyl)isoellipticinium bromide **26** (1 H NMR spectrum in DMSO- d_6 at 300 MHz)

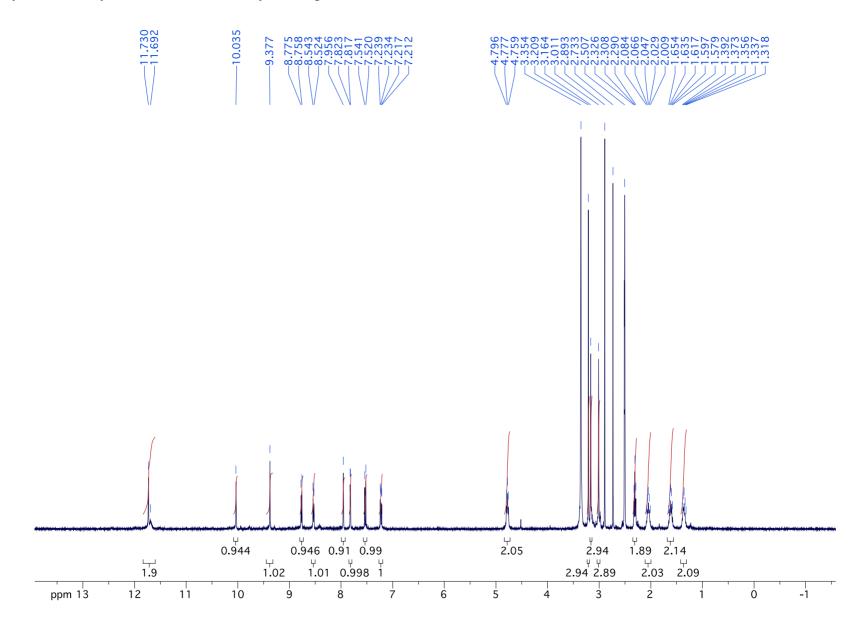

7-Formyl- N^2 -(6'-methylsulfonamido-6'-oxohexyl)isoellipticinium bromide **26** (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

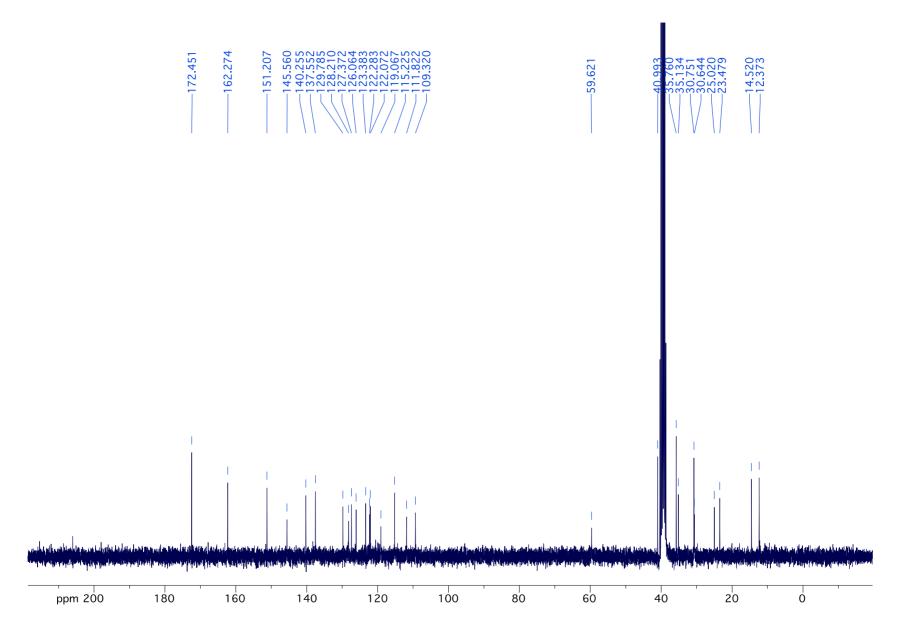

2-(5'-Carboxypentyl)-7-hydroxyisoellipticinium bromide **27** (¹H NMR spectrum in DMSO-*d*₆ at 300 MHz)


2-(5'-Carboxypentyl)-7-hydroxyisoellipticinium bromide **27** (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

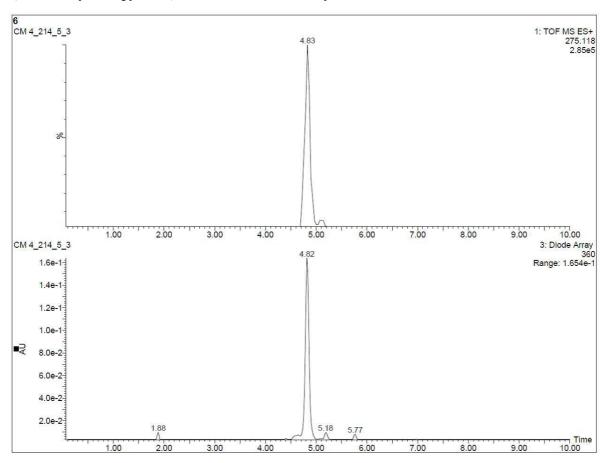

2-(5'-Cyanopentyl)-7-hydroxyisoellipticinium bromide **28** (¹H NMR spectrum in DMSO-*d*₆ at 400 MHz)


2-(5'-Cyanopentyl)-7-hydroxyisoellipticinium bromide **28** (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

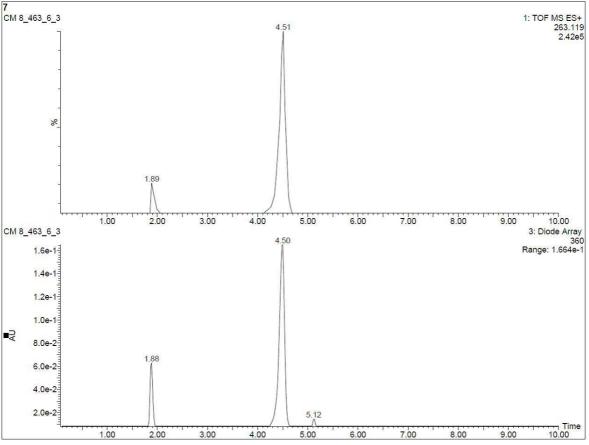

2-(6'-Carboxamidohexyl)-7-hydroxyisoellipticinium bromide **29** (¹H NMR spectrum in DMSO-*d*₆ at 400 MHz)


2-(6'-Carboxamidohexyl)-7-hydroxyisoellipticinium bromide **29** (13 C NMR spectrum in DMSO- d_6 at 75.5 MHz)

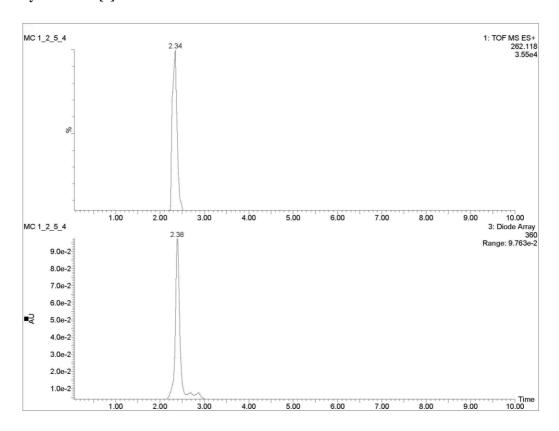
7-Hydroxy- N^2 -(6'-methylsulfonamido-6-oxohexyl)isoellipticinium bromide **30** (¹H NMR in DMSO- d_6 at 400 MHz)

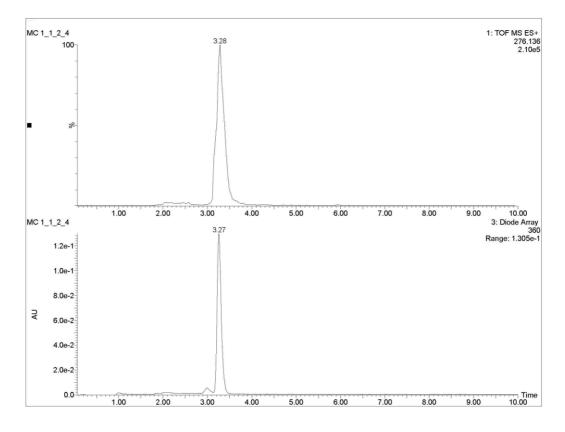


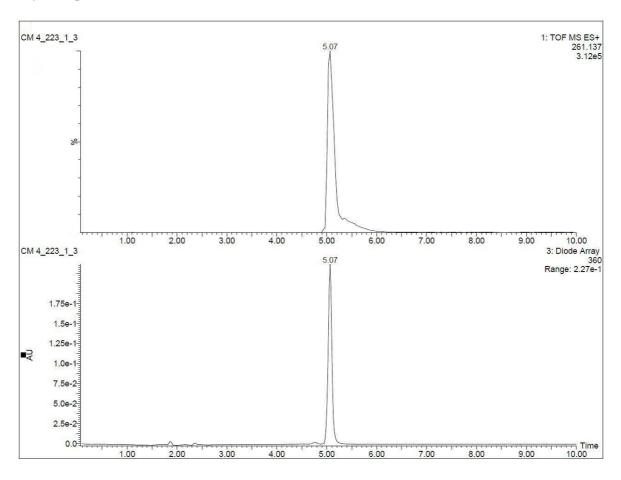
7-Hydroxy- N^2 -(6'-methylsulfonamido-6-oxohexyl)isoellipticinium bromide **30** (13 C NMR in DMSO- d_6 at 75.5 MHz)

