Supporting information

Substrate-controlled stereoselectivity in the Yamamoto aldol reaction

Nadin Schläger and Andreas Kirschning*

Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Schneiderberg 1b, 30167 Hannover. Fax: +49(0)511 7623011; Tel: +49 (0)511 7624614; E-mail: andreas.kirschning@oci.uni-hannover.de

General Remarks

Unless otherwise stated, all chemicals and solvents were purchased in per analysis quality and used as received. ¹H NMR spectra were recorded at 400 MHz or 500 MHz and ¹³C NMR spectra were recorded at 100 MHz or 125 MHz with a BRUKER Avance 400, DPX 400 or DRX 500. Chemical shift values of NMR data are reported as values in ppm relative to (residual undeuterated) solvent signal as internal standard. Multiplicities for ¹H NMR signals are described using the following abbreviations: s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet; where appropriate with the addition of b = broad. 13 C Multiplicities refer to the resonances in the off-resonance decoupled spectra and were elucidated using the distortionless enhancement by polarisation transfer (DEPT) spectral editing technique. Multiplicities for ¹³C NMR signals are reported using the following abbreviation: q =quaternary (CR₄), t = tertiary (R₃CH), secondary = s (R₂CH₂) and primary = p (RCH₃). Mass spectra were obtained with a type LCT (ESI) (Micromass) equipped with a lockspray dual ion source in combination with a WATERS Alliance 2695 LC system, or with a type Q-TOF premier (Micromass) spectrometer (ESI mode) in combination with a WATERS Acquity UPLC system equipped with a Waters BEH C18 1.7 µm (SN 01473711315545) column (solvent A: water + 0.1 % (v/v) formic acid, solvent B: MeOH + 0.1 % (v/v) formic acid; flow rate = 0.4 mL/min; gradient (t [min]/solvent B [%]): (0:5) (2.5:95) (6.5:95) (6.6:5) (8:5)). Ion mass signals (m/z) are reported as values in atomic mass units. Optical rotations were measured on a Perkin-Elmer polarimeter type 341 or 241 in a quartz glass cuvette at l =589 nm (Na D-line). The optical rotation is given in [° ml·g-1·dm-1] with c = 1 corresponding to 10 mg ml⁻¹. Flash-chromatography was done with silica gel (Acros, particle size 35-70 µm) by applying moderate pressure. Preparative HPLC was operated at a MERCK HITACHI LaChrome HPLC (Pump L7150 or L7100, Interface D-7000, Diode Array Detector L-7450) respectively at a BECKMANN system Gold HPLC (Solvent Module 125, Detector 166). Solvents, columns, operating procedures and retention times are given with the corresponding experimental and analytical data.

General procedure for the YAMAMOTO-aldol reaction

Introductory remarks: YAMAMOTO aldol reactions were carried out under different conditions. Parameters like "temperature" and "reaction time" were varied. The general procedure is given below. All changes according to the general procedure are stated in the main paper.

Solution A: 2,6-Diphenylphenol (6.6 eq) was dissolved in toluene (c = 0.28 mol/l, with respect to AlMe₃) and AlMe₃ (c = 2 mol/l in toluene, 2.2 eq) was slowly added over 30 min after which time the yellow solution was stirred for 30 min at rt and then cooled to -78 °C. The ester (2.0 eq) was dissolved in toluene (c = 1 mol/l) and slowly added. The resulting solution was stirred for 30 min at -78 °C. Solution B (LTMP-solution 8): 2,2,6,6-Tetramethyl-piperidine (2.3 eq) was dissolved in THF (c = 0.19 mol/l) and cooled to -78 °C. *n*-BuLi (c = 2.5 mol/l in hexane, 2.3 eq) was added dropwise. The resulting solution was stirred for 20 min at -78 °C and slowly added to solution A. The resulting mixture was stirred for 40 min at -78 °C. Solution C: 2,6-Diphenylphenol (6.0 eq) was dissolved in toluene $(c = 0.28 \text{ mol/l with respect to AlMe}_3)$ and AlMe $_3$ (c = 2 mol/l in toluene, 2.0 eq) was slowly added over 45 min. Afterwards the solution was stirred for 30 min at rt and then cooled to -78 °C. The aldehyde (1.0 eq) was dissolved in toluene (c = 1 mol/l) and added dropwise. The solution was stirred for 30 min at -78 °C. Solution C was added over 10 min to solution A and the resulting reaction mixture was stirred at -78 °C over night. The reaction was terminated by addition of aq. NH₄Cl, warmed up to rt and stirred for 3 h after the addition of a solution of Na-K-tartrate. The layers were separated and the aqueous layer extracted with EE. The combined, organic phases were dried with $MgSO_4$ and the solvent was removed under reduced pressure. The resulting crude product was purified by flash column chromatography (petroleum ether:ethyl acetate; ratios are given).

(2E,4E)-Ethyl-4-methylhexa-2,4-dienoate (6)

trans-2-Methyl-butenal (**13**) (2.8 ml, 29.0 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (30 ml) and (1-ethoxycarbonylmethyliden)triphenylphosphorane (**14**) (15 g, 43.1 mmol, 1.5 eq) was added. The solution was stirred for 13 d at rt. The crude product was adsorbed on silica gel and purified by flash chromatography (petroleum ether : ethyl acetate = 20:1). (2*E*,4*E*)-Ethyl-4-methylhexa-2,4-dienoate (**6**) (4.36 g, 28.3 mmol, 98%) was obtained as a colourless liquid. R_f = 0.54 (PE:EE = 10:1); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.31 (d, 1H, *J* = 15.7 Hz, H-3), 5.98 (q, 1H, *J* = 7.1 Hz, H-5), 5.78 (d, 1H, *J* = 15.7 Hz, H-2), 4.20 (q, 2H, *J* = 7.2 Hz, H-8), 1.81 (d, 3H, *J* = 7.1 Hz, H-6), 1.77 (s, 3H, H-7), 1.30 (t, 3H, *J* = 7.2 Hz, H-9) ppm; **HRMS** (EI): *m*/*z*: calculated for C₉H₁₄O₂: 154.0994 M⁺, found: 154.0994 M⁺. The analytical data is in accordance with the literature.^{S1}

Test reaction: (2E,4E)-Ethyl-7-hydroxy-4-methyl-7-phenylhepta-2,4-dienoate (S1)

For checking the quality of all components, a test reaction with benzaldehyde was conducted prior to use of chiral aldehydes.

Thus, 2,6-diphenylphenol (1.19 g, 4.9 mmol, 9.9 eq) was dissolved in toluene (6 ml) and AlMe₃ (0.81 ml, c = 2 mol/l in hexane, 1.6 mmol, 3.3 eq) was slowly added. The solution was stirred for 30 min at rt and then cooled to -78 °C. Benzaldehyde (**S2**) (0.05 ml, 0.5 mmol, 1.0 eq) and ester **6** (151 mg, 1.0 mmol, 2.0 eq) were added and the solution was stirred for 35 min at -78 °C. For preparation of the LTMP-solution, 2,2,6,6-tetramethylpiperidine (0.19 ml, 1.1 mmol, 2.3 eq) was dissolved in THF (6 ml) and cooled to -78 °C. *n*-BuLi (0.45 ml, c = 2.5 mol/l in hexane, 1.2 mmol, 2.3 eq) was slowly added and stirring was continued for 30 min. The LTMP-solution (**8**) was added and the reaction was stirred for 30 min at -78 °C. The reaction was terminated by addition of aq. NH₄Cl, Na-K-tartrate and the mixture was stirred overnight. The layers were separated and the aqueous layer was extracted with ethyl acetate. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $20:1 \rightarrow 2:1$) and product **S1** (127 mg, 0.5 mmol, 99%) was obtained as colourless oil.

 $R_f = 0.44$ (PE:EE = 2:1); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.27-2.37 (m, 5H, Ph), 7.29 (d, 1H, J = 15.5 Hz, H-3), 5,91 (dd, 1H, J = 7.4, 7.3 Hz, H-5), 5.79 (d, 1H, J = 15.5 Hz, H-2), 4.80 (dd, 1H, J = 6.7, 6.3 Hz, H-7), 4.20 (q, 2H, J = 7.1 Hz, H-9), 2.73 (ddd, 1H, J = 14.6, 7.4, 6.7 Hz, H-6_a), 2.64 (ddd, 1H, J = 14.6, 7.3, 6.3 Hz, H-6_b), 1.72 (s, 3H,

H-8), 1.29 (t, 3H, J = 7.1 Hz, H-10) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.2 (t, C-3), 143.8 (q, C-4), 136.7 (t, C-5), 135.4 (q, Ph), 128.7 (t, Ph), 128.0 (q, Ph), 125.9 (t, Ph), 116.5 (t, C-2), 73.9 (t, C-7), 60.4 (s, C-9), 38.7 (s, C-6), 14.5 (p, C-10), 12.5 (p, C-8) ppm; **HRMS** (ESI): m/z: calculated for C₁₆H₂₁O₃ and C₁₆H₂₀O₃Na: 261.1491 [M + H]⁺ and 283.1310 [M + Na]⁺, found: 261.1490 [M + H]⁺ und 283.1299 [M + Na]⁺.

(S)-7-Benzyl-3-[(2S,3S)-3-hydroxy-2-methyl-3-phenylpropanoyl]oxazolidin-2-one (S3)

Propionated (*S*)-EVANS auxiliary $\mathbf{S4}^{S2}$ (1.00 g, 4.3 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (16 ml) and the solution was cooled to 0 °C. Et₃N (0.7 ml, 5.2 mmol, 1.2 eq) was added. Afterwards, *n*-Bu₂BOTf (5.2 ml, *c* = 1 mol/l in CH₂Cl₂, 5.2 mmol, 1.2 eq) was added over a peiod of 10 min. The solution was stirred for 2 h at 0 °C. After cooling to -78 °C, benzaldehyde (**S2**) (0.7 ml, 6.4 mmol, 1.5 eq) in CH₂Cl₂ (1.6 ml) was added over a period of 5 min. The solution was stirred for 2 h at -78 °C and then overnight at 0 °C. The reaction was terminated by addition of MeOH (20 ml), phosphate buffer (pH = 7, 6.2 ml) and a solution of MeOH (14 ml) and aq. H₂O₂ (30%; 7 ml). After stirring for 4 h at rt, the layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1 \rightarrow 2:1). Product **S3** (1.40 g, 4.1 mmol, 96%) was obtained as a colourless oil.

 $R_f = 0.39$ (PE:EE = 2:1); $[α]_D^{20} = +60.3$ (c = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.16-7.41 (m, 10H, Ph), 5.10 (d, 1H, J = 4.1 Hz, H-3), 4.56-4.63 (m, 1H, H-7), 4.04-4.16 (m, 3H, H-2 + H-6), 3.25 (dd, 1H, J = 13.3, 3.1 Hz, H-8_a), 2.78 (dd, 1H, J = 13.3, 9.6 Hz, H-8_b), 1.23 (d, 3H, J = 6.8 Hz, H-4) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 176.9 (q, C-1), 153.0 (q, C-5), 141.4 (q, Ph), 135.2 (q, Ph), 129.6 (t, Ph), 129.1 (t, Ph), 128.4 (t, Ph), 127.7 (t, Ph), 127.6 (t, Ph), 126.3 (t, Ph), 74.0 (t, C-3), 66.3 (s, C-6), 55.4 (t, C-7), 44.7 (t, C-2), 37.9 (s, C-8), 11.1 (p, C-4) ppm; HRMS (ESI): m/z: calculated for C₂₀H₂₁NaNO₄: 362.1368 [M + Na]⁺, found: 362.1369 [M + Na]⁺. The analytical data are in accordance with those reported in the literature.^{S3}

(S)-7-Benzyl-3-[(2S,3S)-3-(methoxymethoxy)-2-methyl-3-phenylpropanoyl]oxazolidin-2one (S5)

Alcohol **S3** (500 mg, 1.5 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (30 ml) and cooled to 0 °C. ^{*i*}Pr₂NEt (3.4 ml, 14.7 mmol, 10.0 eq) and MOMCl (0.6 ml, 7.35 mmol, 5.0 eq) were added. The reaction mixture was stirred for 30 min at 0 °C and then for 7 d at rt after which time the reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 5:1) and furnished product **S5** (528 mg, 1.4 mmol, 94%) as a colourless oil.