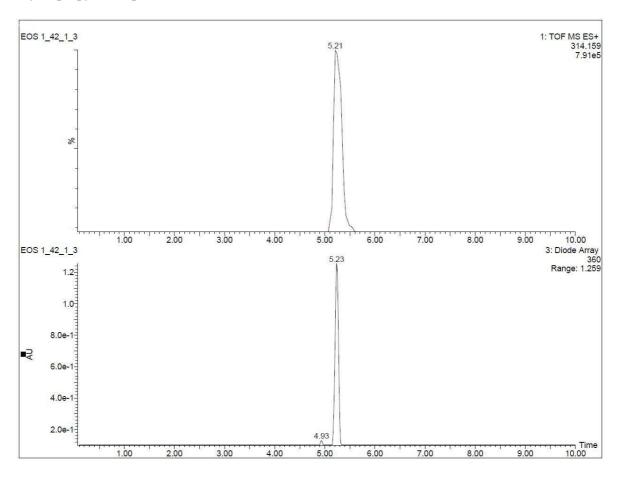


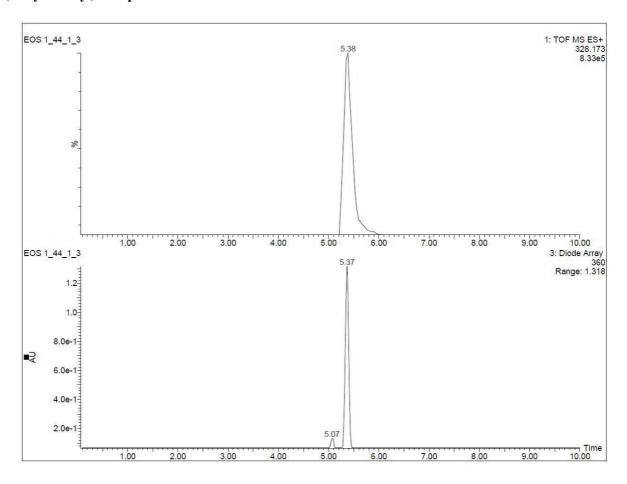
3. HPLC

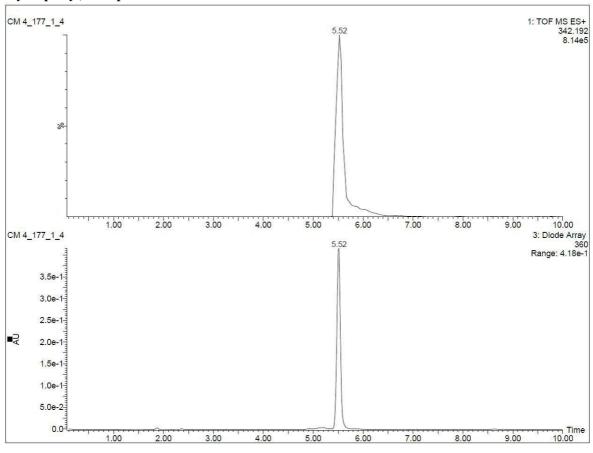

5,11-Dimethyl-10*H*-pyrido[3,4-*b*]carbazole-7-carbaldehyde 6

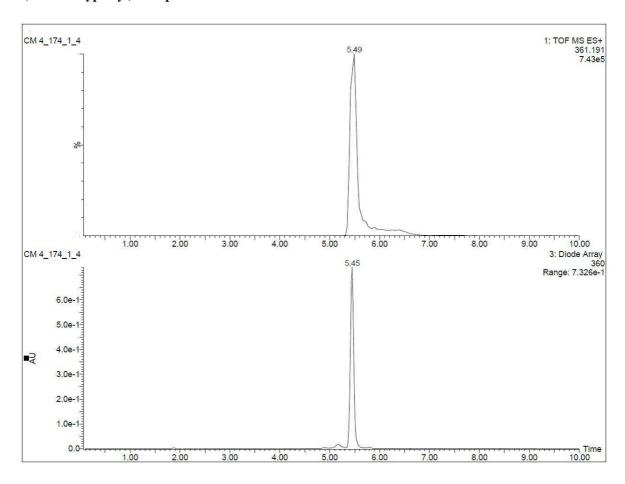

5,11-Dimethyl-10*H*-pyrido[3,4-*b*]carbazol-7-ol 7

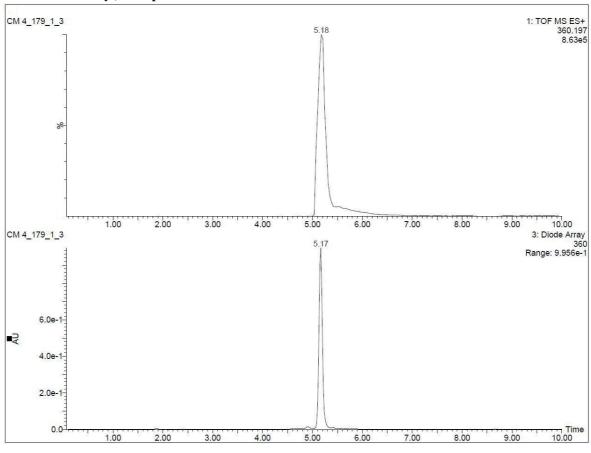

6,11-Dimethyl-5*H*-benzo[*b*]carbazol-2-ol 9

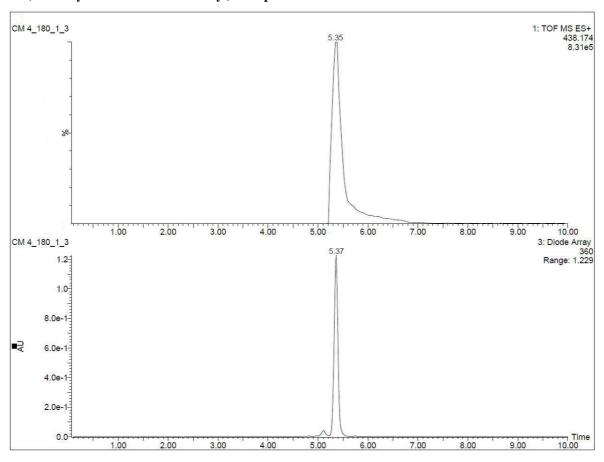

2-Methoxy-6,11-dimethyl-5*H*-benzo[*b*]carbazole 14

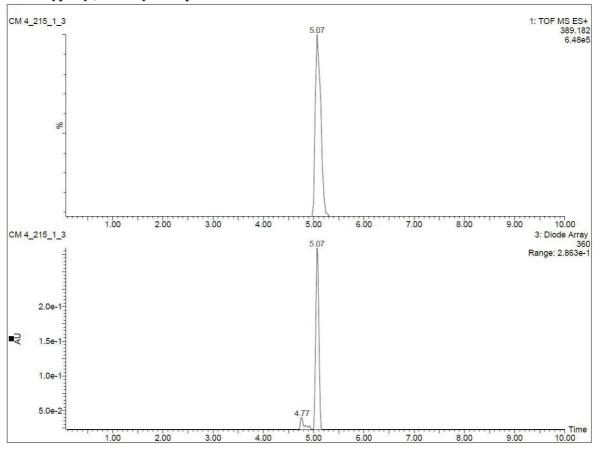

2-Methylisoellipticinium iodide 16

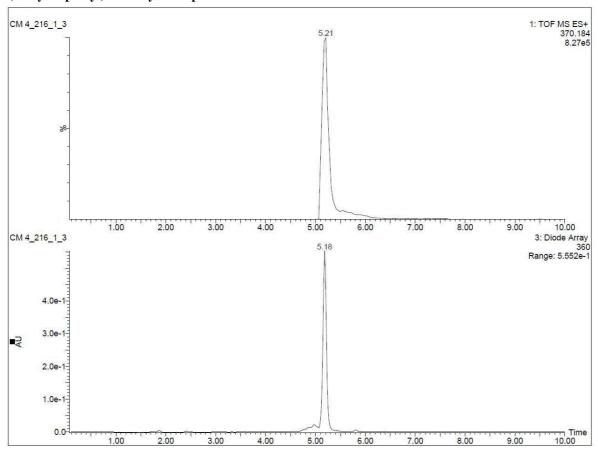

2-(3'-Cyanopropyl)isoellipticinium chloride 17

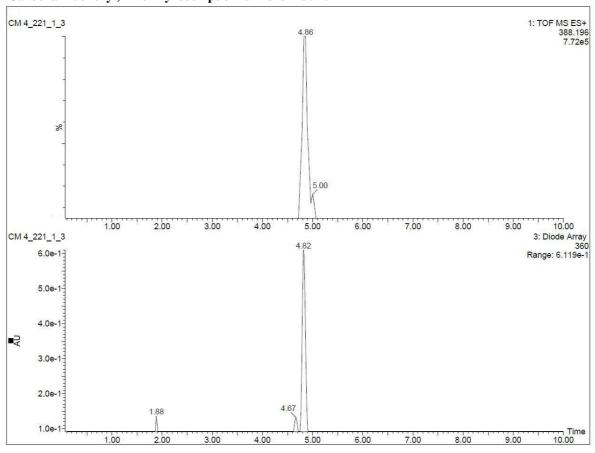

2-(4'-Cyanobutyl)isoellipticinium chloride 18

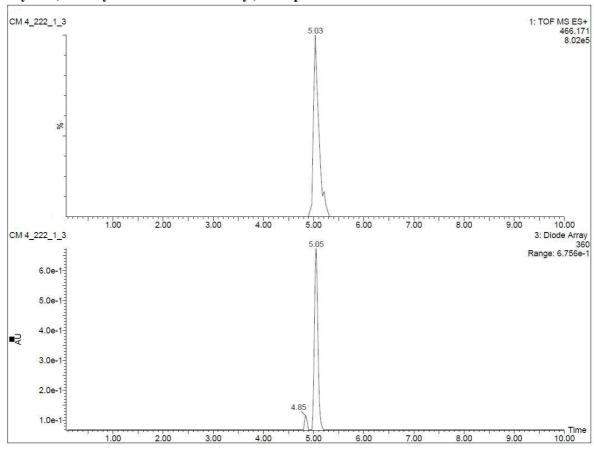

2-(5'-Cyanopentyl)isoellipticinium bromide 19

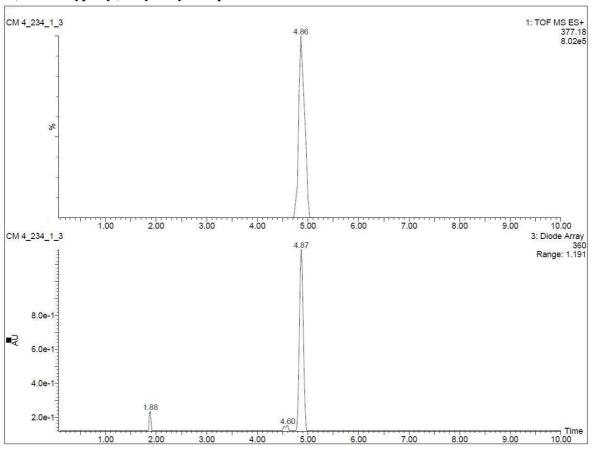

2-(5'-Carboxypentyl)isoellipticinium bromide 20

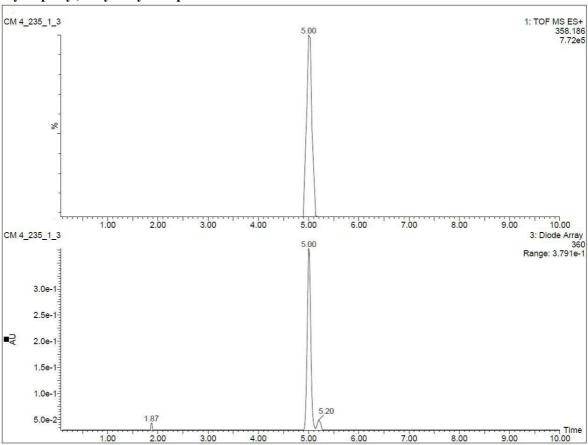

2-(6'-Carboxamidohexyl)isoellipticinium bromide 21

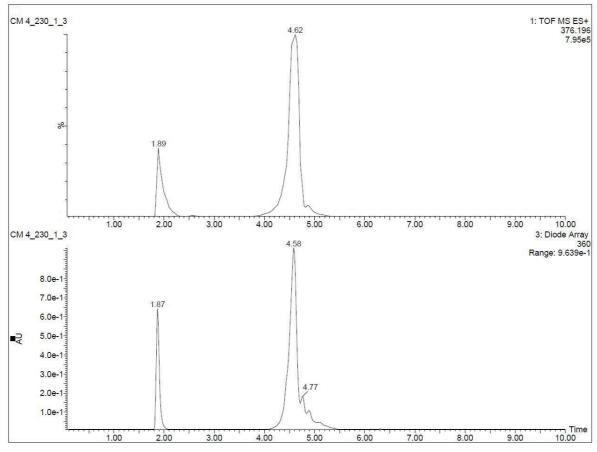

 N^2 -(6'-Methylsulfonamido-6'-oxohexyl) isoellipticinium bromide 22

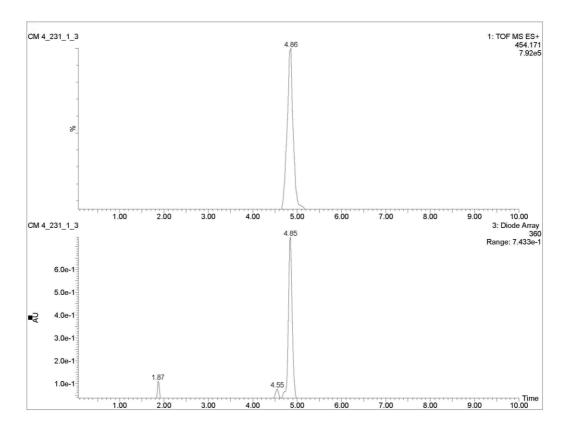

2-(5'-Carboxypentyl)-7-formylisoellipticinium bromide 23


2-(5'-Cyanopentyl)-7-formylisoellipticinium bromide 24


2-(6'-Carboxamidohexyl)-7-formylisoellipticinium bromide 25

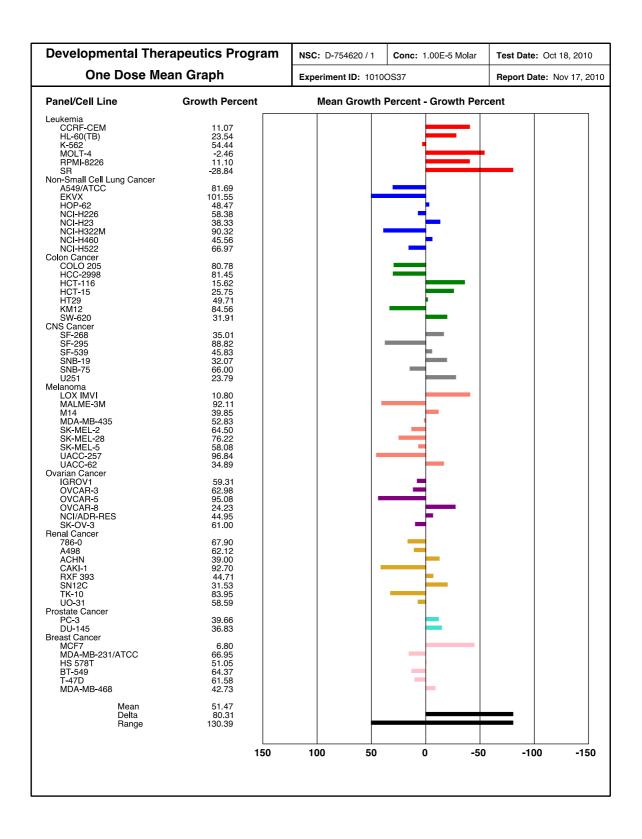

7-Formyl- N^2 -(6'-methylsulfonamido-6'-oxohexyl) isoellipticinium bromide 26


2-(5'-Carboxypentyl)-7-hydroxyisoellipticinium bromide 27

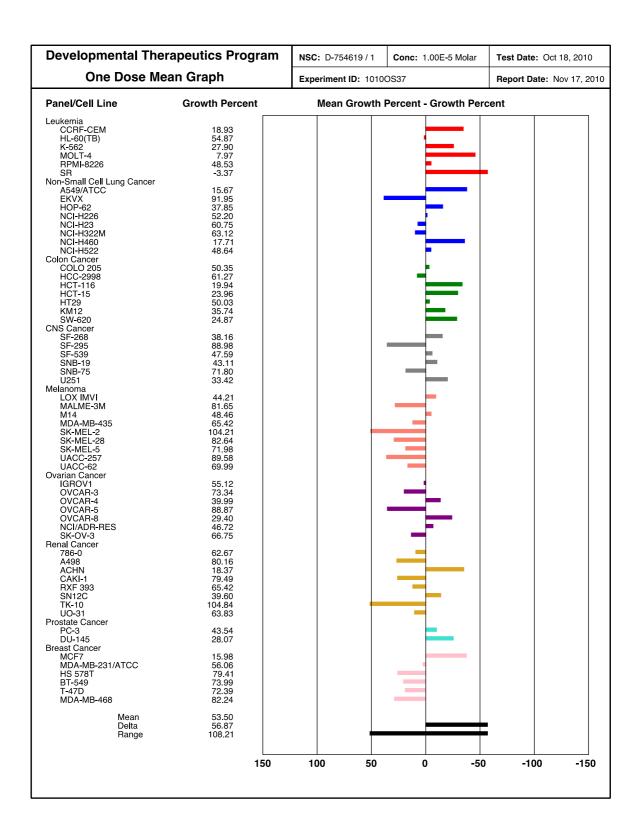

2-(5'-Cyanopentyl)-7-hydroxyisoellipticinium bromide 28

2-(6'-Carboxamidohexyl)-7-hydroxyisoellipticinium bromide 29

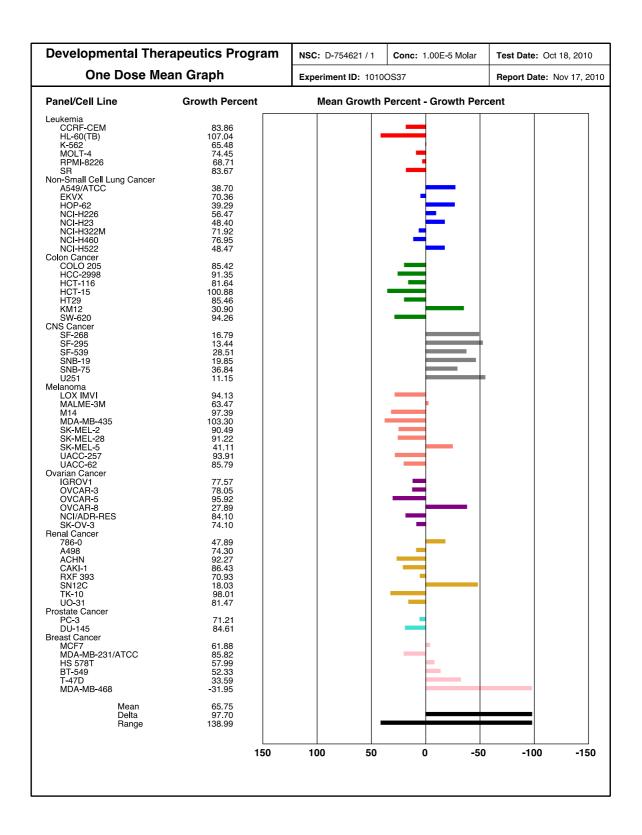
7-Hydroxy-N²-(6'-methylsulfonamido-6-oxohexyl) isoellipticinium bromide 30

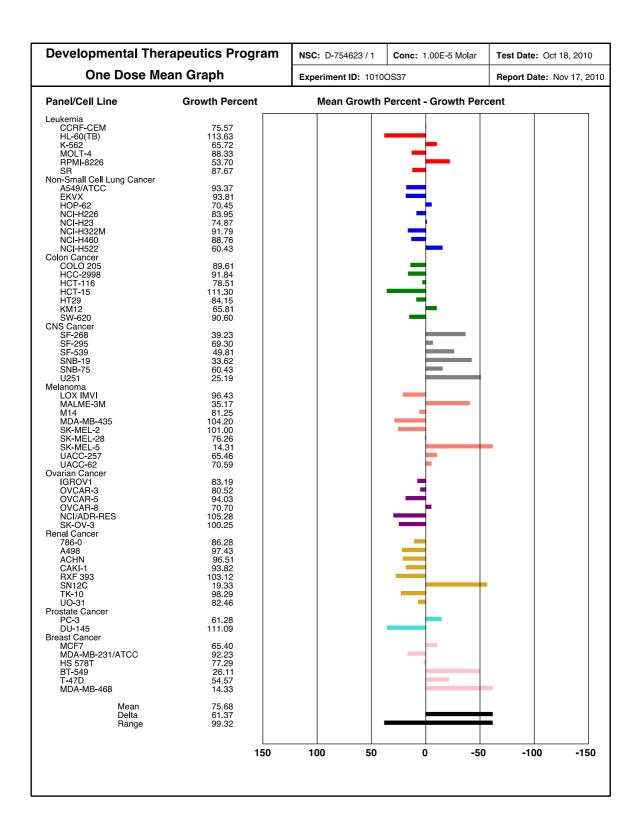

LCMS conditions: Samples were analysed for purity via LCMS using a Waters Alliance 2695 HPLC, Waters 996 photodiode array detector and a Waters LCT Premier TOF mass spectrometer. The samples were injected onto a Waters Atlantis T3 column (150 x 4.6mm, 5um particle size) using acetonitrile (+0.1% HCOOH) and water (+0.1% HCOOH) as mobile phase over a 10 minute run time at a flow rate of 1 mL/min. The HPLC conditions are as follows: Method A (gradient method) 0mins 10% ACN, 7mins 90% ACN, 9mins 90% ACN, 10mins 10% ACN; Method B (isocratic method) 100% ACN. Method B was used for samples 9 and 14 with method A used for the others.

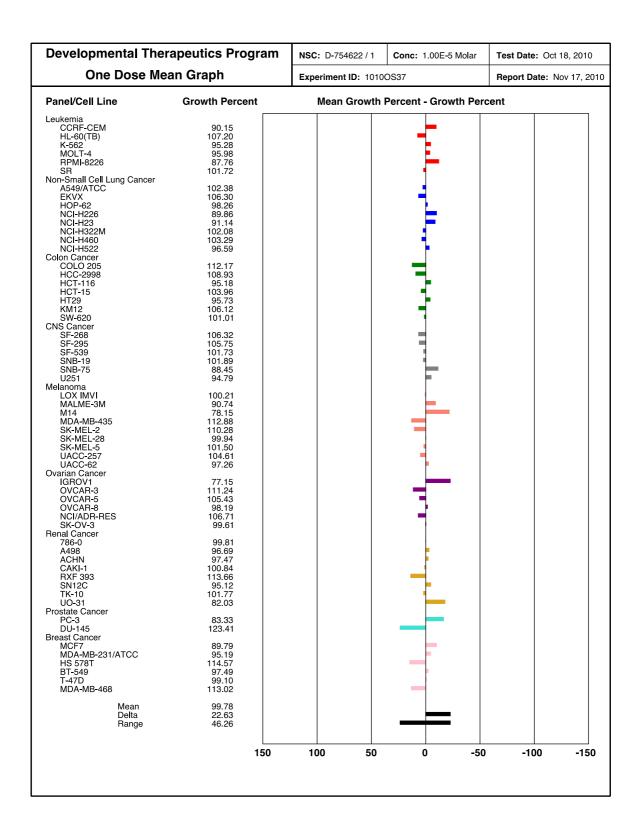
4. NCI 60-cell line screen: single-dose data

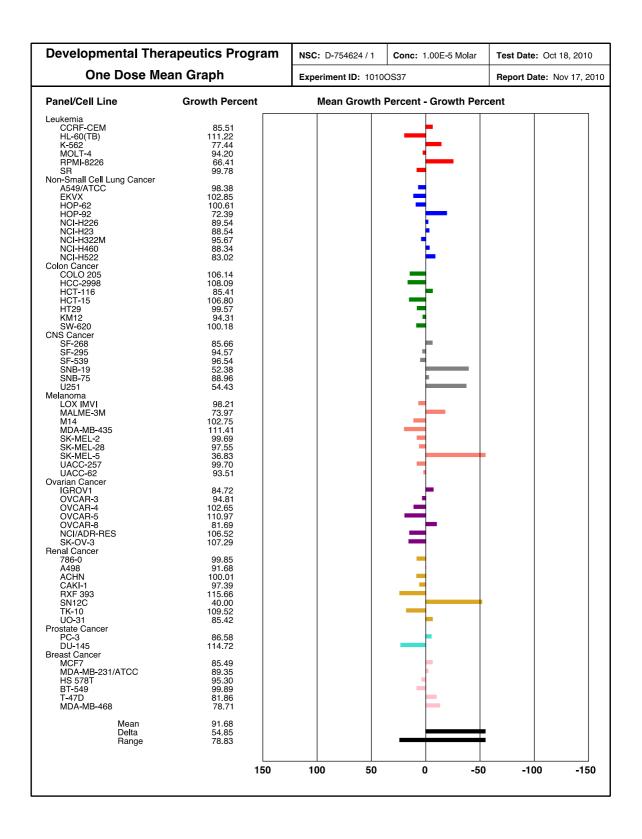

Compound number	\mathbb{R}^1	R^2	X	NSC No. [†]
5	Н	-	-	
6	СНО	-	-	754620
7	OH	-	-	754619
8	OMe	-	-	
16	Н	Me	I	754621
17	Н	C_3H_6CN	Cl	
18	Н	C_4H_8CN	Cl	
19	Н	$C_5H_{10}CN$	Br	754623
20	Н	$C_5H_{10}COOH$	Br	754622
21	Н	$C_5H_{10}CONH_2$	Br	754624
22	Н	C ₅ H ₁₀ CONHSO ₂ CH ₃	Br	
23	СНО	$C_5H_{10}COOH$	Br	762135
24	СНО	$C_5H_{10}CN$	Br	762136
25	СНО	$C_5H_{10}CONH_2$	Br	762137
26	СНО	$C_5H_{10}CONHSO_2CH_3$	Br	762138
27	ОН	$C_5H_{10}COOH$	Br	
28	OH	$C_5H_{10}CN$	Br	762117
29	OH	$C_5H_{10}CONH_2$	Br	762118
30	OH	$C_5H_{10}CONHSO_2CH_3$	Br	762119