 $R_f = 0.43$ (PE:EE = 2:1); $[a]_D^{20} = +6.8$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.15-7.39 (m, 10H, Ph), 4.82 (d, 1H, *J* = 7.5 Hz, H-3), 4.53 (d, 1H, *J* = 6.8 Hz, MOM), 4.51 (d, 1H, *J* = 6.8 Hz, MOM), 4.22-4.36 (m, 2H, H-7 + H-2), 4.00 (dd, 1H, *J* = 8.4, 1.9 Hz, H-6_a), 3.72 (dd, 1H, *J* = 8.4, 8.1 Hz, H-6_b), 3.35 (s, 3H, MOM), 3.21 (dd, 1H, *J* = 13.2, 3.1 Hz, H-8_a), 2.69 (dd, 1H, *J* = 13.2, 10.0 Hz, H-8_b), 1.38 (d, 3H, J = 6.7 Hz, H-4) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 174.4 (q, C-1), 153.1 (q, C-5), 139.7 (q, Ph), 135.4 (q, Ph), 129.6 (t, Ph), 129.0 (t, Ph), 128.3 (t, Ph), 128.1 (t, Ph), 127.6 (t, Ph), 127.4 (t, Ph), 94.4 (s, MOM), 79.3 (t, C-3), 66.0 (s, C-6), 55.9 (t, C-7), 55.8 (p, MOM), 44.7 (t, C-2), 37.8 (s, C-8), 13.3 (p, C-4) ppm; HRMS (ESI): *m*/*z*: calculated for C₂₂H₂₅NaNO₅: 406.1630 [M + Na]⁺, found: 406.1630 [M + Na]⁺.

(2R,3S)-3-(Methoxymethoxy)-2-methyl-3-phenylpropan-1-ol (S6)

Oxazolidinone **S5** (528 mg, 1.38 mmol, 1.0 eq) was dissolved in Et_2O (27 ml) and cooled to 0 °C. H_2O (0.03 ml, 1.66 mmol, 1.2 eq) and LiBH₄ (150 mg, 6.89 mmol, 5.0 eq) were added. The solution was stirred overnight at rt. The reaction was terminated by addition of aq. NH₄Cl and stirred for 2 h at RT. The layers were separated and the aqueous layer was extracted with Et_2O . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum

ether : ethyl acetate = 2:1) to furnish alcohol **S6** (259 mg, 1.23 mmol, 89%) as a colourless oil.

 $R_f = 0.30$ (PE:EE = 2:1); $[\alpha]_D^{20} = -174.2$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 4.78 (d, 1H, *J* = 5.1 Hz, H-3), 4.58 (d, 1H, *J* = 6.5 Hz, MOM), 4.54 (d, 1H, *J* = 6.5 Hz, MOM), 3.61 (dd, 1H, *J* = 11.0, 7.3 Hz, H-1_a), 3.49 (dd, 1H, *J* = 11.0, 5.1 Hz, H-1_b), 3.41 (s, 3H, MOM), 2.25 (brs, 1H, OH), 2.02-2.13 (m, 1H, H-2), 0.87 (d, 3H, *J* = 6.8 Hz, H-4) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 140.1 (q, Ph), 128.4 (t, Ph), 127.7 (t, Ph), 127.3 (t, Ph), 95.0 (s, MOM), 79.9 (t, C-3), 65.5 (s, C-1), 56.0 (p, MOM), 41.9 (t, C-2), 11.9 (p, C-4) ppm; HRMS (ESI): *m/z*: calculated for C₁₂H₁₈NaO₃: 233.1154 [M + Na]⁺, found: 233.1154 [M + Na]⁺.

(2S,3S)-3-(Methoxymethoxy)-2-methyl-3-phenylpropanal (15)

Alcohol **S6** (130 mg, 0.52 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (10 ml) and NaHCO₃ (20 mg) and DESS-MARTIN periodinane (266 mg, 0.63 mmol, 1.2 eq) were added. Stirring was continued for 2 h at rt. The reaction was terminated by addition of aq. Na₂S₂O₃ and the mixture was stirred for 2 h at rt. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish aldehyde **15** (94 mg, 0.45 mmol, 87%) as a colourless oil, which was used immediately in the next step.

 $R_f = 0.63$ (PE:EE = 2:1); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.77 (d, 1H, J = 1.0 Hz, H-1), 7.27-7.40 (m, 5H, Ph), 5.11 (d, 1H, J = 4.8 Hz, H-3), 4.57 (d, 1H, J = 6.8 Hz, MOM), 4.55 (d, 1H, J = 6.8 Hz, MOM), 3.35 (s, 3H, MOM), 2.70 (m, 1H, H-2), 1.11 (d, 3H, J = 7.2 Hz, H-4) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 203.5 (t, C-1), 139.0 (q, Ph), 128.7 (t, Ph), 128.1 (t, Ph), 127.2 (t, Ph), 94.4 (s, MOM), 76.9 (t, C-3), 56.1 (p, MOM), 53.0 (t, C-2), 8.6 (p, C-4) ppm; HRMS (ESI): m/z: calculated for C₁₂H₁₆NaO₃: 231.0997 [M + Na]⁺, found: 231.0995 [M + Na]⁺.

(2E,4E,7S,8R,9S)-Ethyl-7-hydroxy-9-(methoxymethoxy)-4,8-dimethyl-9-phenylnona-2,4dienoate (7,8-syn,8,9-syn 17a) and (2E,4E,7R,8R,9S)-ethyl-7-hydroxy-9-(methoxymethoxy)-4,8-dimethyl-9-phenylnona-2,4-dienoate (7,8-anti,8,9-syn 17b)

Following the general procedure aldehyde **15** (41 mg, 0.20 mmol, 1.0 eq) was reacted with ester **6** (62 mg, 0.40 mmol, 2.0 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 5:1$) to furnish alcohols 7,8-*syn*,8,9-*syn* **17a** and 7,8-*anti*,8,9-*syn* **17b** (*d.r.*: 1:5.2 (**17b**:17**a**), 63 mg, 0.17 mmol, 88%) as a yellow oil.

 $R_f = 0.13$ (PE:EE = 5:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): *m/z*: calculated for C₂₁H₃₀NaO₅: 385.1991 [M + Na]⁺, found: 385.1991 [M + Na]⁺.

7,8-*syn*,8,9-*syn* **17a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.23-7.39 (m, 6H, H-3 + Ph), 5.86 (dd, 1H, J = 7.3, 7.3 Hz, H-5), 5.79 (d, 1H, J = 15.7 Hz, H-2), 4.80 (d, 1H, J = 5.5 Hz, H-9), 4.55 (d, 1H, J = 6.5 Hz, MOM), 4.52 (d, 1H, J = 6.5 Hz, MOM), 4.20 (q, 2H, J = 7.1 Hz, H-12), 3.79-3.85 (m, 1H, H-7), 3.40 (s, 3H, MOM), 2.28-2.55 (m, 2H, H-6), 1.77-1.83 (m, 1H, H-8), 1.76 (s, 3H, H-10), 1.29 (t, 3H, J = 7.1 Hz, H-13), 0.97 (d, 3H, J = 7.2 Hz, H-11) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.3 (t, C-3), 140.0 (q, Ph), 137.7 (t, C-5), 134.7 (q, C-4), 128.5 (t, Ph), 127.8 (t, Ph), 127.2 (t, Ph), 116.3 (t, C-2), 94.6 (s, MOM), 82.0 (t, C-9), 73.5 (t, C-7), 60.3 (s, C-12), 56.3 (p, MOM), 43.8 (t, C-8), 34.7 (s, C-6), 14.4 (p, C-13), 12.5 (p, C-10), 7.0 (p, C-11) ppm.

7,8-*anti*,8,9-*syn* **17b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.23-7.39 (m, 6H, H-3 + Ph), 6.07 (dd, 1H, J = 7.2, 7.2 Hz, H-5), 5.80 (d, 1H, J = 15.7 Hz, H-2), 5.04 (d, 1H, J = 3.4 Hz, H-9), 4.63 (d, 1H, J = 6.5 Hz, MOM), 4.52 (d, 1H, J = 6.5 Hz, MOM), 4.20 (q, 2H, J = 7.1 Hz, H-12), 3.71 (ddd, 1H, J = 7.9, 7.9, 3.8 Hz, H-7), 3.41 (s, 3H, MOM), 2.28-2.55 (m, 2H, H-6), 1.83-1.90 (m, 1H, H-8), 1.76 (s, 3H, H-10), 1.29 (t, 3H, J = 7.1 Hz, H-13), 0.77 (d, 3H, J = 6.8 Hz, H-11) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.5 (t, C-3), 139.9 (q, Ph), 138.4 (t, C-5), 134.5 (q, C-4), 128.3 (t, Ph), 127.5 (t, Ph), 127.0 (t, Ph), 116.0 (t, C-2), 95.5 (s, MOM), 79.5 (t, C-9), 72.9 (t, C-7), 60.3 (s, C-12), 56.2 (p, MOM), 44.7 (t, C-8), 34.1 (s, C-6), 14.4 (p, C-13), 12.6 (p, C-10), 11.1 (p, C-11) ppm.

(S)-7-Benzyl-3-[(2S,3S)-3-(*tert*-butyldimethylsilyloxy)-2-methyl-3-phenylpropanoyl]oxazolidin-2-one (S7)

Alcohol **S3** (500 mg, 1.5 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (30 ml) and cooled to 0 °C. 2,6-Lutidine (0.48 ml, 4.4 mmol, 3.0 eq) and TBSOTf (0.47 ml, 2.2 mmol, 1.5 eq) were added and the reaction mixture was stirred for 3 h at 0 °C. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1) to furnish product **S7** (632 mg, 1.4 mmol, 95%) as a colourless oil.

 $R_f = 0.52$ (PE:EE = 5:1); $[α]_D^{20} = +67.4$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.15-7.38 (m, 10H, Ph), 4.84 (d, 1H, H-3), 4.22-4.29 (m, 1H, H-7), 4.12-4.20 (m, 1H, H-2), 3.99 (dd, 1H, *J* = 8.5, 1.7 Hz, H-6_a), 3.69 (dd, 1H, *J* = 8.5, 8.0 Hz, H-6_b), 3.20 (dd, 1H, *J* = 13.3, 3.1 Hz, H-8_a), 2.69 (dd, 1H, *J* = 13.3, 9.9 Hz, H-8_b), 1.30 (d, 3H, *J* = 6.5 Hz, H-4), 0.88 (s, 9H, TBS), 0.02 (s, 3H, TBS), -0.23 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 174.7 (q, C-1), 153.0 (q, C-5), 143.0 (q, Ph), 135.5 (q, Ph), 129.6 (t, Ph), 129.0 (t, Ph), 128.0 (t, Ph), 127.6 (t, Ph), 127.4 (t, Ph), 126.8 (t, Ph), 76.7 (t, C-3), 66.0 (s, C-6), 55.9 (t, C-7), 46.8 (t, C-2), 37.9 (s, C-8), 25.9 (p, TBS), 18.3 (q, TBS), 13.0 (p, C-4), -4.5 (p, TBS), -5.1 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₂₆H₃₅NO₄Si: 454.2414 [M + H]⁺, found: 454.2411 [M + H]⁺.

(2R,3S)-3-(tert-butyldimethylsilyloxy)-2-methyl-3-phenylpropan-1-ol (S8)

Oxazolidinone **S7** (625 mg, 1.38 mmol, 1.0 eq) was dissolved in Et_2O (28 ml) and cooled to 0 °C. H_2O (0.03 ml, 1.68 mmol, 1.2 eq) and $LiBH_4$ (150 mg, 6.89 mmol, 5.0 eq) were added and the reaction mixture was stirred for 2 h at 0 °C and then overnight at rt. The reaction was terminated by addition of aq. NH₄Cl and stirring was continued for 2 h at rt. The layers were separated and the aqueous layer was extracted with Et_2O . The combined, organic layers were

 $R_f = 0.35$ (PE:EE = 5:1); $[α]_D^{20} = -57.7$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.22-7.37 (m, 5H, Ph), 4.83 (d, 1H, *J* = 4.3 Hz, H-3), 3.58 (dd, 1H, *J* = 10.8, 8.2 Hz, H-1_a), 3.44 (dd, 1H, *J* = 10.8, 4.7 Hz, H-1_b), 2.26 (brs, 1H, OH), 2.01-2.12 (m, 1H, H-2), 0.90 (s, 9H, TBS), 0.77 (d, 3H, *J* = 7.0 Hz, H-4), 0.05 (s, 3H, TBS), -0.18 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 142.4 (q, Ph), 128.0 (t, Ph), 127.3 (t, Ph), 126.9 (t, Ph), 77.7 (t, C-3), 65.7 (s, C-1), 43.0 (t, C-2), 26.0 (p, TBS), 18.3 (q, TBS), 12.1 (p, C-4), -4.5 (p, TBS), -5.2 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₁₆H₂₈NaO₂Si: 303.1756 [M + Na]⁺, found: 303.1757 [M + Na]⁺.