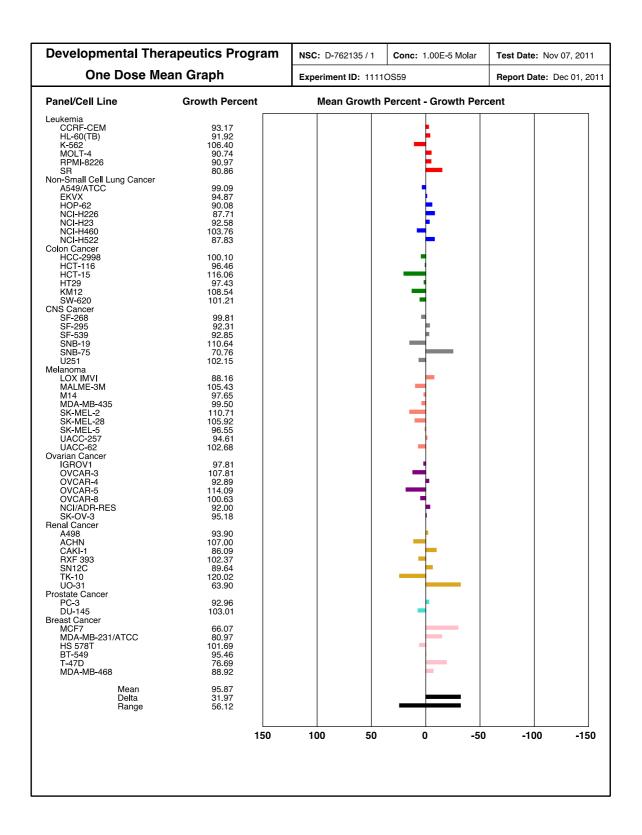
[†]NCI number in green = single dose and five dose data available, NCI no. in blue = single dose only.