(2S,3S)-3-(tert-Butyldimethylsilyloxy)-2-methyl-3-phenylpropanal (16)

Alcohol **S8** (101 mg, 0.36 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (7 ml) and NaHCO₃ (15 mg) was added. DESS-MARTIN periodinane (184 mg, 0.43 mmol, 1.2 eq) was added and stirring was continued for 70 min at rt. The reaction was terminated by addition of aq. Na₂S₂O₃ at rt. After 1 h the layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish aldehyde **16** (82 mg, 0.30 mmol, 83%) as a colourless liquid, which was directly used in the next step.

 $R_f = 0.62$ (PE:EE = 5:1); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.76 (d, 1H, J = 1.1 Hz, H-1), 7.23-7.37 (m, 5H, Ph), 5.15 (d, 1H, J = 4.5 Hz, H-3), 2.59 (qdd, 1H, J = 6.8, 4.5, 1.1 Hz, H-2), 1.04 (d, 1H, J = 6.8 Hz, H-4), 0.89 (s, 9H, TBS), 0.03 (s, 3H, TBS), -0.18 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 204.5 (t, C-1), 142.4 (q, Ph), 128.3 (t, Ph), 127.6 (t, Ph), 126.4 (t, Ph), 74.4 (t, C-3), 54.9 (t, C-2), 25.9 (p, TBS), 18.3 (q, TBS), 8.1 (p, C-4), -4.4 (p, TBS), -5.1 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₁₆H₂₆NaO₂Si: 301.1600 [M + Na]⁺, found: 301.1606 [M + Na]⁺.

(2E,4E,7S,8R,9S)-Ethyl-9-(*tert*-butyldimethylsilyloxy)-7-hydroxy-4,8-dimethyl-9phenylnona-2,4-dienoate (7,8-*syn*,8,9-*syn* 18a) and

(2E,4E,7R,8R,9S)-ethyl-9-(*tert*-butyldimethylsilyloxy)-7-hydroxy-4,8-dimethyl-9phenylnona-2,4-dienoate (7,8-*anti*,8,9-*syn* 18b)

Following the general procedure aldehyde **16** (37 mg, 0.13 mmol, 1.0 eq) was reacted with ester **6** (40 mg, 0.26 mmol, 2.0 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 10:1$) to furnish alcohols 7,8-*syn*,8,9-*syn* **18a** and 7,8-*anti*,8,9-*syn* **18b** [*d.r.*: 1:2 (**18b**:**18a**), 28 mg, 0.06 mmol, 49%] as a yellow liquid.

 $R_f = 0.39$ (PE:EE = 5:1); diastereomers could not be separated by column chromatography; **HRMS** (ESI): m/z: calculated for $C_{25}H_{40}NaO_4Si$: 455.2594 [M + Na]⁺, found: 455.2589 [M + Na]⁺.

7,8-*syn*,8,9-*syn* **18a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.21-7.39 (m, 6H, H-3 + Ph), 5.86 (dd, 1H, *J* = 7.2, 7.2 Hz, H-5), 5.79 (d, 1H, *J* = 15.7 Hz, H-2), 4.81 (d, 1H, *J* = 4.4 Hz, H-9), 4.20 (q, 2H, *J* = 7.1 Hz, H-12), 3.81-3.88 (m, 1H, H-7), 2.26-2.50 (m, 2H, H-6), 1.76 (s, 3H, H-10), 1.65-1.74 (m, 1H, H-8), 1.30 (t, 3H, *J* = 7.1 Hz, H-13), 0.89-0.93 (m, 12H, TBS + H-11), 0.07 (s, 3H, TBS), 0.06 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.3 (t, C-3), 143.4 (q, Ph), 137.8 (t, C-5), 134.7 (q, C-4), 128.2 (t, Ph), 127.4 (t, Ph), 126.6 (t, Ph), 116.3 (t, C-2), 79.5 (t, C-9), 73.6 (t, C-7), 60.4 (s, C-12), 45.0 (t, C-8), 34.9 (s, C-6), 26.0 (p, TBS), 18.2 (q, TBS), 14.5 (p, C-13), 12.6 (p, C-10), 6.7 (p, C-11), -4.3 (p, TBS), -5.0 (p, TBS) ppm.

7,8-*anti*,8,9-*syn* **18b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.21-7.39 (m, 6H, H-3 + Ph), 6.06 (dd, 1H, *J* = 7.3, 7.0 Hz, H-5), 5.79 (d, 1H, *J* = 15.7 Hz, H-2), 4.95 (d, 1H, *J* = 3.4 Hz, H-9), 4.20 (q, 2H, *J* = 7.1 Hz, H-12), 3.62-3.69 (m, 1H, H-7), 2.26-2.50 (m, 2H, H-6), 1.89-1.95 (m, 1H, H-8), 1.77 (s, 3H, H-10), 1.30 (t, 3H, *J* = 7.1 Hz, H-13), 0.91 (s, 9H, TBS), 0.72 (d, 3H, *J* = 6.8 Hz, H-11), 0.07 (s, 3H, TBS), 0.06 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): 167.7 (q, C-1), 149.6 (t, C-3), 141.4 (q, Ph), 138.0 (t, C-5), 134.6 (q, C-4), 128.0 (t, Ph), 127.4 (t, Ph), 127.2 (t, Ph), 115.9 (t, C-2), 78.6 (t, C-9), 72.4 (t, C-7), 60.3 (s, C-12), 44.9 (t, C-8), 34.5 (s, C-6), 25.9 (p, TBS), 18.2 (q, TBS), 14.5 (p, C-13), 12.6 (p, C-10), 12.4 (p, C-11), -4.5 (p, TBS), -5.2 (p, TBS) ppm.

(2E,4E,7S,8R,9S)-Ethyl-7,9-dihydroxy-4,8-dimethyl-9-phenyl-nona-2,4-dienoate

(7,8-syn,8,9-syn S9a) and

(2E,4E,7R,8R,9S)-ethyl-7,9-dihydroxy-4,8-dimethyl-9-phenylnona-2,4-dienoate (7,8-*anti*,8,9-*syn* S9b)

A mixture of alcohols **18** [*d.r.*: 1:2 (**18b**:**18a**), 10 mg, 23 \square mol, 1.0 eq] was dissolved in THF (0.4 ml) and cooled to 0 °C. TBAF·3H₂O (11 mg, 35 \square mol, 1.5 eq) was dissolved in THF (0.3 ml) and added to the solution of alcohols **18a,b**. The solution was stirred for 2 ¼ h at 0 °C and the reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1 \rightarrow 1:1) to furnish diols 7,8-*syn*,8,9-*syn* **S9a** and 7,8-*anti*,8,9-*syn* **S9b** [*d.r.*: 1:2 (**S9b**:**S9a**) 6.8 mg, 21 \square mol, 93%] as a colourless oil.

 $R_f = 0.27$ (PE:EE = 2:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): m/z: calculated for C₁₉H₂₆NaO₄: 341.1729 [M + Na]⁺, found: 341.1721 [M + Na]⁺.

7,8-*syn*,8,9-*syn* **S9a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.24-7.39 (m, 6H, H-3 + Ph), 5.91 (dd, 1H, J = 7.3, 7.3 Hz, H-5), 5.83 (d, 1H, J = 15.7 Hz, H-2), 5.04 (d, 1H, J = 2.7 Hz, H-9), 4.21 (q, 2H, J = 7.1 Hz, H-12), 4.10 (ddd, 1H, J = 7.4, 6.2, 1.5 Hz, H-7), 2.48-2.59 (m, 1H, H-6_a), 2.31-2.40 (m, 1H, H-6_b), 2.21 (brs, 2H, OH), 1.76-1.82 (m, 1H, H-8), 1.80 (s, 3H, H-10), 1.30 (t, 3H, J = 7.1 Hz, H-13), 0.86 (d, 3H, J = 6.8 Hz, H-11) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.1 (t, C-3), 143.2 (q, Ph), 137.1 (t, C-5), 135.2 (q, C-4), 128.4 (t, Ph), 127.4 (t, Ph), 125.8 (t, Ph), 116.6 (t, C-2), 78.7 (t, C-9), 75.6 (t, C-7), 60.4 (s, C-12), 43.6 (t, C-8), 35.0 (s, C-6), 14.5 (p, C-13), 12.6 (p, C-10), 4.8 (p, C-11) ppm.

7,8-*anti*,8,9-*syn* **S9b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.24-7.39 (m, 6H, H-3 + Ph), 6.00 (dd, 1H, *J* = 7.3, 7.3 Hz, H-5), 5.84 (d, 1H, *J* = 15.7 Hz, H-2), 5.16 (d, 1H, *J* = 2.4 Hz, H-9), 4.21 (q, 2H, *J* = 7.1 Hz, H-12), 3.64-3.74 (m, 1H, H-7), 2.48-2.59 (m, 1H, H-6_a), 2.31-2.40 (m, 1H, H-6_b), 2.21 (brs, 2H, OH), 1.88-1.98 (m, 1H, H-8), 1.80 (s, 3H, H-10), 1.30 (t, 3H, *J* = 7.1 Hz, H-13), 0.84 (d, 3H, *J* = 7.2 Hz, H-11) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.1 (t, C-3), 142.7 (q, Ph), 137.1 (t, C-5),

135.4 (q, C-4), 128.3 (t, Ph), 127.3 (t, Ph), 126.1 (t, Ph), 116.6 (t, C-2), 74.8 (t, C-9), 74.6 (t, C-7), 60.4 (s, C-12), 43.7 (t, C-8), 35.1 (s, C-6), 14.5 (p, C-13), 12.7 (p, C-10), 11.3 (p, C-11) ppm.

Acetonides 19 (7,8-syn,8,9-syn 19a and 7,8-anti,8,9-syn 19b)

A mixture of diols **S9** [*d.r.*: 1:2 (**S9b**:**S9a**), 6.5 mg, 20 \square mol, 1 eq] was dissolved in CH₂Cl₂ (0.6 ml). 2,2-Dimethoxypropane (0.06 ml) and PPTS (1 mg, catalytic) were added and the reaction mixture was stirred for 3 h at rt. The solvent was removed under reduced pressure and flash chromatography (petroleum ether : ethyl acetate = 20:1) yielded acetonides 7,8-*syn*,8,9-*syn* **19a** and 7,8-*anti*,8,9-*syn* **19b** [*d.r.*: 1:2 (**19b**:**19a**), 3.5 mg, 10 \square mol, 50%] as a colourless oil.

 $R_f = 0.79$ (PE:EE = 2:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): m/z: calculated for C₂₂H₃₁O₄: 359.2222 [M + H]⁺, found: 359.2217 [M + Na]⁺.

7,8-*syn*,8,9-*syn* **19a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.20-7.39 (m, 6H, H-3 + Ph), 5.91 (dd, 1H, *J* = 7.3, 7.3 Hz, H-5), 5.82 (d, 1H, *J* = 15.7 Hz, H-2), 5.09 (d, 1H, *J* = 2.7 Hz, H-9), 4.22 (q, 2H, *J* = 7.1 Hz, H-12), 4.16-4.22 (m, 1H, H-7), 2.42-2.53 (m, 1H, H-6_a), 2.30-2.40 (m, 1H, H-6_b), 1.81 (s, 3H, H-10), 1.66-1.74 (m, 1H, H-8), 1.54 (s, 3H, H-15_a), 1.53 (s, 3H, H-15_b), 1.31 (t, 3H, *J* = 7.1 Hz, H-13), 0.65 (d, 3H, *J* = 6.8 Hz, H-11) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.3 (t, C-3), 141.1 (q, Ph), 137.0 (t, C-5), 134.7 (q, C-4), 128.2 (t, Ph), 127.0 (t, Ph), 125.6 (t, Ph), 116.3 (t, C-2), 99.6 (q, C-14), 74.8 (t, C-9), 72.8 (t, C-7), 60.4 (s, C-12), 37.1 (t, C-8), 32.8 (s, C-6), 30.1 (p, C-15_a), 19.8 (p, C-15_b), 14.5 (p, C-13), 12.6 (p, C-10), 5.2 (p, C-11) ppm.

7,8-*anti*,8,9-*syn* **19b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.20-7.39 (m, 6H, H-3 + Ph), 6.02 (dd, 1H, J = 7.0, 7.0 Hz, H-5), 5.82 (d, 1H, J = 15.7 Hz, H-2), 5.17 (d, 1H, J = 2.7 Hz, H-9), 4.22 (q, 2H, J = 7.1 Hz, H-12), 3.48 (ddd, 1H, J = 7.4, 7.4, 4.9 Hz, H-7), 2.42-2.53 (m, 1H, H-6_a), 2.30-2.40 (m, 1H, H-6_b), 1.94-2.05 (m, 1H, H-8), 1.81 (s, 3H, H-10), 1.45 (s, 3H, H-15_a), 1.40 (s, 3H, H-15_b), 1.31 (t, 3H, J = 7.1 Hz, H-13), 0.53 (d, 3H, J = 6.8 Hz, H-11) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.4 (t, C-3), 141.1 (q, Ph), 138.0 (t, C-5), 134.7 (q, C-4), 128.2 (t, Ph), 126.1 (t, Ph), 126.0 (t, Ph), 116.1 (t, C-2), 100.7 (q, C-14), 74.7 (t, C-9), 70.8 (t, C-7), 60.4 (s, C-12), 41.7 (t, C-8),

(S)-8-Benzyl-3-[(2S,3R)-3-hydroxy-2-methylbutanoyl]oxazolidin-2-one (S10)

Propionated (*S*)-EVANS auxiliary $S4^{S2}$ (2.0 g, 8.6 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (34 ml) and the reaction mixture was cooled to 0 °C. Et₃N (1.5 ml, 10.3 mmol, 1.2 eq) and *n*-Bu₂BOTf (10.3 ml, *c* = 1 mol/l in CH₂Cl₂, 10.3 mmol, 1.2 eq) were added. The solution was stirred for 1 h at -78 °C and for 1 h at 0 °C after which time it was cooled to -78 °C. Acetaldehyde (S11) (1.0 ml, 17.2 mmol, 2.0 eq) was dissolved in CH₂Cl₂ (5 ml) and added to the solution, which was stirred for 2 h at -78 °C and then overnight at 0 °C. The reaction was terminated by addition of MeOH (150 ml), NH₄OAc (6.5 g), aq. H₂O₂ (6 ml, 30%ig) and stirring was continued for 2 h at rt. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 5:1 \rightarrow 2:1) to furnish product S10 (2.1 g, 7.5 mmol, 87%) as a colourless oil.

R_f = 0.36 (PE:EE = 2:1); $[α]_D^{20}$ = +51.1 (*c* = 1.0, CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.26-7.37 (m, 3H, Ph), 7.18-7.23 (m, 2H, Ph), 4.68-4.76 (m, 1H, H-8), 4.14-4.27 (m, 3H, H-3 + H-7), 3.74 (qd, 1H, *J* = 7.1, 3.0 Hz, H-2), 3.25 (dd, 1H, *J* = 13.4, 3.1 Hz, H-9_a), 2.79 (dd, 1H, *J* = 13.4, 9.4 Hz, H-9_b), 1.27 (d, 3H, *J* = 7.1 Hz, H-5), 1.21 (d, 3H, *J* = 6.1 Hz, H-4) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 177.5 (q, C-1), 153.3 (q, C-6), 135.2 (q, Ph), 129.6 (t, Ph), 129.1 (t, Ph), 127.6 (t, Ph), 67.8 (t, C-3), 66.3 (s, C-7), 55.2 (t, C-8), 43.2 (t, C-2), 38.0 (s, C-9), 19.7 (p, C-4), 10.7 (p, C-5) ppm; HRMS (ESI): *m/z*: calculated for C₁₅H₂₀NO₄ und C₁₅H₁₉NNaO₄: 278.1392 [M + H]⁺ and 300.1212 [M + Na]⁺, found: 278.1388 [M + H]⁺ and 300.1201 [M + Na]⁺.^{S4}

(S)-8-Benzyl-3-[(2S,3R)-3-(methoxymethoxy)-2-methylbutanoyl]oxazolidin-2-one (S12)

Alcohol **S10** (1.0 g, 3.6 mmol, 1 eq) was dissolved in CH₂Cl₂ (70 ml) and cooled to 0 °C. ^{*i*}Pr₂NEt (6.5 ml, 36.4 mmol, 10 eq) was added. Then, MOMCl (1.4 ml, 18.2 mmol, 5 eq) was added slowly and the reaction mixture was warmed to rt. The solution was stirred for 4 d at rt. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 5:1 \rightarrow 2:1). MOM-ether **S12** (1.1 g, 3.3 mmol, 91%) was obtained as a colourless oil.

 R_f = 0.46 (PE:EE = 2:1); [α]_D²⁰ = +71.5 (*c* = 1.0, CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.19-7.38 (m, 5H, Ph), 4.58-4.69 (m, 3H, H-8 + MOM), 4.14-4.22 (m, 2H, H-7), 3.92-4.02 (m, 1H, H-2 + H-3), 3.34 (s, 3H, MOM), 3.30 (dd, 1H, *J* = 13.4, 3.2 Hz, H-9_a), 2.77 (dd, 1H, *J* = 13.4, 9.6 Hz, H-9_b), 1.26 (d, 3H, *J* = 6.8 Hz, H-5), 1.24 (d, 3H, *J* = 6.2 Hz, H-4) ppm; ¹³**C-NMR** (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 175.0 (q, C-1), 153.4 (q, C-6), 135.5 (q, Ph), 129.6 (t, Ph), 129.1 (t, Ph), 127.5 (t, Ph), 95.4 (s, MOM), 74.3 (t, C-3), 66.2 (s, C-7), 55.9 (p, MOM), 55.7 (t, C-8), 43.0 (t, C-2), 37.9 (s, C-9), 18.1 (p, C-4), 12.5 (p, C-5) ppm; **HRMS** (ESI): *m*/*z*: calculated for C₁₇H₂₃NaNO₅: 344.1474 [M + Na]⁺, found: 344.1464 [M + Na]⁺.

(2R,3R)-3-(Methoxymethoxy)-2-methylbutan-1-ol (S13)

Oxazolidinone **S12** (1.0 g, 3.2 mmol, 1.0 eq) was dissolved in Et_2O (64 ml) and cooled to 0 °C. LiBH₄ (280 mg, 12.8 mmol, 4.0 eq) was slowly added and the solution was warmed to rt overnight. The reaction was terminated by addition of aq. NH₄Cl and stirring was continued for 2.5 h at rt. The layers were separated and the aqueous layer was extracted with Et_2O . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 2:1) to yield alcohol **S13** (410 mg, 2.8 mmol, 87%) as a colourless liquid.

 $R_f = 0.25$ (PE:EE = 2:1); $[\alpha]_D^{20} = -62.8$ (c = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 4.69 (d, 1H, J = 6.8 Hz, MOM), 4.61 (d, 1H, J = 6.8 Hz, MOM), 3.90 (qd, 1H, J = 6.5, 3.6 Hz, H-3), 3.68 (dd, 1H, J = 11.0, 8.5 Hz, H-1_a), 3.54 (dd, 1H, J = 11.0, 4.9 Hz, H-1_b), 3.39 (s, 3H, MOM), 2.31 (brs, 1H, OH), 1.85-1.96 (m, 1H, H-2), 1.17 (d, 3H,

J = 6.5 Hz, H-4), 0.87 (d, 3H, J = 6.8 Hz, H-5) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 95.4 (s, MOM), 75.4 (t, C-3), 65.5 (s, C-1), 55.8 (p, MOM), 40.0 (t, C-2), 16.2 (p, C-4), 11.6 (p, C-5) ppm; **HRMS** (ESI): m/z: calculated for C₇H₁₆NaO₃: 171.0997 [M + Na]⁺, found: 171.0994 [M + Na]⁺.

(2S,3R)-3-(Methoxymethoxy)-2-methylbutanal (20)

Alcohol **S13** (60 mg, 0.4 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (8 ml) and NaHCO₃ (20 mg) added. DESS-MARTIN periodinane (206 mg, 0.5 mmol, 1.2 eq) was added and stirring ws continued for 1 h at rt. The reaction was terminated by addition of aq. Na₂S₂O₃ and the solution was stirred for 1 h at rt. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1) to furnish aldehyde **20** (42 mg, 0.3 mmol, 72%) as a colourless liquid, which was used immediately in the next step.

 $R_f = 0.65$ (PE:EE = 2:1); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.78 (d, 1H, J = 0.9 Hz, H-1), 4.71 (d, 1H, J = 7.2 Hz, MOM), 4.60 (d, 1H, J = 7.2 Hz, MOM), 4.16 (qd, 1H, J = 6.4, 4.2 Hz, H-3), 3.34 (s, 2H, MOM), 2.49 (qdd, 1H, J = 7.1, 4.2, 0.9 Hz, H-2), 1.24 (d, 3H, J = 6.4 Hz, H-4), 1.13 (d, 3H, J = 7.1 Hz, H-5) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 204.5 (t, C-1), 95.3 (s, MOM), 72.6 (t, C-3), 55.7 (p, MOM), 51.9 (t, C-2), 17.8 (p, C-4), 8.4 (p, C-5) ppm; HRMS (ESI): *m/z*: Compound **20** could not be detected by mass spectrometry.

(2E,4E,7S,8R,9R)-Ethyl-7-hydroxy-9-(methoxymethoxy)-4,8-dimethyldeca-2,4-dienoate (7,8-syn,8,9-syn 26a) and

(2E,4E,7R,8R,9R)-ethyl-7-hydroxy-9-(methoxymethoxy)-4,8-dimethyldeca-2,4-dienoate (7,8-*anti*,8,9-*syn* 26b)

Following the general procedure, aldehyde **20** (36 mg, 0.25 mmol, 1 eq) was reacted with ester **6** (74 mg, 0.48 mmol, 2 eq) at -78 °C overnight. The crude product was purified by flash

chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 2:1$) and furnished alcohols 7,8-*syn*,8,9-*syn* **26a** and 7,8-*anti*,8,9-*syn* **26b** (*d.r.*: 1:3.2 (**26b**:**26a**), 53 mg, 0.18 mmol, 72%) as a yellow oil.

 $R_f = 0.19$ (PE:EE = 5:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): *m/z*: calculated for C₁₆H₂₈NaO₅: 323.1834 [M + Na]⁺, found: 323.1825 [M + Na]⁺.

7,8-*syn*,8,9-*syn* **26a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33 (d, 1H, J = 15.5 Hz, H-3), 5.92 (dd, 1H, J = 7.7, 7.7 Hz, H-5), 5.81 (d, 1H, J = 15.5 Hz, H-2), 4.74 (d, 1H, J = 6.8 Hz, MOM), 4.61 (d, 1H, J = 6.8 Hz, MOM), 4.20 (q, 2H, J = 7.0 Hz, H-13), 3.90-3.97 (m, 2H, H-7 + H-9), 3.38 (s, 3H, MOM), 2.43-2.54 (m, 1H, H-6_a), 2.30-2.41 (m, 1H, H-6_b), 1.80 (s, 3H, H-11), 1.47-1.55 (m, 1H, H-8), 1.29 (t, 3H, J = 7.0 Hz, H-14), 1.19 (d, 3H, J = 6.5 Hz, H-10), 0.98 (d, 3H, J = 7.2 Hz, H-12) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.4 (t, C-3), 138.0 (t, C-5), 134.4 (q, C-4), 116.2 (t, C-2), 94.7 (s, MOM), 77.6 (t, C-9), 75.0 (t, C-7), 60.3 (s, C-13), 56.0 (p, MOM), 42.1 (t, C-8), 34.6 (s, C-6), 17.7 (p, C-10), 14.5 (p, C-14), 12.6 (p, C-11), 5.9 (p, C-12) ppm.

7,8-*anti*,8,9-*syn* **26b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.36 (d, 1H, J = 14.8 Hz, H-3), 6.09 (dd, 1H, J = 7.2, 7.2 Hz, H-5), 5.80 (d, 1H, J = 14.8 Hz, H-2), 4.69 (d, 1H, J = 7.0 Hz, MOM), 4.62 (d, 1H, J = 7.0 Hz, MOM), 4.20 (q, 2H, J = 7.0 Hz, H-13), 4.02 (qd, 1H, J = 6.6, 2.8 Hz, H-9), 3.73 (ddd, 1H, J = 8.0, 8.0, 4.1 Hz, H-7), 3.39 (s, 3H, MOM), 2.43-2.54 (m, 1H, H-6_a), 2.30-2.41 (m, 1H, H-6_b), 1.80 (s, 3H, H-11), 1.63-1.74 (m, 1H, H-8), 1.29 (t, 3H, J = 7.0 Hz, H-14), 1.19 (d, 3H, J = 6.6 Hz, H-10), 0.87 (d, 3H, J = 7.2 Hz, H-12) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.6 (t, C-3), 138.4 (t, C-5), 134.3 (q, C-4), 115.9 (t, C-2), 95.4 (s, MOM), 75.5 (t, C-9), 72.9 (t, C-7), 60.3 (s, C-13), 55.9 (p, MOM), 42.4 (t, C-8), 34.4 (s, C-6), 16.1 (p, C-10), 14.5 (p, C-14), 12.6 (p, C-11), 12.1 (p, C-12) ppm.