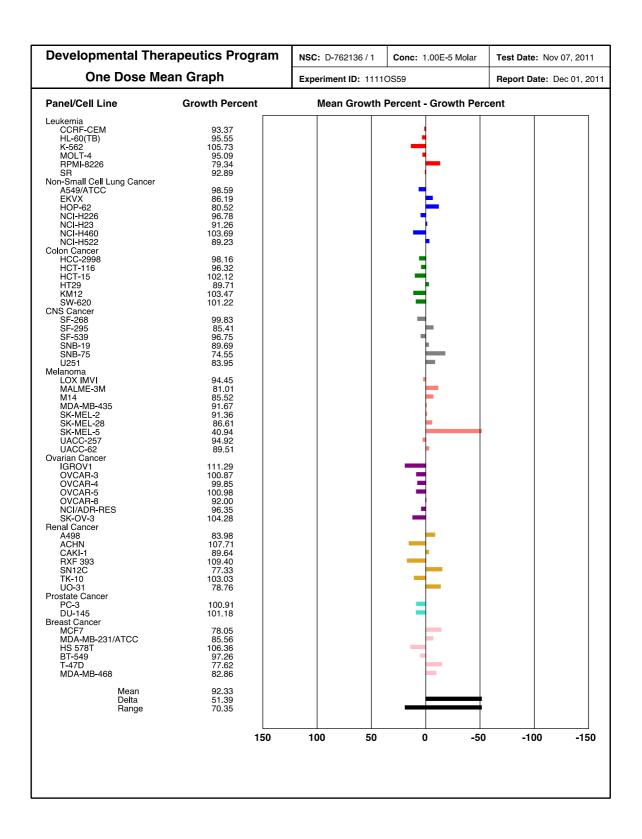

5,11-Dimethyl-10*H*-pyrido[3,4-*b*]carbazole-7-carbaldehyde **6**

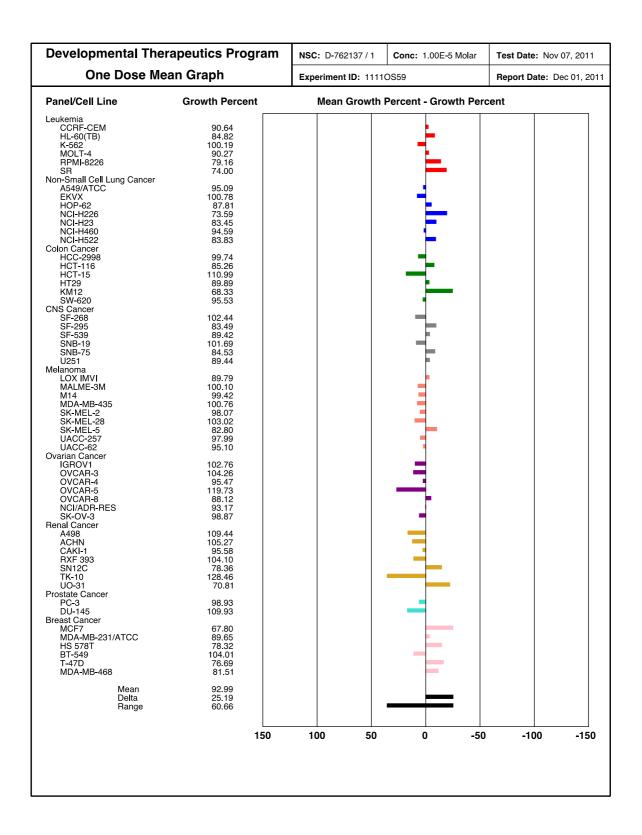

5,11-Dimethyl-10*H*-pyrido[3,4-*b*]carbazol-7-ol **7**

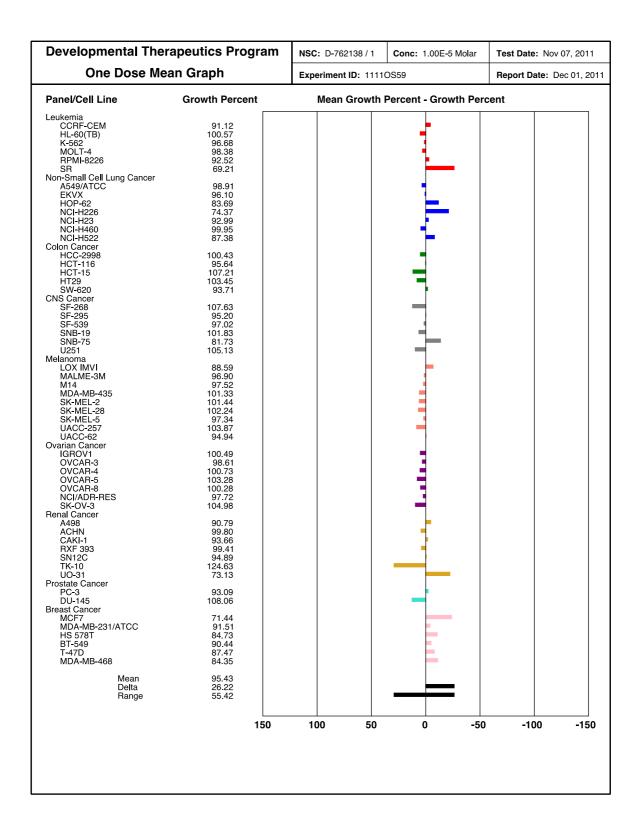

2-Methylisoellpticinium iodide 16

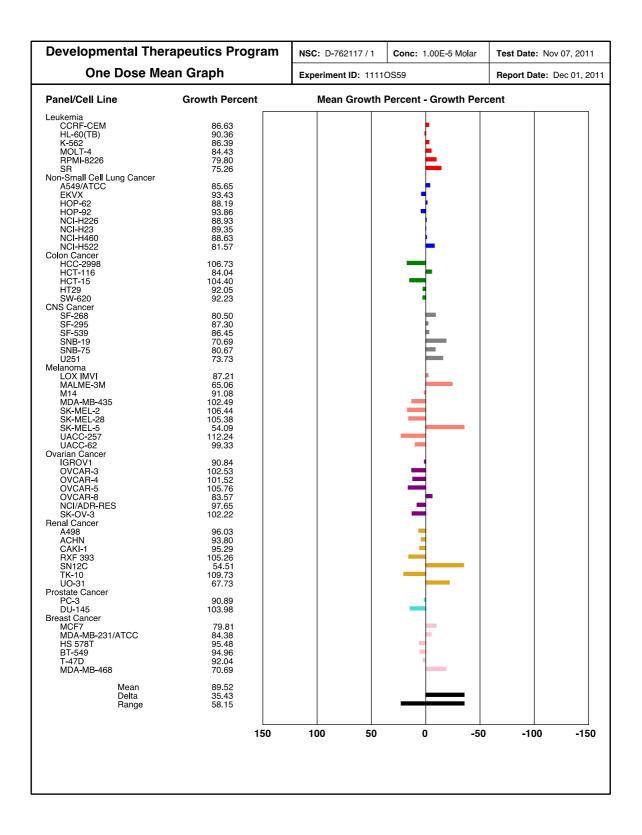

2-(5'-Cyanopentyl)isoellipticinium bromide 19

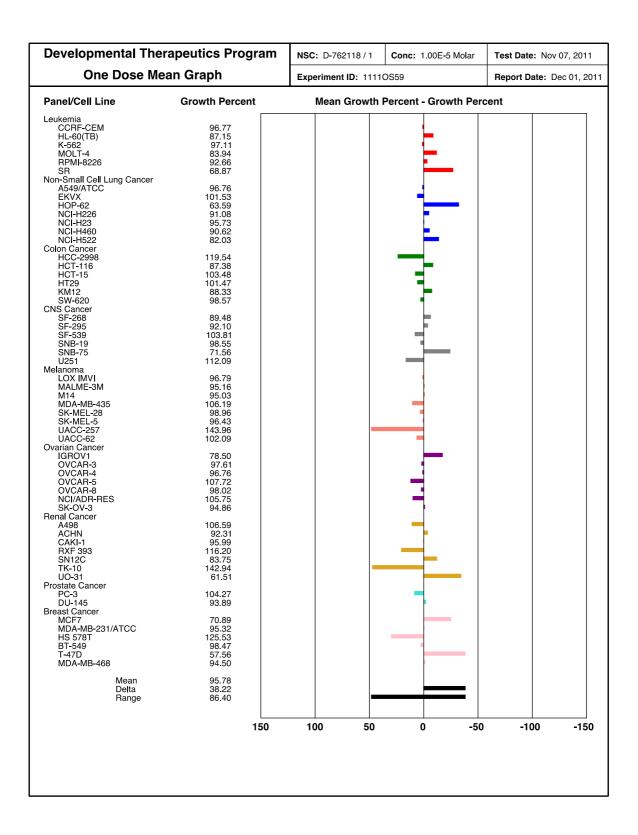

2-(5'-Carboxypentyl)isoellipticinium bromide **20**

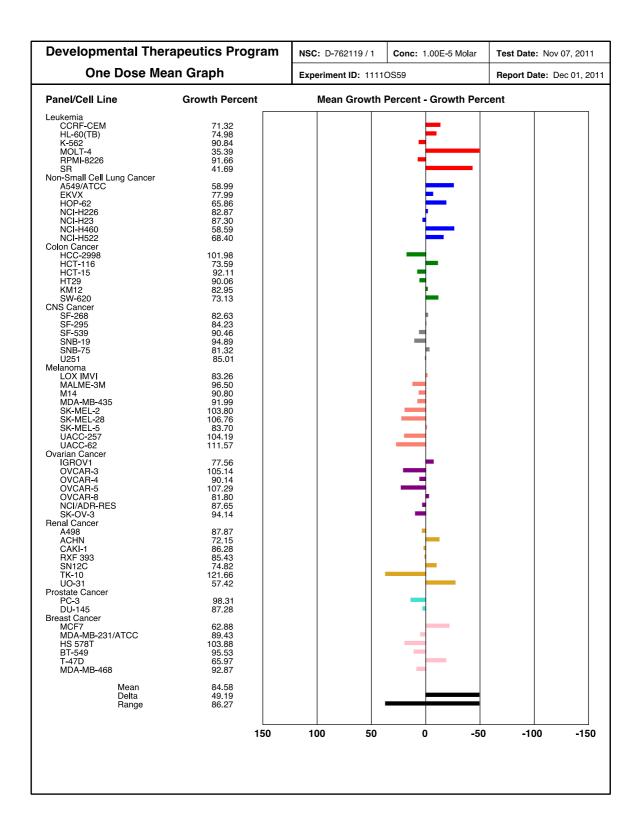

2-(6'-Carboxamidohexyl)isoellipticinium bromide 21


2-(5'-Carboxypentyl)-7-formylisoellipticinium bromide 23

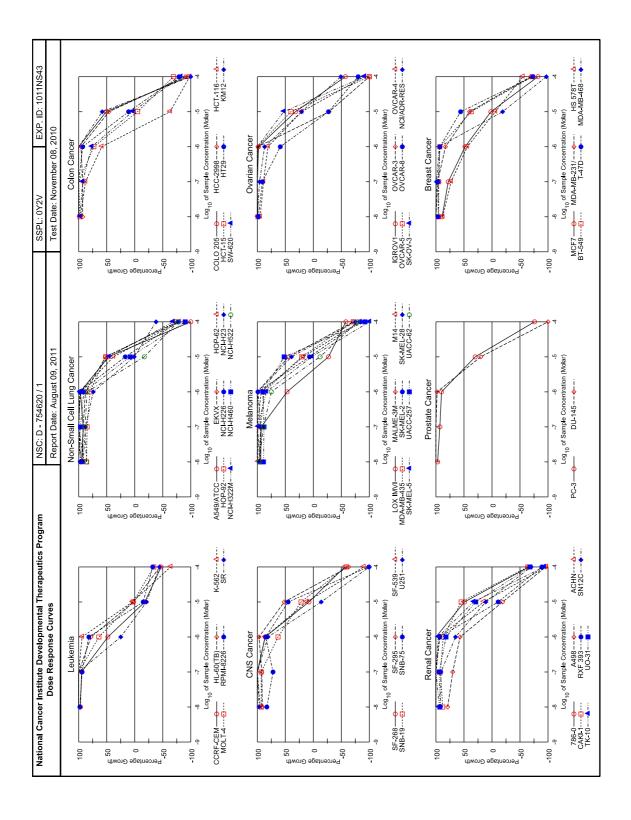

2-(5'-Cyanopentyl)-7-formylisoellipticinium bromide 24


2-(6'-Carboxamidohexyl)-7-formylisoellipticinium bromide 25


7-Formyl- N^2 -(6'-methylsulfonamido-6'-oxohexyl)isoellipticinium bromide **26**

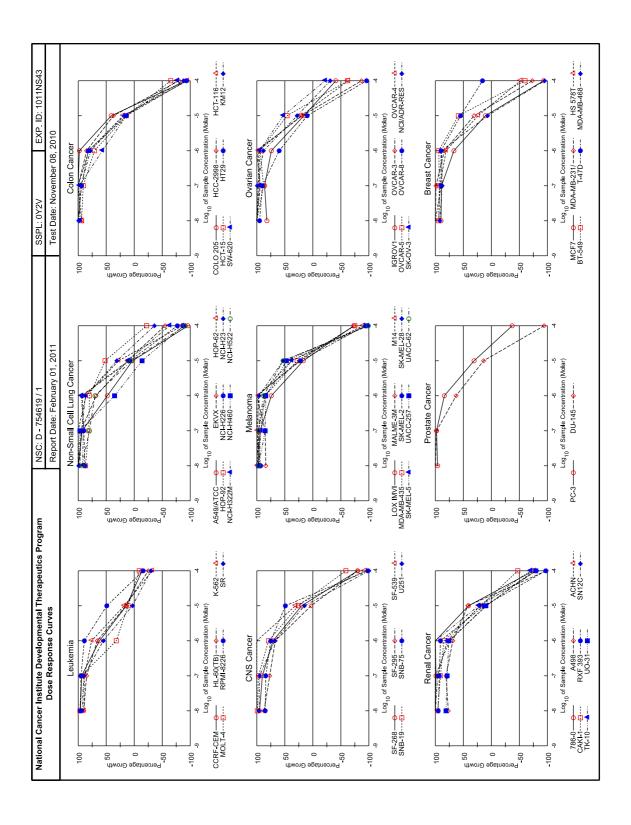

2-(5'-Cyanopentyl)-7-hydroxyisoellipticinium bromide 28

2-(6'-Carboxamidohexyl)-7-hydroxyisoellipticinium bromide 29



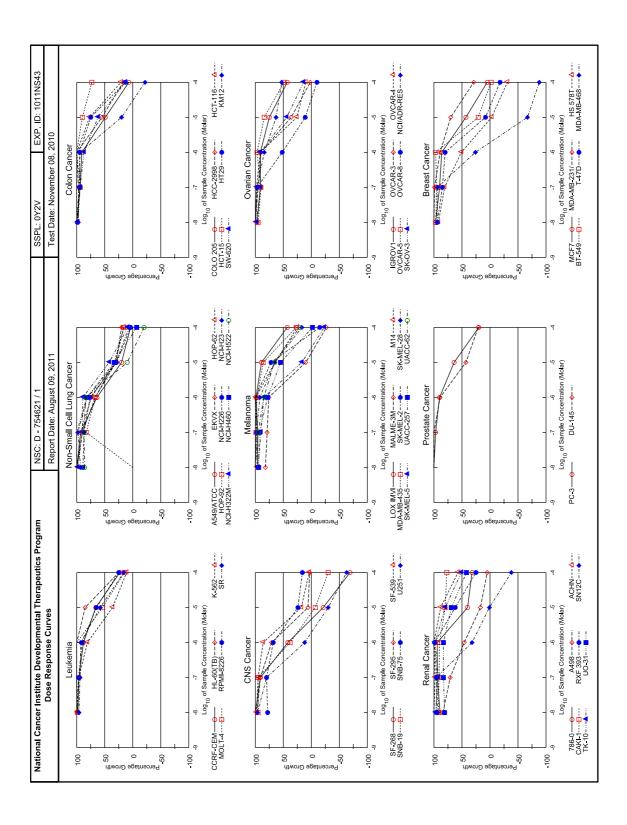
7-Hydroxy- N^2 -(6'-methylsulfonamido-6-oxohexyl)isoellipticinium bromide $\bf 30$

5. NCI 60- cell line screen: five-dose data


5,11-Dimethyl-10*H*-pyrido[3,4-*b*]carbazole-7-carbaldehyde **6**

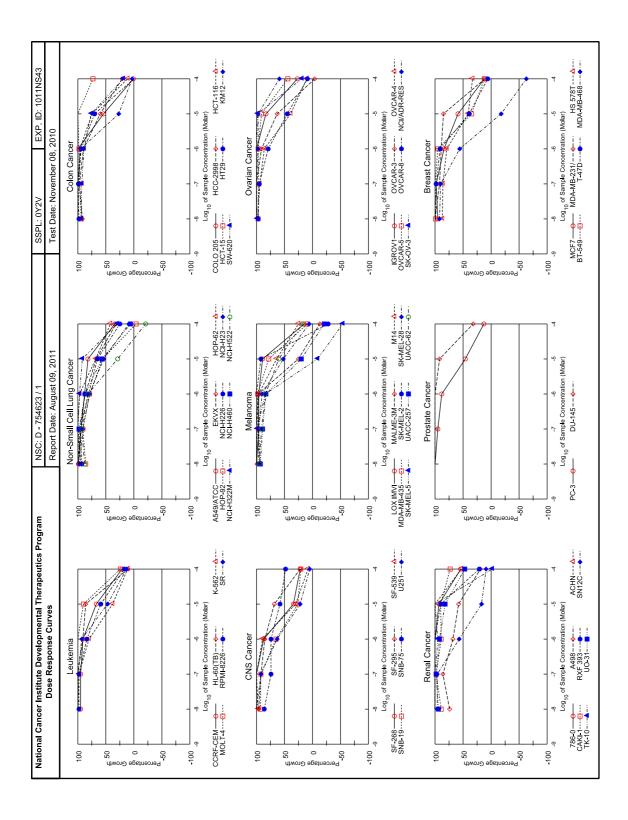
5,11-Dimethyl-10H-pyrido[3,4-b]carbazole-7-carbaldehyde **6**