(S)-8-Benzyl-3-[(2S,3R)-3-(*tert*-butyldimethylsilyloxy)-2-methylbutanoyl]oxazolidin-2one (S14)

Alcohol **S10** (1.0 g, 3.6 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (50 ml) and the solution was cooled to 0 °C. 2,6-Lutidine (1.3 ml, 10.9 mmol, 3.0 eq) and TBSOTf (1.3 ml, 5.5 mmol,

1.5 eq) were added and the reaction mixture was stirred for 2 h. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 9:1 \rightarrow 2:1) to furnish alcohol **S14** (1.4 g, 3.5 mmol, 97%) as a colourless oil.

 $R_f = 0.80$ (PE:EE = 2:1); $[\alpha]_D^{20} = +49.2$ (c = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): $\delta 7.27-7.37 \text{ (m, 3H, Ph)}, 7.20-7.24 \text{ (m, 2H, Ph)}, 4.59-4.67 \text{ (m, 1H, H-8)},$ 4.14-4.19 (m, 2H, H-7), 4.05-4.12 (m, 1H, H-3), 3.79-3.88 (m, 1H, H-2), 3.29 (dd, 1H, $J = 13.3, 3.4 \text{ Hz}, \text{H-9}_{a}$, 2.77 (dd, 1H, $J = 13.3, 9.6 \text{ Hz}, \text{H-9}_{b}$), 1.22 (d, 3H, J = 6.8 Hz, H-5), 1.18 (d, 3H, *J* = 6.1 Hz, H-4), 0.88 (s, 9H, TBS), 0.05 (s, 3H, TBS), 0.02 (s, 3H, TBS) ppm; ¹³**C-NMR** (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 175.5 (q, C-1), 153.3 (q, C-6), 135.5 (q, Ph), 129.6 (t, Ph), 129.1 (t, Ph), 127.5 (t, Ph), 69.8 (t, C-3), 66.1 (s, C-7), 55.8 (t, C-8), 45.1 (t, C-2), 37.9 (s, C-9), 25.9 (p, TBS), 21.8 (p, C-4), 18.1 (q, TBS), 12.7 (p, TBS), -4.4 (p, TBS), -4.9 (p, TBS) ppm; **HRMS** (ESI): m/z: calculated for C₂₁H₃₄NO₄Si and C₂₁H₃₃NNaO₄Si: 392.2257 [M + H]⁺ $414.2077 [M + Na]^+$, found: 392.2256 [M + H]⁺ and and $414.2063 [M + Na]^+$.

(2R,3R)-3-(tert-Butyldimethylsilyloxy)-2-methylbutan-1-ol (S15)

Oxazolidinone **S14** (1.4 g, 3.5 mmol, 1.0 eq) was dissolved in Et₂O (70 ml) and the solution was cooled to 0 °C. LiBH₄ (303 mg, 13.9 mmol, 4.0 eq) was slowly added and stirring was continued overnight at rt. The reaction was terminated by addition of aq. NH₄Cl. After stirrinf for 1 h at rt, the layers were separated and the aqueous layer was extracted with Et₂O. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1) to furnish alcohol **S15** (263 mg, 1.2 mmol, 35%) as a colourless oil.

 $R_f = 0.69$ (PE:EE = 2:1); $[\alpha]_D^{20} = -10.2$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 4.00 (qd, 1H, *J* = 6.4, 3.5 Hz, H-3), 3.72 (dd, 1H, *J* = 10.8, 9.0 Hz, H-1_a), 3.51 (dd, 1H, *J* = 10.8, 4.6 Hz, H-1_b), 1.91-2.01 (m, 1H, H-2), 1.15 (d, 3H, *J* = 6.4 Hz, H-4), 0.89 (s, 9H, TBS), 0.79 (d, 3H, *J* = 7.2 Hz, H-5), 0.08 (s, 3H, TBS), 0.08 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 72.5 (t, C-3), 65.9 (s, C-1), 41.0 (t, 7.5) (t, C-3), 65.9 (t, C-3), 65.9 (t, C-3), 65.9 (t, C-3), 65.9 (t, C-

C-2), 26.0 (p, TBS), 18.4 (p, C-4), 18.2 (q, TBS), 12.6 (p, C-5), -4.3 (p, TBS), -4.8 (p, TBS) ppm; **HRMS** (ESI): m/z: calculated for C₁₁H₂₇O₂Si and C₂₁H₃₃NNaO₄Si: 219.1780 [M + H]⁺ and 241.1600 [M + Na]⁺, found: 219.1781 [M + H]⁺ and 241.1602 [M + Na]⁺.

(2S,3R)-3-(tert-Butyldimethylsilyloxy)-2-methylbutanal (21)

Alcohol **S15** (60 mg, 275 \square mol, 1.0 eq) was dissolved in CH₂Cl₂ (5.5 ml) and NaHCO₃ (15 mg) added. DESS-MARTIN periodinane (140 mg, 330 \square mol, 1.2 eq) was added and the reaction mixture was stirred 1 h at rt. The reaction was terminated by addition of aq. Na₂S₂O₃ and the solution was stirred for 1 h at rt. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish aldehyde **21** (46 mg, 213 \square mol, 77%) as a colourless liquid, which was used immediately in the next step.

 $R_f = 0.72$ (PE:EE = 2:1); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.77 (d, 1H, J = 1.4 Hz, H-1), 4.26 (qd, 1H, J = 6.2, 4.4 Hz, H-3), 2.34-2.42 (m, 1H, H-2), 1.18 (d, 3H, J = 6.2 Hz, H-4), 1.07 (d, 3H, J = 6.8 Hz, H-5), 0.86 (s, 9h, TBS), 0.07 (s, 3H, TBS), 0.05 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 205.5 (t, C-1), 68.3 (t, C-3), 53.6 (t, C-2), 25.9 (p, TBS), 21.3 (p, C-4), 18.1 (q, TBS), 8.3 (p, C-5), -4.1 (p, TBS), -4.9 (p, TBS) ppm; HRMS (ESI): m/z: Compound **21** could not be detected by mass spectrometry.

(2*E*,4*E*,7*S*,8*R*,9*R*)-Ethyl-9-(*tert*-butyldimethyl-silyloxy)-7-hydroxy-4,8-dimethyldeca-2,4dienoate (7,8-*syn*,8,9-*syn* 27a) and

(2*E*,4*E*,7*R*,8*R*,9*R*)-ethyl-9-(*tert*-butyldimethylsilyloxy)-7-hydroxy-4,8-dimethyldeca-2,4dienoate (7,8-*anti*,8,9-*syn* 27b)

Following the general procedure, aldehyde **21** (35 mg, 0.16 mmol, 1 eq) was reacted with ester **6** (49 mg, 0.32 mmol, 2 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 10:1$) to furnish alcohols

7,8-*syn*,8,9-*syn* **27a** and 7,8-*anti*,8,9-*syn* **27b** [*d.r.*: 1:1.9 (**27b**:**27a**), 53 mg, 0.14 mmol, 89%] as a yellow oil.

 $R_f = 0.27$ (PE:EE = 10:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): *m/z*: calculated for C₂₀H₃₉O₄Si: 371.2618 [M + H]⁺, found: 371.2616 [M + H]⁺.

7,8-*syn*,8,9-*syn* **27a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.38 (d, 1H, J = 15.7 Hz, H-3), 5.91 (dd, 1H, J = 7.3, 7.3 Hz, H-5), 5.80 (d, 1H, J = 15.7 Hz, H-2), 4.20 (q, 2H, J = 7.2 Hz, H-13), 4.08 (qd, 1H, J = 6.4, 2.7 Hz, H-9), 3.90 (ddd, 1H, J = 6.9, 6.9, 1.8 Hz, H-7), 2.28-2.50 (m, 2H, H-6), 1.80 (s, 3H, H-11), 1.70-1.83 (m, 1H, H-8), 1.30 (t, 3H, J = 7.2 Hz, H-14), 1.16 (d, 3H, J = 6.5 Hz, H-10), 0.93 (d, 3H, J = 7.2 Hz, H-12), 0.89 (s, 9H, TBS), 0.10 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.5 (t, C-3), 138.1 (t, C-5), 134.5 (q, C-4), 116.1 (t, C-2), 75.2 (t, C-9), 74.0 (t, C-7), 60.3 (s, C-13), 42.8 (t, C-8), 34.6 (s, C-6), 26.0 (p, TBS), 21.9 (p, C-10), 18.1 (q, TBS), 14.5 (p, C-14), 12.6 (p, C-11), 5.4 (p, C-12), -3.4 (p, TBS), -4.7 (p, TBS) ppm.

7,8-*anti*,8,9-*syn* **27b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33 (d, 1H, J = 15.7 Hz, H-3), 6.11 (dd, 1H, J = 7.0, 7.0 Hz, H-5), 5.79 (d, 1H, J = 15.7 Hz, H-2), 4.20 (q, 2H, J = 7.2 Hz, H-13), 4.01 (qd, 1H, J = 6.6, 3.2 Hz, H-9), 3.82 (ddd, 1H, J = 9.5, 6.4, 3.3 Hz, H-7), 2.28-2.50 (m, 2H, H-6), 1.80 (s, 3H, H-11), 1.37-1.46 (m, 1H, H-8), 1.30 (t, 3H, J = 7.2 Hz, H-14), 1.18 (d, 3H, J = 6.6 Hz, H-10), 0.89 (s, 9H, TBS), 0.77 (d, 3H, J = 7.2 Hz, H-12), 0.11 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.8 (q, C-1), 149.7 (t, C-3), 138.4 (t, C-5), 134.2 (q, C-4), 115.7 (t, C-2), 73.6 (t, C-9), 72.8 (t, C-7), 60.3 (s, C-13), 43.1 (t, C-8), 34.8 (s, C-6), 25.9 (p, TBS), 18.0 (q, TBS), 17.8 (p, C-10), 14.5 (p, C-14), 13.6 (p, C-12), 12.6 (p, C-11), -4.5 (p, TBS), -5.0 (p, TBS) ppm.

(2E,4E,7S,8S,9R)-Ethyl-7,9-dihydroxy-4,8-dimethyldeca-2,4-dienoate

(7,8-syn,8,9-syn S16a) and

(2*E*,4*E*,7*R*,8*S*,9*R*)-ethyl-7,9-dihydroxy-4,8-dimethyldeca-2,4-dienoate (7,8-*anti*,8,9-*syn* **S16b**)

A mixture of alcohols **27** (21 mg, 57 \square mol, 1.0 eq) was dissolved in THF (1.0 ml) and cooled to 0 °C. TBAF·3H₂O (27 mg, 86 \square mol, 1.5 eq) was added and the solution was stirred for 1 h while it warmed up from 0 °C to rt. The reaction was terminated by addition of aq. NH₄Cl.

The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 2:1 \rightarrow 1:1) to furnish diols 7,8-*syn*,8,9-*syn* **S16a** and 7,8-*anti*,8,9-*syn* **S16b** (13 mg, 50 \square mol, 89%) as a colourless oil.

 $R_f = 0.2$ (PE:EE = 2:1); **HRMS** (ESI): *m*/*z*: calculated for C₁₄H₂₄NaO₄: 279.1572 [M + Na]⁺, found: 279.1569 [M + Na]⁺.

7,8-*syn*,8,9-*syn* **S16a**: $[\alpha]_D^{20} = -7.1$ (c = 0.4, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.32 (d, 1H, J = 15.5 Hz, H-3), 5.89 (dd, 1H, J = 7.5, 7.4 Hz, H-5), 5.82 (d, 1H, J = 15.5 Hz, H-2), 4.21 (q, 2H, J = 7.1 Hz, H-13), 4.10 (qd, 1H, J = 6.4, 2.1 Hz, H-9), 3.98 (ddd, 1H, J = 7.6, 6.8, 1.9 Hz, H-7), 2.50 (ddd, 1H, J = 14.9, 7.6, 7.5 Hz, H-6_a), 2.34 (ddd, 1H, J = 14.9, 7.4, 6.8 Hz, H-6_b), 1.81 (s, 3H, H-11), 1.47 (qdd, 1H, J = 7.1, 2.1, 1.9 Hz, H-8), 1.30 (t, 3H, J = 7.1 Hz, H-14), 1.21 (d, 3H, J = 6.4 Hz, H-10), 0.96 (d, 3H, J = 7.1 Hz, H-12) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.2 (t, C-3), 137.3 (t, C-5), 135.1 (q, C-4), 116.5 (t, C-2), 76.3 (t, C-9), 73.0 (t, C-7), 60.4 (s, C-13), 41.8 (t, C-8), 34.8 (s, C-6), 21.7 (p, C-10), 14.5 (p, C-14), 12.6 (p, C-11), 4.2 (p, C-12) ppm.