NSC : D - 7546	620 / 1				Exp	erimer	nt ID : 10	11NS43				Test 1	ype : 08	Units : M	Iolar	
Report Date : /	August	09, 201	1		Test Date : November 08, 2010								:	MC:		
COMI : CM-3-2		Stain Reagent : SRB Dual-Pass Related								: 0Y2V						
							g10 Cond	entration				•		•		
Panel/Cell Line Leukemia	Time Zero	Ctrl	-8.0	Mear -7.0	Optical -6.0	Densiti -5.0	es -4.0	-8.0	-7.0	ercent G -6.0	-5.0	-4.0	G I 50	TGI	LC50	
eukerna CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.564 0.664 0.166 0.546 1.152 0.382	2.353 2.187 1.173 1.978 2.873 1.759	2.305 2.403 1.190 2.047 2.842 1.772	2.267 2.475 1.173 2.131 2.779 1.830	1.417 1.846 1.116 1.460 2.556 0.725	0.465 0.696 0.203 0.591 0.980 0.302	0.298 0.367 0.060 0.359 0.782 0.215	97 114 102 105 98 101	95 119 100 111 94 105	48 78 94 64 82 25	-18 2 4 3 -15 -21	-47 -45 -64 -34 -32 -44	8.94E-7 2.32E-6 3.08E-6 1.69E-6 2.12E-6 4.87E-7	5.38E-6 1.11E-5 1.13E-5 1.21E-5 7.00E-6 3.49E-6	> 1.00E-4 > 1.00E-4 6.23E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4	
Non-Small Cell Lung A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H223 NCI-H322M NCI-H360 NCI-H460 NCI-H522		1.376 1.604 1.553 1.420 1.352 1.907 1.386 2.051 1.287			1.349 1.487 1.517 1.336 1.339 1.572 1.370 1.888 1.181	0.816 1.151 0.891 1.215 0.782 0.650 0.998 0.395 0.477		95 93 91 86 97 92 96 103 86	92 92 105 85 101 88 107 97	97 88 97 80 98 74 98 91 85	47 52 38 52 17 1 46 8	-100 -77 -79 -75 -78 -38 -68 -90 -77	8.76E-6 1.04E-5 6.17E-6 1.04E-5 3.91E-6 2.12E-6 8.35E-6 3.10E-6 2.20E-6	2.09E-5 2.54E-5 2.10E-5 2.57E-5 1.51E-5 1.07E-5 2.53E-5 1.20E-5 6.76E-6	4.57E-5 6.20E-5 5.61E-5 6.36E-5 5.06E-5 > 1.00E-4 6.95E-5 3.90E-5 3.51E-5	
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.282 0.511 0.244 0.247 0.205 0.440 0.242	1.111 2.128 1.817 1.416 1.040 1.802 1.191	1.138 2.021 1.767 1.390 1.048 1.885 1.169	1.196 2.022 1.629 1.421 1.071 1.890 1.122	1.152 2.058 1.175 1.102 0.983 1.919 0.969	0.703 1.256 0.092 0.234 0.295 1.225 0.284	0.016 0.053 0.005 0.076 0.044 -0.033 0.044	103 93 97 98 101 106 98	110 93 88 100 104 106 93	105 96 59 73 93 109 77	51 46 -63 -5 11 58 4	-95 -90 -98 -69 -79 -100 -82	1.01E-5 8.33E-6 1.19E-6 1.97E-6 3.34E-6 1.12E-5 2.34E-6	2.24E-5 2.19E-5 3.06E-6 8.52E-6 1.32E-5 2.32E-5 1.12E-5	4.94E-5 5.10E-5 7.89E-6 4.99E-5 4.77E-5 4.82E-5 4.26E-5	
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.360 0.799 0.654 0.484 0.760 0.337	1.066 2.626 1.593 1.472 1.428 1.189	1.114 2.461 1.544 1.401 1.317 1.166	1.081 2.487 1.657 1.403 1.238 1.192	0.967 2.568 1.457 1.109 1.328 1.028	0.417 1.758 0.766 0.703 1.061 0.290	0.159 0.294 0.065 0.199 0.006 -0.013	107 91 95 93 83 97	102 92 107 93 72 100	86 97 86 63 85 81	8 52 12 22 45 -14	-56 -63 -90 -59 -99	2.90E-6 1.05E-5 3.04E-6 2.10E-6 7.51E-6 2.12E-6	1.34E-5 2.84E-5 1.31E-5 1.88E-5 2.05E-5 7.13E-6	8.10E-5 7.69E-5 4.05E-5 7.77E-5 4.56E-5 2.62E-5	
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.268 0.759 0.350 0.538 0.749 0.415 0.562 0.792 0.729	2.081 1.388 1.272 2.009 1.343 1.106 1.927 1.573 2.303	1.980 1.354 1.266 1.932 1.351 1.085 1.950 1.489 2.256	1.945 1.423 1.280 1.914 1.386 1.065 1.919 1.479 2.133	1.121 1.437 1.210 1.831 1.335 1.099 1.710 1.495 1.916	0.195 1.038 0.517 0.852 0.788 0.688 0.601 1.202 0.641	0.114 0.223 0.059 0.156 0.122 0.103 -0.046 0.065 0.154	94 95 99 95 101 97 102 89 97	93 105 101 94 107 94 99 88 89	47 108 93 88 99 99 84 90 75	-27 44 18 21 7 39 3 52 -12	-58 -71 -83 -71 -84 -75 -100 -92 -79	8.61E-7 8.12E-6 3.76E-6 3.71E-6 3.38E-6 6.65E-6 2.63E-6 1.04E-5 1.95E-6	4.30E-6 2.43E-5 1.51E-5 1.70E-5 1.18E-5 2.21E-5 1.07E-5 2.31E-5 7.27E-6	5.60E-5 6.61E-5 4.70E-5 5.92E-5 4.23E-5 6.02E-5 3.26E-5 5.13E-5 3.69E-5	
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.429 0.335 0.592 0.463 0.399 0.525 0.714	1.626 0.763 1.418 0.951 1.383 1.857 1.710	1.720 0.757 1.380 0.947 1.365 1.869 1.695	1.645 0.766 1.324 0.967 1.291 1.800 1.735	1.599 0.760 1.261 0.983 0.982 1.688 1.781	0.816 0.242 0.762 0.656 0.293 0.799 1.240		108 99 95 99 98 101 99	102 101 89 103 91 96 103	98 99 81 107 59 87 107	32 -28 21 40 -27 21 53	-57 -100 -91 -100 -80 -49 -91	5.36E-6 2.44E-6 3.25E-6 6.99E-6 1.28E-6 3.62E-6 1.05E-5	2.30E-5 6.03E-6 1.53E-5 1.92E-5 4.90E-6 1.97E-5 2.33E-5	8.33E-5 2.02E-5 4.29E-5 4.38E-5 2.73E-5 > 1.00E-4 5.21E-5	
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.700 1.273 0.366 0.584 0.656 0.524 0.588 0.580	2.354 1.890 1.345 2.216 1.036 1.760 1.078 1.559	1.764 1.388 2.027 1.050 1.658 1.050	2.428 1.705 1.374 2.084 1.053 1.652 1.102 1.502	1.628 1.287 2.003 1.010 1.333 1.061	1.507 1.035 0.512 1.479 0.582 0.663 0.748 0.867	0.235 0.049 0.013 0.213 0.073 0.160 0.040 0.185	104 79 104 88 104 92 94 93	105 70 103 92 105 91 105 94	100 57 94 87 93 65 96 82	49 -19 15 55 -11 11 33 29	-66 -96 -97 -64 -89 -70 -93 -68	9.47E-6 1.25E-6 3.60E-6 1.10E-5 2.59E-6 1.93E-6 5.35E-6 4.04E-6	2.65E-5 5.68E-6 1.36E-5 2.90E-5 7.79E-6 1.38E-5 1.82E-5 2.00E-5	7.20E-5 2.53E-5 3.82E-5 7.67E-5 3.15E-5 5.73E-5 4.53E-6 6.51E-5	
Prostate Cancer PC-3 DU-145	0.561 0.276	2.009 0.963	1.970 1.027	1.907	1.858	1.001 0.416	0.135	97 109	93 110	90 98	30 20	-76 -100	4.66E-6 4.17E-6	1.93E-5 1.48E-5	5.69E-5 3.84E-5	
Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	0.402	1.696 1.013 1.462 1.356 1.775 0.811	1.553 1.050 1.401 1.318 1.735 0.816		1.027 0.917 1.185 1.303 1.702		0.071 0.144 0.433 0.177 0.193 0.014	89 107 88 95 96 102	78 97 73 95 96 99	48 83 44 93 93 94	2 40 -6 37 56 -19	-82 -69 -55 -72 -73	8.79E-7 5.83E-6 6.20E-7 5.84E-6 1.12E-5 2.44E-6	1.06E-5 2.33E-5 7.59E-6 2.18E-5 2.73E-5 6.77E-6	4.13E-5 6.72E-5 7.82E-5 6.27E-5 6.66E-5 2.49E-5	


5,11-Dimethyl-10*H*-pyrido[3,4-*b*]carbazol-7-ol **7**

5,11-Dimethyl-10*H*-pyrido[3,4-*b*]carbazol-7-ol **7**

NSC : D - 7546	619 / 1				Exp	erimer	nt ID : 10	11NS43			Test T	ype : 08	Units : Molar		
Report Date : I	Februar	y 01, 20)11		Tes	t Date	: Noven	ber 08,	2010		QNS :	:	MC :		
COMI : CM-7-3	387-1 (98577)			Stai	n Rea	gent : SI	RB Dual-	Pass F	Related	SSPL	: 0Y2V			
	Time			Mear	Optical		•	centration	P	ercent G			•		
Panel/Cell Line Leukemia	Zero	Ctrl	-8.0	-7.0	-6.0	-5.0	-4.0	- 8.0	-7.0	-6.0	-5.0	-4.0	G I 50	TGI	LC50
CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.564 0.664 0.166 0.546 1.152 0.382	2.455 2.487 1.187 2.041 2.976 1.808	2.385 2.301 1.087 2.000 2.896 1.714	2.347 2.214 1.074 1.956 2.888 1.667	1.737 1.874 0.945 1.027 2.771 1.170	0.820 0.947 0.350 0.714 2.037 0.423	0.483 0.495 0.113 0.498 0.966 0.266	96 90 90 97 96 93	94 85 89 94 95 90	62 66 76 32 89 55	14 15 18 11 49 3	-14 -25 -32 -9 -16 -30	1.77E-6 2.10E-6 2.83E-6 5.17E-7 9.19E-6 1.26E-6	3.04E-5 2.39E-5 2.28E-5 3.62E-5 5.63E-5 1.22E-5	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Non-Small Cell Lung A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H322M NCI-H460 NCI-H522	Cancer 0.317 0.655 0.492 0.992 0.666 0.636 0.668 0.257 0.577	1.370 1.496 1.439 1.436 1.373 1.877 1.399 1.970 1.238	1.407 1.474 1.453 1.379 1.286 1.868 1.339 2.010 1.189	1.299 1.451 1.493 1.350 1.305 1.798 1.334 1.920 1.103	0.819 1.228 1.303 1.349 1.323 1.714 1.357 0.852 1.041	0.349 0.755 0.758 1.225 0.723 1.020 0.750 0.220 0.610	0.013 0.292 0.070 0.771 0.154 0.407 0.245 0.032 0.053	104 97 101 87 88 99 92 102 93	93 95 106 81 90 94 91 97	48 68 86 80 93 87 94 35 70	3 12 28 52 8 31 11 -14	-96 -55 -86 -22 -77 -36 -63 -88 -91	8.88E-7 2.10E-6 4.15E-6 1.08E-5 3.20E-6 4.57E-6 3.41E-6 5.69E-7 2.04E-6	1.07E-5 1.50E-5 1.76E-5 5.03E-5 1.24E-5 2.90E-5 1.41E-5 5.09E-6 1.13E-5	3.43E-5 8.29E-5 4.85E-5 > 1.00E-4 4.82E-5 > 1.00E-4 6.61E-5 3.06E-5 3.75E-5
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.282 0.511 0.244 0.247 0.205 0.440 0.242	1.066 1.999 1.814 1.432 1.031 1.866 1.187	1.085 2.086 1.725 1.363 1.049 1.859 1.155	1.074 2.052 1.843 1.325 0.980 1.788 1.169	1.050 1.769 1.518 1.093 0.883 1.558 0.779	0.606 1.056 0.565 0.411 0.317 0.695 0.372	0.021 0.102 0.012 0.088 0.015 0.053 0.055	102 106 94 94 102 99 97	101 104 102 91 94 95 98	98 85 81 71 82 78 57	41 37 20 14 14 18 14	-93 -80 -95 -65 -93 -88 -77	7.03E-6 5.25E-6 3.26E-6 2.35E-6 2.93E-6 2.94E-6 1.44E-6	2.03E-5 2.06E-5 1.50E-5 1.50E-5 1.34E-5 1.47E-5 1.42E-5	4.80E-5 5.53E-5 4.06E-5 6.52E-5 3.95E-5 4.37E-5 5.02E-5
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.360 0.799 0.654 0.484 0.760 0.337	1.154 2.465 1.576 1.460 1.429 1.185	1.112 2.254 1.586 1.451 1.328 1.153	1.074 2.084 1.605 1.431 1.320 1.142	0.926 1.909 1.588 1.252 1.263 0.916	0.520 0.841 0.942 0.735 1.089 0.465	0.074 0.163 0.049 0.199 0.015 -0.018	95 87 101 99 85 96	90 77 103 97 84 95	71 67 101 79 75 68	20 3 31 26 49 15	-80 -80 -93 -59 -98 -100	2.60E-6 1.82E-6 5.39E-6 3.47E-6 9.33E-6 2.20E-6	1.59E-5 1.07E-5 1.79E-5 2.01E-5 2.16E-5 1.35E-5	5.05E-5 4.36E-5 4.53E-5 7.85E-5 4.72E-5 3.68E-5
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.268 0.759 0.350 0.538 0.749 0.415 0.562 0.792 0.729	1.931 1.429 1.281 1.940 1.342 1.105 1.994 1.538 2.360	1.323 1.270 1.882	1.827 1.327 1.276 1.901 1.339 1.078 1.890 1.425 2.313	1.507 1.434 1.258 1.728 1.365 1.075 1.773 1.417 2.158	0.559 0.922 0.701 0.934 0.877 0.784 1.105 1.142 1.600	0.072 0.201 0.037 0.137 0.044 0.004 0.016 0.044 0.006	98 84 99 96 93 105 96 97	94 85 99 97 100 96 93 85 97	74 101 97 85 104 96 85 84	17 24 38 28 22 53 38 47 53	-73 -74 -90 -75 -94 -99 -97 -95	2.69E-6 4.61E-6 6.21E-6 4.13E-6 4.51E-6 1.05E-5 5.51E-6 8.23E-6 1.05E-5	1.56E-5 1.77E-5 1.98E-5 1.88E-5 1.53E-5 2.24E-5 1.91E-5 2.15E-5 2.24E-5	5.55E-5 5.75E-5 4.89E-5 5.77E-5 4.15E-5 4.77E-5 4.48E-5 4.84E-5 4.76E-5
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.429 0.335 0.592 0.463 0.399 0.525 0.714	1.456 0.786 1.394 0.984 1.443 1.755 1.666	1.276 0.786 1.416 1.004 1.387 1.793 1.705	1.315 0.758 1.366 0.921 1.337 1.746 1.619	1.192 0.804 1.372 0.952 1.022 1.610 1.615	0.596 0.421 0.760 0.701 0.503 0.875 1.217	0.255 0.045 0.221 0.176 0.017 0.362 0.558	82 100 103 104 95 103 104	86 94 97 88 90 99	74 104 97 94 60 88 95	16 19 21 46 10 28 53	-41 -87 -63 -62 -96 -31 -22	2.62E-6 4.33E-6 4.16E-6 8.12E-6 1.57E-6 4.36E-6 1.09E-5	1.93E-5 1.51E-5 1.78E-5 2.66E-5 1.24E-5 3.01E-5 5.10E-5	> 1.00E-4 4.50E-5 7.05E-5 7.74E-5 3.69E-5 > 1.00E-4 > 1.00E-4
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.700 1.273 0.366 0.584 0.656 0.524 0.588 0.580	2.306 2.081 1.337 2.057 1.053 1.730 1.007 1.457	1.896 1.370 2.001 1.034 1.771 1.006	2.290 1.925 1.341 1.929 1.025 1.676 1.015 1.276	1.831 1.093 1.842 1.018 1.478 1.031	1.609	0.029	101 77 103 96 95 103 100 81	99 81 100 91 93 96 102 79	103 69 75 85 91 79 106 76	41 42 9 19 13 21 23	-75 -98 -76 -47 -97 -81 -70 -79	7.10E-6 4.95E-6 2.40E-6 3.42E-6 3.34E-6 3.15E-6 4.75E-6 2.50E-6	2.25E-5 1.99E-5 1.29E-5 1.94E-5 1.31E-5 1.60E-5 1.78E-5 1.30E-5	6.07E-5 4.54E-5 4.95E-5 > 1.00E-4 3.75E-5 4.98E-5 6.13E-5 4.73E-5
Prostate Cancer PC-3 DU-145	0.561 0.276	1.970 1.034		1.937 1.020		0.993 0.381		96 100	98 98	84 63	31 14	-37 -94	4.31E-6 1.83E-6	2.86E-5 1.34E-5	> 1.00E-4 3.92E-5
Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	0.402 0.461 0.967 0.632 0.711 0.501	1.756 1.004 1.647 1.338 1.678 0.838	1.627 1.051 1.605 1.297 1.710 0.812	1.000 1.595 1.289 1.579	1.305 0.918 1.518 1.295 1.577 0.802	0.627 1.131 1.048 1.246	0.029 0.126 0.469 0.250 0.870 0.026	90 109 94 94 103 92	89 99 92 93 90 88	67 84 81 94 90 89	11 31 24 59 55 7	-93 -73 -52 -60 16 -95	1.99E-6 4.34E-6 3.50E-6 1.19E-5 1.37E-5 3.01E-6	1.27E-5 1.97E-5 2.08E-5 3.12E-5 > 1.00E-4 1.17E-5	3.86E-5 6.02E-5 9.54E-5 8.18E-5 > 1.00E-4 3.63E-5