7,8-*anti*,8,9-*syn* **S16b**: $[\alpha]_D^{20} = +21.2$ (c = 0.4, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.34 (d, 1H, J = 15.7 Hz, H-3), 5.99 (dd, 1H, J = 7.5, 7.2 Hz, H-5), 5.83 (d, 1H, J = 15.7 Hz, H-2), 4.21 (q, 2H, J = 7.1 Hz, H-13), 4.16 (qd, 1H, J = 6.5, 2.3 Hz, H-9), 3.79 (ddd, 1H, J = 6.5, 6.1, 6.1 Hz, H-7), 2.45-2.51 (m, 2H, H-6), 1.82 (s, 3H, H-11), 1.68 (dqd, 1H, J = 7.1, 6.5, 2.3 Hz, H-8), 1.30 (t, 3H, J = 7.1 Hz, H-14), 1.21 (d, 3H, J = 6.5 Hz, H-10), 0.94 (d, 3H, J = 7.1 Hz, H-12) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.2 (t, C-3), 137.3 (t, C-5), 135.3 (q, C-4), 116.5 (t, C-2), 74.8 (t, C-9), 69.6 (t, C-7), 60.4 (s, C-13), 42.4 (t, C-8), 35.2 (s, C-6), 19.6 (p, C-10), 14.5 (p, C-14), 12.6 (p, C-11), 12.0 (p, C-12) ppm.

Acetonide (7,8-syn,8,9-syn S17a)

7,8-syn,8,9-syn **S17a**

Diol 7,8-*syn*,8,9-*syn* **S16a** (3.9 mg, 15 \square mol, 1 eq) was dissolved in CH₂Cl₂ (2.0 ml). 2,2-Dimethoxypropane (0.2 ml) and CSA (2 mg, catalytic) were added and the solution was stirred for 1.5 h at rt. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 8:1 \rightarrow 3:1). Acetonide 7,8-*syn*,8,9-*syn* **S17a** (3.8 mg, 13 \square mol, 91%) was obtained as a colourless oil. R_f = 0.66 (PE:EE = 2:1); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.32 (d, 1H, J = 15.7 Hz, H-3), 5.86 (dd, 1H, J = 7.3, 7.2 Hz, H-5), 5.81 (d, 1H, J = 15.7 Hz, H-2), 4.21 (q, 2H, J = 7.2 Hz, H-13), 4.08 (qd, 1H, J = 6.4, 2.3 Hz, H-9), 3.97 (ddd, 1H, J = 7.3, 7.2, 2.0 Hz, H-7), 2.41 (ddd, 1H, J = 15.1, 7.2, 7.2 Hz, H-6_a), 2.34 (ddd, 1H, J = 15.1, 7.3, 7.3 Hz, H-6_b), 1.80 (s, 3H, H-11), 1.44 (s, 3H, H-16_a), 1.40 (s, 3H, H-16_b), 1.26-1.35 (m, 1H, H-8), 1.30 (t, 3H, J = 7.2 Hz, H-14), 1.13 (d, 3H, J = 6.4 Hz, H-10), 0.87 (d, 3H, J = 6.8 Hz, H-12) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.4 (t, C-3), 137.3 (t, C-5), 134.5 (q, C-4), 116.2 (t, C-2), 99.1 (q, C-15), 72.9 (t, C-9), 69.1 (t, C-7), 60.4 (s, C-13), 41.8 (t, C-8), 35.9 (s, C-6), 30.2 (p, C-16_a), 19.8 (p, C-10), 19.1 (p, C-16_b), 14.5 (p, C-14), 12.6 (p, C-11), 4.6 (p, C-12) ppm; **HRMS** (ESI): *m/z*: calculated for C₁₇H₂₈NaO₄: 319.1885 [M + Na]⁺, found: 319.1883 [M + Na]⁺.

Acetonide (7,8-anti,8,9-syn S17b)

7,8-anti,8,9-syn S17b

Diol 7,8-*anti*,8,9-*syn* **S16b** (3.9 mg, 15 \square mol, 1 eq) was dissolved in CH₂Cl₂ (2.0 ml). 2,2-Dimethoxypropane (0.2 ml) and CSA (2 mg, catalytic) were added and the solution was stirred for 1.5 h at rt. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 8:1 \rightarrow 3:1). Acetonide 7,8-*anti*,8,9-*syn* **S17b** (3.8 mg, 13 \square mol, 91%) was obtained as a colourless oil. R_f = 0.65 (PE:EE = 2:1); $[\alpha]_D^{20} = -7.2$ (c = 0.2, CH₂Cl₂); ¹**H-NMR** (400 MHz, C₆D₆, C₆D₅H= 7.16 ppm): δ 7.69 (d, 1H, J = 15.6 Hz, H-3), 5.98 (d, 1H, J = 15.6 Hz, H-2), 5.88 (dd, 1H, J = 7.8, 6.3 Hz, H-5), 4.11 (q, 2H, J = 7.1 Hz, H-13), 3.94 (qd, 1H, J = 6.6, 6.2 Hz, H-9), 3.19-3.26 (m, 1H, H-7), 2.10-2.25 (m, 2H, H-6), 1.52 (s, 3H, H-11), 1.33 (s, 3H, H-16_a), 1.28 (s, 3H, H-16_b), 1.25-1.38 (m, 1H, H-8), 1.02 (t, 3H, J = 7.1 Hz, H-14), 0.98 (d, 3H, J = 6.6 Hz, H-10), 0.65 (d, 3H, J = 6.9 Hz, H-12) ppm; ¹³C-NMR (100 MHz, C₆D₆, C₆D₆ =

128.06 ppm): δ 167.1 (q, C-1), 149.3 (t, C-3), 138.3 (t, C-5), 134.3 (q, C-4), 116.8 (t, C-2), 100.5 (q, C-15), 74.3 (t, C-9), 64.9 (t, C-7), 60.1 (s, C-13), 40.4 (t, C-8), 34.1 (s, C-6), 25.3 (p, C-16_a), 24.1 (p, C-16_b), 16.7 (p, C-10), 14.4 (p, C-14), 12.3 (p, C-11), 11.8 (p, C-12) ppm; **HRMS** (ESI): m/z: calculated for C₁₇H₂₈NaO₄: 319.1885 [M + Na]⁺, found: 319.1883 [M + Na]⁺.

Propionated (*S*)-EVANS auxiliary $S4^{S2}$ (8.0 g, 34 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (120 ml) and cooled to 0 °C. ^{*i*}Pr₂NEt (6 ml, 41 mmol, 1.2 eq) and *n*-Bu₂BOTf (38 ml, c = 1 mol/l in CH₂Cl₂, 38 mmol, 1.1 eq) were added. The solution was stirred for 75 min at 0 °C, cooled to -78 °C and freshly distillated acroleine (S19) (11 ml, 172 mmol, 5.0 eq) was added. The solution was stirred for 30 min at -78 °C and then for 2.5 h at 0 °C. The reaction was terminated by addition of MeOH (160 ml), H₂O (46 ml) and phosphate buffer (pH = 7, 2 ml) and a solution of MeOH (110 ml) and aq. H₂O₂ (55 ml, 30%ig) added. The mixture was stirred for 15 min during which time the temperature raised form 0 °C to rt. The solvent was removed under reduced pressure and dissolved in H₂O (250 ml). The aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were washed with aq. NaHCO₃, aq. NaCl and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product purified by flash chromatography (petroleum ether : ethyl acetate = 3:1 \rightarrow 2:1) to furnish product S18 (7.5 g, 26 mmol, 76%) as a colourless oil.

R_f = 0.21 (PE:EE = 2:1); $[α]_D^{20}$ = +59.2 (*c* = 1.0, CHCl₃) [ref. S5.: +92.6 (*c* = 1.0, CH₂Cl₂)]; ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.27-7.37 (m, 2H, Ph), 7.18-7.23 (m, 2H, Ph), 5.86 (ddd, 1H, *J* = 17.2, 10.6, 5.4 Hz, H-4), 5.36 (ddd, 1H, *J* = 17.2, 1.5, 1.4 Hz, H-5_a), 5.23 (ddd, 1H, *J* = 10.6, 1.4, 1.4 Hz, H-5_b), 4.68-4.75 (m, 1H, H-9), 4.49-4.54 (m, 1H, H-3), 4.17-4.26 (m, 2H, H-8), 3.88 (qd, 1H, *J* = 6.9, 3.5 Hz, H-2), 3.26 (dd, 1H, *J* = 13.5, 3.2 Hz, H-10_a), 2.86 (d, 1H, *J* = 3.1 Hz, OH), 2.80 (dd, 1H, *J* = 13.5, 9.4 Hz, H-10_b), 1.25 (d, 3H, *J* = 6.9 Hz, H-6) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 176.8 (q, C-1), 153.2 (q, C-7), 137.4 (t, C-4), 135.1 (q, Ph), 129.6 (t, Ph), 129.1 (t, Ph), 127.6 (t, Ph), 116.5 (s, C-5), 72.7 (t, C-3), 66.4 (s, C-8), 55.3 (t, C-9), 42.6 (t, C-2), 37.9 (s, C-10), 11.1 (p, C-6) ppm; **HRMS** (ESI): *m/z*: calculated for C₁₆H₁₉NaO₄: 312.1212 [M + Na]⁺, found: 312.1215 [M + Na]⁺. The analytical data are in accordance with those reported in the literature.^{S5}

(2S,3R)-3-Hydroxy-N-methoxy-N,2-dimethylpent-4-enamide (S19)

N,*O*-Dimethylhydroxylamine hydrochloride (6.2 g, 63.2 mmol, 10.7 eq) was suspended in THF (10 ml) and cooled to -30 °C. AlMe₃ (32 ml, c = 2 mol/l in hexane, 63.2 mmol, 10.7 eq) was added over a period of 30 min. The slurry was warmed up to rt and stirred for 25 min. The solution was cooled to -10 °C. Alcohol **S18** (1.7 g, 5.9 mmol, 1.0 eq) was dissolved in THF (25 ml) and added to the first solution over a period of 10 min. The reaction was stirred for 2 h at 0 °C. The mixture was slowly transferred into a solution at 0 °C of aq. Na-K-tartrate (165 ml), aq. NaHCO₃ (90 ml), ethyl acetate (265 ml) and stirred 1 h at 0 °C and 45 min at rt. The layers were separated and the aqueous layer was extracted with ethyl acetate. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 2:1) and furnished Weinreb amide **S19** (472 mg, 2.7 mmol, 46%) as colourless liquid.

R_f = 0.33 (PE:EE = 2:1); $[α]_D^{20}$ = +31.1 (*c* = 1.0, CHCl₃) [ref. S6.: +46.3 (*c* = 1.4, CH₂Cl₂)]; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 5.81 (ddd, 1H, *J* = 17.1, 10.7, 5.1 Hz, H-4), 5.35 (d, 1H, *J* = 17.1 Hz, H-5_a), 5.20 (d, 1H, *J* = 10.7 Hz, H-5_b), 4.42-4.47 (m, 1H, H-3), 3.77-3.82 (m, 1H, H-2), 3.71 (s, 3H, H-8), 3.20 (s, 3H, H-7), 2.95 (brs, 1H, OH), 1.17 (d, 3H, *J* = 7.2 Hz, H-6) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 177.9 (q, C-1), 137.9 (t, C-4), 115.9 (s, C-5), 72.6 (t, C-3), 61.7 (p, C-8), 39.4 (t, C-2), 31.9 (p, C-7), 10.7 (p, C-6) ppm; HRMS (ESI): *m/z*: calculated for C₈H₁₅NaNO₃: 196.0950 [M + Na]⁺, found: 196.0955 [M + Na]⁺. The analytical data are in accordance with those reported in the literature.^{S6}

(2S,3R)-N-Methoxy-3-(methoxymethoxy)-N,2-dimethylpent-4-enamide (S20)

Alcohol **S19** (150 mg, 0.9 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (10 ml) and 'the solution was cooled to 0 °C. ^{*i*}Pr₂NEt (2.01 ml, 12.1 mmol, 14.0 eq) and MOMCl (0.46 ml, 6.1 mmol, 7.0 eq) were added and stirring was continued for 8 d at rt. The reaction was terminated by

addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $5:1 \rightarrow 2:1$) to furnish alcohol **S20** (172 mg, 0.8 mmol, 91%) as a colourless oil.

 $R_f = 0.33$ (PE:EE = 2:1); $[\alpha]_D^{20} = -80.4$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 5.75 (ddd, 1H, *J* = 16.6, 9.5, 7.8 Hz, H-4), 5.25 (d, 1H, *J* = 16.6 Hz, H-5_a), 5.22 (d, 1H, *J* = 9.5 Hz, H-5_b), 4.70 (d, 1H, *J* = 6.7 Hz, MOM), 4.54 (d, 1H, *J* = 6.7 Hz, MOM), 4.16 (dd, 1H, *J* = 8.0, 7.8 Hz, H-3), 3.68 (s, 3H, H-8), 3.38 (s, 3H, MOM), 3.16 (s, 4H, H-2 + H-7), 1.24 (d, 3H, *J* = 6.8 Hz, H-6) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 175.3 (q, C-1), 136.3 (t, C-4), 118.9 (s, C-5), 94.1 (s, MOM), 79.1 (t, C-3), 61.6 (p, C-8), 55.8 (p, MOM), 40.6 (t, C-2), 32.2 (p, C-7), 14.3 (p, C-6) ppm; HRMS (ESI): *m/z*: calculated for C₁₀H₁₉NaO₄N: 240.1212 [M + Na]⁺, found: 240.1212 [M + Na]⁺.

(2S,3R)-3-(Methoxymethoxy)-2-methylpent-4-enal (22)

Weinreb amide **S20** (144 mg, 0.7 mmol, 1.0 eq) was dissolved in CH_2Cl_2 and cooled to -78 °C. DIBAL-H (1.11 ml, c = 1.2 mol/l in toluene, 1.3 mmol, 2.0 eq) was added dropwise and the solution was stirred for 1.5 h at -78 °C. More DIBAL-H (0.65 ml, c = 1.2 mol/l in toluene, 0.8 mmol, 1.2 eq) was added and stirring was continued for 2 h at -78 °C. The reaction was terminated by addition of etyl acetate and after addition of aq. Na-K-tartrate the mixture was stirred for 1 h at rt. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1) to furnish aldehyde **22** (85 mg, 0.5 mmol, 81%) as a colourless oil, which was used immediately in the next step.

 $R_f = 0.64$ (PE:EE = 2:1); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.78 (d, 1H, J = 1.0 Hz, H-1), 5.75 (ddd, 1H, J = 16.6, 12.1, 7.5 Hz, H-4), 5.32 (d, 1H, J = 16.6 Hz, H-5_a), 5.32 (d, 1H, J = 12.1 Hz, H-5_b), 4.71 (d, 1H, J = 6.8 Hz, MOM), 4.53 (d, 1H, J = 6.8 Hz, MOM), 4.46 (dd, 1H, J = 7.5, 4.4 Hz, H-3), 3.35 (s, 3H, MOM), 2.53-2.61 (m, 1H, H-2), 1.13 (d, 3H, J = 7.2 Hz, H-6) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 203.6 (t,

C-1), 135.1 (t, C-4), 119.3 (s, C-5), 94.1 (s, MOM), 55.9 (p, MOM), 50.9 (t, C-3), 8.7 (p, C-6) ppm.

(2E,4E,7S,8R,9R)-Ethyl-7-hydroxy-9-(methoxymethoxy)-4,8-dimethyl-undeca-2,4,10-trienoate (7,8-syn,8,9-syn 28a) and

(2*E*,4*E*,7*R*,8*R*,9*R*)-ethyl-7-hydroxy-9-(methoxymethoxy)-4,8-dimethylundeca-2,4,10trienoate (7,8-*anti*,8,9-*syn* 28b)

Following the general procedure aldehyde **22** (76 mg, 0.5 mmol, 1.0 eq) was reacted with ester **6** (148 mg, 1.0 mmol, 2.0 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $20:1 \rightarrow 2:1$) to furnish alcohols 7,8-*syn*,8,9-*syn* **28a** and 7,8-*anti*,8,9-*syn* **28b** (*d.r.*: 1:1, 138 mg, 0.4 mmol, 91%) as a colourless oil.

 $R_f = 0.16$ (PE:EE = 10:1); the diastereomers could not be separated by column chromatography; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.36 (d, 1H, J = 15.4 Hz, H-3₁), 7.32 (d, 1H, J = 15.4 Hz, H-3₂), 6.08 (dd, 1H, J = 7.2, 7.2 Hz, H-5₁), 5.92 (dd, 1H, J = 7.3, 7.3 Hz, H-5₂), 5.81 (d, 1H, J = 15.4 Hz, H-2₁), 5.80 (d, 1H, J = 15.4 Hz, H-2₂), 5.69-5.83 (m, 2H, H-10_{1,2}), 5.27 (d, 2H, J = 9.6 Hz, H-11_{a,1,2}), 5.25 (d, 2H, J = 17.4 Hz, $H-11_{b,1,2}$, 4.70 (d, 1H, J = 6.8 Hz, $MOM_{a,1}$), 4.66 (d, 1H, J = 6.5 Hz, $MOM_{b,1}$), 4.58 (d, 1H, J = 6.5 Hz, MOM_{b.2}), 4.54 (d, 1H, J = 6.8 Hz, MOM_{a.2}), 4.33 (dd, 1H, J = 6.8, 3.1 Hz, H-9₁), 4.17-4.21 (m, 1H, H-9₂), 4.20 (q, 4H, J = 7.2 Hz, H-14_{1.2}), 3.93-3.99 (m, 1H, H-7₂), 3.67-3.75 (m, 1H, H-7₁), 3.54 (s, 1H, OH₁), 3.40 (s, 3H, MOM₁), 3.39 (s, 3H, MOM₂), 2.72 (s, 1H, OH₂), 2.43-2.54 (m, 2H, H-6_{a,1,2}), 2.31-2.41 (m, 2H, H-6_{b,1,2}), 1.80 (s, 6H, H-12_{1,2}), 1.61-1.69 (m, 1H, H-8₂), 1.29 (t, 6H, J = 7.2 Hz, H-15_{1.2}), 1.01 (d, 3H, J = 7.2 Hz, H-13₂), 0.87 (d, 3H, $J = 6.8 \text{ Hz}, \text{ H-13}_1$) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1₁), 167.6 (q, C-1₂), 149.6 (t, C-3₁), 149.3 (t, C-3₂), 138.3 (t, C-5₁), 137.8 (t, C-5₂), 136.3 (t, C-10₁), 135.4 (t, C-10₂), 134.7 (q, C-4₁), 134.4 (q, C-4₂), 118.6 (s, C-11₁), 118.2 (s, C-11₂), 116.3 (t, C-2₁), 115.9 (t, C-2₂), 94.8 (s, MOM), 94.0 (s, MOM), 81.7 (t, C-9₁), 79.9 (t, C-9₂), 73.9 (t, C-7₁), 73.0 (t, C-7₂), 60.4 (s, C-14₁), 60.3 (s, C-14₂), 56.1 (p, MOM), 42.4 (t, C-8₁), 41.8 (t, C-8₂), 34.5 (s, C-6₁), 34.2 (s, C-6₂), 14.5 (p, C-15_{1.2}), 12.6 (p, C-12₁), 12.6 (p, C-12₂), 11.9 (p, C-13₁), 6.9 (p, C-13₂) ppm; **HRMS** (ESI): m/z: calculated for C₁₇H₂₈NaO₅: $335.1834 [M + Na]^+$, found: $335.1832 [M + Na]^+$.

(S)-4-Benzyl-3-[(2S,3R)-3-(*tert*-butyldimethylsilyloxy]-2-methylpent-4-enoyl)oxazolidin-2-one (S21)

(*S*)-EVANS aldol product **S18** (2.5 g, 8.6 mmol, 1.5 eq) was dissolved in CH₂Cl₂ (180 ml) and cooled to 0 °C. 2,6-Lutidine (3 ml, 25.8 mmol, 3.0 eq) and TBSOTf (3 ml, 13.1 mmol, 1.5 eq) were added and the mixture was stirred for 2 h at 0 °C and for 1.5 h at rt. The reaction was terminated by addition of aq. NaHCO₃. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1) and furnished product **S21** (2.5 g, 6.2 mmol, 72%) as a colourless solid.

 R_f = 0.76 (PE:EE = 2:1); [*α*]_D²⁰ = +51.5 (*c* = 1.0, CHCl₃); m.p. = 42 °C; ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 5.85 (ddd, 1H, *J* = 17.1, 10.3, 6.3 Hz, H-4), 5.20 (d, 1H, *J* = 17.1 Hz, H-5_a), 5.11 (d, 1H, *J* = 10.3 Hz, H-5_b), 4.60 (dddd, 1H, *J* = 8.0, 6.4, 6.4, 3.2 Hz, H-9), 4.33 (dd, 1H, *J* = 6.4, 6.3 Hz, H-3), 4.09-4.19 (m, 2H, H-8), 3.98 (qd, 1H, *J* = 6.7, 6.4 Hz, H-2), 3.28 (dd, 1H, *J* = 13.3, 3.2 Hz, H-10_a), 2.77 (dd, 1H, *J* = 13.3, 8.0 Hz, H-10_b), 1.21 (d, 3H, *J* = 6.7 Hz, H-6), 0.89 (s, 9H, TBS), 0.02 (s, 3H, TBS), 0.01 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 174.8 (q, C-1), 153.4 (q, C-7), 139.4 (t, C-4), 135.5 (q, Ph), 129.6 (t, Ph), 129.1 (t, Ph), 127.5 (q, Ph), 115.9 (s, C-5), 75.3 (t, C-3), 66.1 (s, C-8), 55.8 (t, C-9), 44.2 (t, C-2), 37.9 (s, C-10), 25.9 (p, TBS), 18.3 (q, TBS), 12.6 (p, C-6), -4.3 (p, TBS), -5.0 (p, TBS) ppm; **HRMS** (ESI): *m/z*: calculated for C₂₂H₃₃NaNO₄Si: 426.2077 [M + Na]⁺, found: 426.2086 [M + Na]⁺.

(2R,3R)-3-(tert-Butyldimethylsilyloxy)-2-methylpent-4-en-1-ol (S22)

Oxazolidinone **S21** (1.46 g, 3.3 mmol, 1 eq) was dissolved in Et_2O (70 ml) and LiBH₄ (158 mg, 7.3 mmol, 2 eq) was added. The solution was stirred for 2 h at rt. The reaction was terminated by addition of aq. NH₄Cl and stirred for 1 h. The layers were separated and the aqueous layer was extracted with Et_2O . The combined, organic layers were dried over MgSO₄

and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 5:1) to furnish alcohol **S22** (592 mg, 2.6 mmol, 71%) as a colourless oil.

R_f = 0.42 (PE:EE = 5:1); $[α]_D^{20}$ = +10.2 (*c* = 1.0, CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 5.88 (ddd, 1H, *J* = 17.1, 10.6, 5.8 Hz, H-4), 5.23 (d, 1H, *J* = 17.1 Hz, H-5_a), 5.19 (d, 1H, *J* = 10.6 Hz, H-5_b), 4.25 (dd, 1H, *J* = 5.8, 4.6 Hz, H-3), 3.65 (dd, 1H, *J* = 10.7, 8.9 Hz, H-1_a), 3.49 (dd, 1H, *J* = 10.7, 4.3 Hz, H-1_b), 2.77 (brs, 1H, OH), 1.95-2.05 (m, 1H, H-2), 0.91 (s, 9H, TBS), 0.81 (d, 3H, *J* = 7.2 Hz, H-6), 0.08 (s, 3H, TBS), 0.05 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 137.8 (t, C-4), 116.1 (s, C-5), 77.6 (t, C-3), 65.9 (s, C-1), 41.0 (t, C-2), 26.0 (p, TBS), 18.3 (q, TBS), 12.5 (p, C-6), -4.3 (p, TBS), -5.0 (p, TBS) ppm; **HRMS** (ESI): m/z: calculated for C₁₂H₂₆NaO₂Si: 253.1600 [M + Na]⁺, found: 253.1602 [M + Na]⁺.

(2S,3R)-3-(tert-Butyldimethylsilyloxy)-2-methylpent-4-enal (23)

Alcohol **S22** (110 mg, 0.5 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (3.5 ml). NaHCO₃ (30 mg) and DESS-MARTIN Periodinane (243 mg, 0.6 mmol, 1.2 eq) were added. The slurry was stirred for 1 h at rt; the reaction was terminated by addition of aq. Na₂S₂O₃ and the mixture was stirred for 1 h at rt. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish aldehyde **23** (83 mg, 0.4 mmol, 77%) as a colourless liquid.

 $R_f = 0.69$ (PE:EE = 5:1); [α]_D²⁰ = +20.0 (*c* = 0.2, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.76 (d, 1H, *J* = 1.2 Hz, H-1), 5.82 (ddd, 1H, *J* = 16.9, 10.6, 6.0 Hz, H-4), 5.25 (ddd, 1H, *J* = 16.9, 1.2, 1.2 Hz, H-5_a), 5.17 (d, 1H, *J* = 10.6 Hz, H-5_b), 4.53 (dd, 1H, *J* = 6.0, 4.5 Hz, H-3), 2.47 (qdd, 1H, *J* = 6.9, 4.5, 1.2 Hz, H-2), 1.07 (d, 3H, *J* = 6.9 Hz, H-6), 0.88 (s, 9H, TBS), 0.05 (s, 3H, TBS), 0.03 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 204.8 (t, C-1), 138.5 (t, C-4), 116.1 (s, C-5), 73.7 (t, C-3), 52.6 (t, C-2), 25.9 (p, TBS), 18.3 (q, TBS), 8.4 (p, C-6), -4.1 (p, TBS), -4.9 (p, TBS) ppm; HRMS (ESI): *m/z*: Compound **23** could not be detected by mass spectrometry.