2-Methylisoellpticinium iodide 16

Methylisoellpticinium iodide 16

NSC : D - 754	621 / 1				Ехр	erimer	nt ID : 10	11NS43	3			Test ⁻	Гуре : 08		Units : M	Units : Molar		
Report Date :	August	09, 201	1		Tes	t Date	: Novem	ber 08,	2010		QNS	QNS:			MC:			
COMI: CM-4-223-1 (98579)						n Rea	gent : SF	RB Dual	-Pass F	Related	SSPL	SSPL: 0Y2V						
Panel/Cell Line	Time Zero	Ctrl	-8.0	Mear	Optical		og10 Conc es -4.0	entration -8.0	-7.0	ercent G -6.0	rowth -5.0	-4.0	G i 50		TGI	LC50		
eukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.564 0.664 0.166 0.546 1.152 0.382	2.509 2.158 1.170 2.028 2.925 1.828	2.461 2.173 1.157 2.010 2.931 1.766	2.437 2.243 1.133 2.027 2.869 1.747	2.351 0.977 2.040 2.751	1.849 1.931 0.527 1.346 2.307 1.228	1.009 1.036 0.276 0.764 1.590 0.609	98 101 99 99 100 96	96 106 96 100 97 94	88 113 81 101 90 93	66 85 36 54 65 58	23 25 11 15 25 16	2.35E-5 3.81E-5 4.87E-6 1.26E-5 2.37E-5 1.58E-5	> >	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4		
Non-Small Cell Lung A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H322M NCI-H460 NCI-H522	Cancer 0.317 0.655 0.492 0.992 0.666 0.636 0.668 0.257 0.577	1.410 1.692 1.804 1.431 1.436 1.892 1.470 2.065 1.262	1.420 1.700 1.792 1.354 1.809 1.451 2.113 1.169	1.332 1.591 1.713 1.358 1.337 1.865 1.393 2.056 1.174	1.022 1.347 1.468 1.284 1.254 1.659 1.384 1.731 1.154	0.532 0.963 0.903 1.139 0.888 1.011 1.002 0.857 0.648	0.361 0.866 0.704 1.062 0.696 0.730 0.739 0.240 0.460	101 101 99 89 93 98 103 86	93 90 93 83 87 98 90 100	64 67 74 67 76 81 89 82 84	20 30 31 33 29 30 42 33 10	4 20 16 16 4 7 9 -7	2.10E-6 2.83E-6 3.68E-6 3.16E-6 3.58E-6 4.07E-6 6.68E-6 4.49E-6 2.91E-6	>	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 6.82E-5 2.18E-5	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4		
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.282 0.511 0.244 0.247 0.205 0.440 0.242	1.164 2.129 1.937 1.561 1.040 1.945 1.316	1.184 2.084 1.948 1.558 1.033 1.943 1.295	1.113 2.073 1.970 1.482 0.994 1.881 1.254	1.082 2.138 1.950 1.573 0.997 1.856 1.180	0.712 1.409 1.540 1.430 0.832 0.749 0.905	0.348 0.793 0.592 1.205 0.311 0.343 0.382	102 97 101 100 99 100 98	94 97 102 94 94 96 94	91 101 101 101 95 94 87	49 55 77 90 75 20 62	7 17 21 73 13 -22	9.32E-6 1.39E-5 2.98E-5 > 1.00E-4 2.52E-5 3.97E-6 1.74E-5	> >	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 3.03E-5 1.00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4		
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.360 0.799 0.654 0.484 0.760 0.337	1.180 2.734 1.781 1.599 1.461 1.281	1.179 2.684 1.754 1.541 1.307 1.242	1.106 2.556 1.720 1.539 1.319 1.093	0.701 2.175 1.621 0.904 1.237 0.449	0.284 0.920 0.856 0.453 0.929 0.237	0.112 0.864 0.699 0.340 0.869 0.124	100 97 98 95 78 96	91 91 95 95 80 80	42 71 86 38 68 12	-21 6 18 -7 24 -30	-69 3 4 -30 16 -63	6.76E-7 2.11E-6 3.37E-6 6.07E-7 2.58E-6 2.76E-7	> >	4.61E-6 1.00E-4 1.00E-4 7.12E-6 1.00E-4 1.93E-6	4.02E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 4.02E-5		
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.268 0.759 0.350 0.538 0.749 0.415 0.562 0.792 0.729	2.004 1.452 1.357 1.942 1.411 1.139 2.031 1.517 2.494	1.943 1.330 1.325 1.948 1.417 1.163 1.960 1.471 2.525	1.932 1.309 1.317 1.927 1.397 1.123 1.885 1.469 2.406	1.992 1.287 1.347 1.899 1.422 1.081 1.811 1.356 2.225	1.808 0.828 1.007 1.747 1.227 0.889 0.805 1.191 1.894	1.007 0.552 0.602 0.915 0.639 0.537 0.431 0.774 1.101	96 82 97 100 101 103 95 94	96 79 96 99 98 98 90 93	99 76 99 97 102 92 85 78 85	89 10 65 86 72 65 17 55 66	43 -27 25 27 -15 17 -23 -2	6.89E-5 2.49E-6 2.39E-5 4.06E-5 1.80E-5 2.08E-5 3.24E-6 1.22E-5 2.27E-5	> >	1.00E-4 1.85E-5 1.00E-4 1.00E-4 6.76E-5 1.00E-4 2.60E-5 9.11E-5 1.00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4		
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.429 0.335 0.592 0.463 0.399 0.525 0.714	1.621 0.882 1.402 1.038 1.407 1.769 1.709	0.902 1.390	0.858 1.389	1.518 0.830 1.328 1.023 0.924 1.574 1.615	1.327 0.531 0.802 0.947 0.509 1.315 1.149	0.940 0.348 0.671 0.742 0.361 1.185 0.849	97 104 99 95 108 102 98	91 95 98 90 97 97	91 90 91 97 52 84 91	75 36 26 84 11 63 44	43 2 10 49 -10 53 14	6.02E-5 5.48E-6 4.25E-6 9.07E-5 1.12E-6 > 1.00E-4 7.32E-6	> > >	1.00E-4 1.00E-4 1.00E-4 1.00E-4 3.39E-5 1.00E-4 1.00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4		
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.700 1.273 0.366 0.584 0.656 0.524 0.588 0.580	2.362 1.924 1.437 2.095 1.076 1.857 1.085 1.623	1.822 1.467 1.978 1.060 1.763 1.071	1.738 1.419 1.953 1.056 1.798	1.073 0.956 1.075	1.387 1.304 1.789 0.915 0.532 0.985	1.742 0.762 0.327	89 84 103 92 96 93 97 81	94 71 98 91 95 96 92 83	94 46 103 90 99 32 98 83	40 17 88 80 62 1 80 69	32 5 57 77 25 -38 51 42	6.57E-6 6.83E-7 > 1.00E-4 > 1.00E-4 2.09E-5 5.26E-7 > 1.00E-4 5.07E-5	> > > > > > > > > > > > > > > > > > > >	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.03E-5 1.00E-4 1.00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4		
Prostate Cancer PC-3 DU-145	0.561 0.276	2.032 1.022		1.986 1.069			0.859 0.433	100 104	97 106	90 89	64 43	20 21	2.09E-5 7.09E-6		1.00E-4 1.00E-4	> 1.00E-4 > 1.00E-4		
Breast Cancer MCF7 MDA-MB-231/ATC0 HS 578T BT-549 T-47D MDA-MB-468	0.402 0.461 0.967 0.632 0.711 0.501	1.730 1.119 1.628 1.397 1.737 0.837	1.153 1.578 1.373 1.675	1.501	1.048 1.303 1.371 1.532	0.924 0.936 0.796 0.792		97 105 92 97 94 94	90 99 81 95 85 94	86 89 51 97 80 26	43 70 -3 21 8 -67	5 29 -31 -2 -18 -88	6.84E-6 3.09E-5 1.03E-6 4.16E-6 2.61E-6 4.42E-7	>	1.00E-4 1.00E-4 8.70E-6 8.54E-5 2.00E-5 1.90E-6	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 6.51E-6		

2-(5'-Cyanopentyl)isoellipticinium bromide 19

2-(5'-Cyanopentyl)isoellipticinium bromide 19

NSC : D - 754	623 / 1				Ехр	erimer	it ID : 10	11NS43	1		Test Type : 08			Units : Molar		
Report Date :	August	09, 201	1		Tes	t Date	: Novem	ber 08,	2010		QNS:			MC:		
COMI : CM-4-	177-1 (9	98581)			Stain Reagent : SRB Dual-Pass Related								.: 0Y2V			
	Time			Mear	Optica l		g10 Conc	entration	P	ercent G	•					
Panel/Cell Line .eukemia	Zero	Ctrl	-8.0	-7.0	-6.0	-5.0	-4.0	-8.0	-7.0	-6.0	-5.0	-4.0	G I 50	Т	GI	LC50
CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.564 0.664 0.166 0.546 1.152 0.382	2.509 2.158 1.170 2.028 2.925 1.828	2.404 2.355 1.177 2.031 2.891 1.847	2.418 2.204 1.145 2.077 2.896 1.827	2.336 2.030 0.972 2.154 2.643 1.727	1.864 1.951 0.544 1.879 2.193 1.058	0.981 0.816 0.276 0.909 1.461 0.564	95 113 101 100 98 101	95 103 98 103 98 100	91 91 80 109 84 93	67 86 38 90 59 47	21 10 11 24 17	2.35E-5 2.99E-5 5.14E-6 4.08E-5 1.62E-5 8.49E-6	> 1. > 1. > 1. > 1.	.00E-4 .00E-4 .00E-4 .00E-4 .00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Non-Small Cell Lung A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H322M NCI-H460 NCI-H522	Cancer 0.317 0.655 0.492 0.992 0.666 0.636 0.668 0.257 0.577	1.410 1.692 1.804 1.431 1.436 1.892 1.470 2.065 1.262	1.399 1.679 1.743 1.368 1.381 1.852 1.476 2.154 1.180	1.650 1.845 1.392 1.403 1.781 1.510 2.023		1 209 1 355 1 386 1 239 1 165 1 319 1 402 1 280 0 773	0.688 0.989 1.046 0.953 0.856 0.749 0.911 0.368 0.454	99 99 95 86 93 97 101 105 88	94 96 103 91 96 91 105 98	88 87 97 79 81 79 97 87	82 67 68 56 65 54 92 57 29	34 32 42 -4 25 9 30 6	4.60E-5 3.13E-5 5.00E-5 1.27E-5 2.33E-5 1.25E-5 4.76E-5 1.35E-5 3.99E-6	> 1. > 1. 8. > 1. > 1. > 1.	.00E-4 .00E-4 .00E-4 .60E-5 .00E-4 .00E-4 .00E-4 .00E-4 .73E-5	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.282 0.511 0.244 0.247 0.205 0.440 0.242	1.164 2.129 1.937 1.561 1.040 1.945 1.316	1.202 2.000 1.929 1.485 1.027 1.972 1.253	1.269 2.079 1.949 1.526 1.036 1.993 1.236	1.174 1.959 1.875 1.535 0.993 1.865 1.196	0.760 1.477 1.511 1.610 0.787 0.848 1.055	0.291 0.845 0.427 1.206 0.205 0.490 0.448	104 92 100 94 98 102 94	112 97 101 97 99 103 93	101 90 96 98 94 95 89	54 60 75 104 70 27 76	1 21 11 73	1.20E-5 1.77E-5 2.44E-5 > 1.00E-4 1.91E-5 4.58E-6 2.85E-5	> 1. > 1. > 1. > 1. 9.	.00E-4 .00E-4 .00E-4 .00E-4 .92E-5 .00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.360 0.799 0.654 0.484 0.760 0.337	1.180 2.734 1.781 1.599 1.461 1.281	1.215 2.648 1.749 1.521 1.361 1.288	1.223 2.570 1.798 1.513 1.280 1.201	1.074 2.448 1.657 1.208 1.280 0.930	0.637 2.120 0.998 0.771 1.166 0.543	0.542 1.222 0.750 0.715 1.095 0.386	104 96 97 93 86 101	105 92 101 92 74 92	87 85 89 65 74 63	34 68 30 26 58 22	22 22 8 21 48 5	4.95E-6 2.47E-5 4.64E-6 2.40E-6 5.98E-5 2.05E-6	> 1. > 1. > 1. > 1.	.00E-4 .00E-4 .00E-4 .00E-4 .00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.268 0.759 0.350 0.538 0.749 0.415 0.562 0.792 0.729	2.004 1.452 1.357 1.942 1.411 1.139 2.031 1.517 2.494	2.010 1.442 1.300 1.843 1.443 1.117 2.025 1.464 2.409	1.943 1.535 1.333 1.883 1.459 1.114 2.014 1.436 2.341	1.932 1.430 1.317 1.910 1.439 1.067 1.792 1.394 2.218	1.821 0.930 0.999 1.638 1.359 0.795 0.512 0.936 1.783	0.520 0.662 0.599 0.665 0.543 0.460 0.260 0.628 1.039	100 99 94 93 105 97 100 93 95	96 112 98 96 107 96 99 89	96 97 96 98 104 90 84 83 84	89 25 64 78 92 52 -9 20 60	15 -13 25 9 -28 6 -54 -21	3.36E-5 4.45E-6 2.31E-5 2.56E-5 2.25E-5 1.13E-5 2.31E-6 3.34E-6 1.70E-5	4. > 1. > 1. 5. > 1. 8. 3.	.00E-4 .55E-5 .00E-4 .00E-4 .89E-5 .00E-4 .00E-6 .09E-5	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 8.25E-5 > 1.00E-4
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.429 0.335 0.592 0.463 0.399 0.525 0.714	1.621 0.882 1.402 1.038 1.407 1.769 1.709	1.723 0.892 1.385 1.020 1.381 1.829 1.700	1.765 0.904 1.356 1.014 1.356 1.766 1.741	1.643 0.834 1.289 1.021 1.197 1.727 1.733	1.417 0.681 0.908 0.984 0.851 1.730 1.693	0.746 0.322 0.670 0.717 0.485 1.262 0.907	109 102 98 97 97 105 99	112 104 94 96 95 100 103	102 91 86 97 79 97 102	83 63 39 91 45 97	27 -4 10 44 9 59	3.84E-5 1.57E-5 5.83E-6 7.45E-5 7.05E-6 > 1.00E-4 4.10E-5	8. > 1. > 1. > 1. > 1.	.00E-4 .75E-5 .00E-4 .00E-4 .00E-4 .00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.700 1.273 0.366 0.584 0.656 0.524 0.588 0.580	2.362 1.924 1.437 2.095 1.076 1.857 1.085 1.623			1.717 1.457 1.932 1.098 1.285 1.059	1.654	1.600 1.395 0.935 1.686 0.744 0.649 0.575 1.075	102 74 101 89 105 96 100 94	104 86 101 98 106 96 100 98	100 68 102 89 105 57 95 92	93 58 100 90 90 17 100 82	54 19 53 73 21 9 -2	> 1.00E-4 1.64E-5 > 1.00E-4 > 1.00E-4 3.77E-5 1.50E-6 3.07E-5 8.44E-5	> 1. > 1. > 1. > 1. > 1. 9.	.00E-4 .00E-4 .00E-4 .00E-4 .00E-4 .00E-4 .49E-5	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Prostate Cancer PC-3 DU-145	0.561 0.276	2.032 1.022	2.034 1.060		1.858 1.069	1.238 0.964	0.757 0.515	100 105	95 106	88 106	46 92	13 32	8.03E-6 5.01E-5		.00E-4 .00E-4	> 1.00E-4 > 1.00E-4
Breast Cancer MCF7 MDA-MB-231/ATC HS 578T BT-549 T-47D MDA-MB-468	0.402 C 0.461 0.967 0.632 0.711 0.501	1.730 1.119 1.628 1.397 1.737 0.837	1.658 1.130 1.543 1.389 1.743 0.809	1.706 1.064 1.535 1.396 1.718 0.803	1.524 1.050 1.489 1.363 1.649 0.691	1.186 1.019 1.241 0.899 1.106 0.412	0.557 0.536 1.188 0.726 0.774 0.186	95 102 87 99 101 92	98 92 86 100 98 90	84 89 79 95 91 56	59 85 41 35 39 -18	12 11 33 12 6	1.55E-5 2.97E-5 5.90E-6 5.63E-6 6.07E-6 1.22E-6	> 1. > 1. > 1. > 1.	.00E-4 .00E-4 .00E-4 .00E-4 .00E-4 .75E-6	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 5.16E-5

6. Topoisomerase II assay gels

A-ring substituted ellipticines and analogues

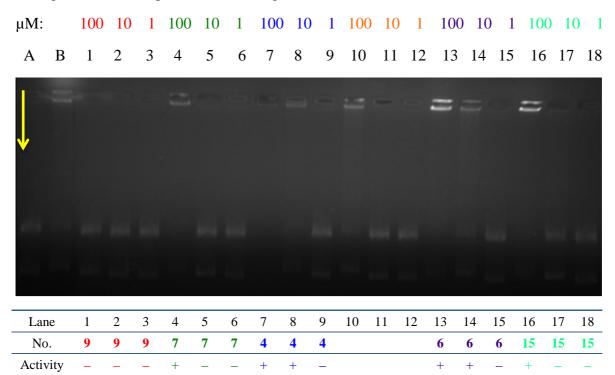


Figure 1

A, positive control = kDNA +ATP + Topo II; B, negative control = kDNA +ATP + Topo II + 100 μ M ellipticine C = dilution solvent / blank. Inhibitory activity: (-) = not active against topo II; (+) = topo II inhibition.

Isollipticinium salts – 100 μM

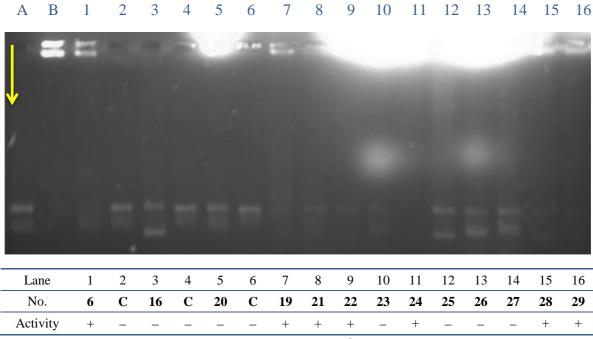


Figure 2

Note: 7-Hydroxy- N^2 -(6'-methylsulfonamido-6-oxohexyl)isoellipticinium bromide **30** was tested in a separate gel with unrelated compounds and displayed no inhibition of topo II.

Isoellipticinium salts – 3-fold dilution 100 10 μM: A В

Lane No. Activity +

Figure 3

7-Formyl and 7-Hydroxy Isoellipticinium salts – 3-fold dilution

μM: 100 10 A В

Lane	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
No.	6	6	6	23	23	23	24	24	24	28	28	28	29	29	29
Activity	+	+	_	+	_	_	+	+	_	+	_	_	+	_	_

Figure 4