(2*E*,4*E*,7*S*,8*R*,9*R*)-Ethyl-9-(*tert*-butyldimethylsilyloxy)-7-hydroxy-4,8-dimethylundeca-2,4,10-trienoate (7,8-*syn*,8,9-*syn* 29a) and

(2*E*,4*E*,7*R*,8*R*,9*R*)-ethyl-9-(*tert*-butyldimethylsilyloxy)-7-hydroxy-4,8-dimethylundeca-2,4,10-trienoate (7,8-*anti*,8,9-*syn* 29b)

Following the general procedure, aldehyde **23** (72 mg, 0.3 mmol, 1.0 eq) was reacted with ester **6** (97 mg, 0.6 mmol, 2.0 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 10:1$) to furnish alcohols 7,8-*syn*,8,9-*syn* **29a** and 7,8-*anti*,8,9-*syn* **29b** [*d.r.*: 1.7:1 (**29a**:**29b**), 108 mg, 0.3 mmol, 90%] as a colourless oil.

 $R_f = 0.3$ (PE:EE = 10:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): m/z: calculated for C₂₁H₃₈NaO₂Si: 405.2437 [M + Na]⁺, found: 405.2433 [M + Na]⁺.

7,8-syn,8,9-syn **29a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33 (d, 1H, J = 15.5 Hz, H-3), 5.88-5.93 (m, 1H, H-5), 5.84-95 (m, 1H, H-10), 5.80 (d, 1H, J = 15.5 Hz, H-2), 5.20 (d, 1H, J = 17.4 Hz, H-11_a), 5.13 (d, 1H, J = 10.2 Hz, H-11_b), 4.21-4.32 (m, 1H, H-9), 4.20 (q, 2H, J = 7.2 Hz, H-14), 3.94-4.00 (m, 1H, H-7), 2.65 (d, 1H, J = 2.1 Hz, OH), 2.39-2.50 (m, 1H, H-6_a), 2.26-2.38 (m, 1H, H-6_b), 1.79 (s, 3H, H-12), 1.52-1.61 (m, 1H, H-8), 1.30 (t, 3H, J = 7.2 Hz, H-15), 0.96 (d, 3H, J = 6.8 Hz, H-13), 0.91 (s, 9H, TBS), 0.08 (s, 3H, TBS), 0.04 (s, 3H, TBS) ppm; 13 C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.4 (t, C-3), 140.0 (t, C-10), 138.1 (t, C-5), 134.6 (q, C-4), 116.2 (t, C-2), 115.5 (s, C-11), 78.7 (t, C-9), 73.6 (t, C-7), 60.3 (s, C-14), 43.3 (t, C-8), 34.6 (s, C-6), 26.0 (p, TBS), 18.2 (q, TBS), 14.5 (p, C-15), 12.6 (p, C-12), 6.9 (p, C-13), -3.7 (p, TBS), -4.8 (p, TBS) ppm. 7,8-*anti*,8,9-*syn* **29b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.36 (d, 1H, J = 15.4 Hz, H-3), 6.09 (dd, 1H, J = 7.0, 7.0 Hz, H-5), 5.84-95 (m, 1H, H-10), 5.79 (d, 1H, J = 15.4 Hz, H-2), 5.24 (d, 1H, J = 14.7 Hz, H-11_a), 5.21 (d, 1H, J = 9.9 Hz, H-11_b), 4.21-4.32 (m, 1H, H-9), 4.20 (q, 2H, J = 7.2 Hz, H-14), 3.69-3.77 (m, 1H, H-7), 2.39-2.50 (m, 1H, H-6_a), 2.26-2.38 (m, 1H, H-6_b), 1.74-1.85 (m, 4H, H-12 + H-8), 1.30 (t, 3H, J = 7.2 Hz, H-15), 0.90 (s, 9H, TBS), 0.79 (d, 3H, J = 7.2 Hz, H-13), 0.10 (s, 3H, TBS), 0.06 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.7 (t, C-3), 138.3 (t, C-10), 136.8 (t, C-5), 134.3 (q, C-4), 116.7 (t, C-2), 115.8 (s, C-11), 78.7 (t, C-9), 73.2 (t, C-7), 60.3 (s, C-14), 43.4 (t, C-8), 34.6 (s, C-6), 26.0 (p, TBS), 18.2 (q, TBS), 14.5 (p, C-15), 13.2 (p, C-13), 12.6 (p, C-12), -4.4 (p, TBS), -5.0 (p, TBS) ppm.

(2E,4E,7S,8R,9R)-Ethyl-7,9-dihydroxy-4,8-dimethylundeca-2,4,10-trienoate

(7,8-syn,8,9-syn S23a) and

(2*E*,4*E*,7*R*,8*R*,9*R*)-ethyl-7,9-dihydroxy-4,8-dimethylundeca-2,4,10-trienoate (7,8-*anti*,8,9-*syn* S23b)

A mixture of alcohols **29** [*d.r.*: 1.7:1 (**29a**:**29b**), 107 mg, 280 µmol, 1.0 eq] was dissolved in THF (6 ml) and cooled to 0 °C. TBAF·3 H₂O (133 mg, 400 \Box mol, 1.5 eq) was dissolved in THF (2 ml) and added to the first solution. Stirring was continued for 1 h at 0 °C and for 10 min at rt. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with Et₂O. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 5:1 \rightarrow 2:1) to furnish diols 7,8-*syn*,8,9-*syn* **S23a** and 7,8-*anti*,8,9-*syn* **S23b** [*d.r.*: ~2:1 (**S23a**:**S23b**), 66 mg, 250 µmol, 88%] as a colourless oil.

 $R_f = 0.25$ (PE:EE = 5:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): m/z: calculated for C₁₅H₂₄NaO₄: 291.1572 [M + Na]⁺, found: 291.1567 [M + Na]⁺.

7,8-*syn*,8,9-*syn* **S23a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.31 (d, 1H, J = 15.7 Hz, H-3), 5.83-5.93 (m, 2H, H-5 + H-10), 5.81 (d, 1H, J = 15.7 Hz, H-2), 5.26 (d, 1H, J = 17.1 Hz, H-11_a), 5.16 (d, 1H, J = 10.6 Hz, H-11_b), 4.37-4.43 (m, 1H, H-9), 4.19 (q, 2H, J = 7.2 Hz, H-14), 3.99-4.05 (m, 1H, H-7), 3.10 (brs, 1H, OH), 2.42-2.55 (m, 1H, H-6_a), 2.30-2.39 (m, 1H, H-6_b), 1.80 (s, 3H, H-12), 1.57-1.65 (m, 1H, H-8), 1.29 (t, 3H, J = 7.2 Hz, H-15), 0.93 (d, 3H, J = 7.2 Hz, H-13) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.3 (t, C-3), 139.6 (t, C-10), 137.5 (t, C-5), 134.9 (q, C-4), 116.4 (t, C-2), 114.9 (s, C-11), 77.4 (t, C-9), 75.5 (t, C-7), 60.4 (s, C-14), 41.2 (t, C-8), 34.8 (s, C-6), 14.4 (p, C-15), 12.6 (p, C-12), 5.1 (p, C-13) ppm.

7,8-*anti*,8,9-*syn* **S23b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33 (d, 1H, J = 15.7 Hz, H-3), 5.96-6.02 (dd, 1H, J = 7.3, 7.3 Hz, H-5), 5.83-5.95 (m, 1H, H-10), 5.81 (d, 1H, J = 15.7 Hz, H-2), 5.28 (d, 1H, J = 17.1 Hz, H-11_a), 5.20 (d, 1H, J = 10.6 Hz, H-11_b),

4.37-4.43 (m, 1H, H-9), 4.19 (q, 2H, J = 7.2 Hz, H-14), 3.72-3.78 (m, 1H, H-7), 2.77 (brs, 1H, OH), 2.42-2.55 (m, 2H, H-6), 1.75-1.84 (m, 4H, H-12 + H-8), 1.29 (t, 3H, J = 7.2 Hz, H-15), 0.89 (d, 3H, J = 7.2 Hz, H-13) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.3 (t, C-3), 138.3 (t, C-10), 137.4 (t, C-5), 135.2 (q, C-4), 116.3 (t, C-2), 115.7 (s, C-11), 74.9 (t, C-9), 74.4 (t, C-7), 60.4 (s, C-14), 42.1 (t, C-8), 35.0 (s, C-6), 14.4 (p, C-15), 12.6 (p, C-12), 12.2 (p, C-13) ppm.

Acetonides (7,8-syn,8,9-syn 47a) and (7,8-anti,8,9-syn 47b)

A mixture of diols **S23** [*d.r.*: ~2:1 (**S23a**:**S23b**), 33 mg, 0.13 mmol, 1.0 eq] was dissolved in CH₂Cl₂ (7.5 ml). 2,2-Dimethoxypropane (1.4 ml) and PPTS (3 mg, catalytic) were added and the solution was stirred for 75 min at rt. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1). Diols 7,8-*anti*,8,9-*syn* **47b** and 7,8-*syn*,8,9-*syn* **47a** [*d.r.*: ~1.8:1 (**47a**:**47b**), 38 mg, 0.12 mmol, 99%) were obtained as a colourless oil.

 $R_f = 0.82$ (PE:EE = 2:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): *m/z*: calculated for C₁₈H₂₈NaO₄: 331.1885 [M + Na]⁺, found: 331.1888 [M + Na]⁺.

7,8-*syn*,8,9-*syn* **47a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.32 (d, 1H, J = 15.7 Hz, H-3), 5.86 (dd, 1H, J = 7.3, 7.3 Hz, H-5), 5.81 (d, 1H, J = 15.7 Hz, H-2), 5.73-5.83 (m, 1H, H-10), 5.25 (d, 1H, J = 17.4 Hz, H-11_a), 5.16 (d, 1H, J = 10.6 Hz, H-11_b), 4.44-4.48 (m, 1H, H-9), 4.21 (q, 2H, J = 7.2 Hz, H-14), 4.02 (ddd, 1H, J = 7.1, 7.1, 2.1 Hz, H-7), 2.37-2.52 (m, 1H, H-6_a), 2.26-2.36 (m, 1H, H-6_b), 1.80 (s, 3H, H-12), 1.42-1.50 (m, 4H, H-8 + H-17_a), 1.44 (s, 3H, H-17_b), 1.30 (t, 3H, J = 7.2 Hz, H-15), 0.87 (d, 3H, J = 7.2 Hz, H-13) ppm; ¹³**C-NMR** (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.3 (t, C-3), 137.4 (t, C-5), 137.0 (t, C-10), 134.6 (q, C-4), 116.2 (t, C-2), 115.4 (s, C-11), 99.3 (q, C-16), 74.2 (t, C-9), 72.5 (t, C-7), 60.4 (s, C-14), 35.7 (t, C-8), 32.6 (s, C-6), 30.1 (p, C-17_a), 19.8 (p, C-17_b), 14.5 (p, C-15), 12.6 (p, C-12), 5.4 (p, C-13) ppm.

7,8-*anti*,8,9-*syn* **47b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.34 (d, 1H, J = 15.7 Hz, H-3), 5.98 (dd, 1H, J = 6.8, 6.5 Hz, H-5), 5.81 (d, 1H, J = 15.7 Hz, H-2), 5.73-5.83 (m, 1H, H-10), 5.25 (d, 1H, J = 17.4 Hz, H-11_a), 5.16 (d, 1H, J = 10.6 Hz, H-11_b), 4.42 (dd, 1H, J = 5.8, 5.8 Hz, H-9), 4.21 (q, 2H, J = 7.2 Hz, H-14), 3.40 (ddd, 1H, J = 8.0, 8.0,

4.3 Hz, H-7), 2.37-2.52 (m, 1H, H-6_a), 2.26-2.36 (m, 1H, H-6_b), 1.72-1.81 (m, 4H, H-12 + H-8), 1.36 (s, 6H, H-17), 1.30 (t, 3H, J = 7.2 Hz, H-15), 0.84 (d, 3H, J = 7.2 Hz, H-13) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.4 (t, C-3), 138.0 (t, C-5), 135.8 (t, C-10), 134.3 (q, C-4), 116.1 (t, C-2), 115.9 (s, C-11), 100.9 (q, C-16), 74.2 (t, C-7), 70.8 (t, C-9), 60.4 (s, C-14), 40.4 (t, C-8), 33.8 (s, C-6), 25.3 (p, C-17_a), 24.1 (p, C-17_b), 14.5 (p, C-15), 12.8 (p, C-13), 12.6 (p, C-12) ppm.

Oxazolidinone S24

Propionated (*S*)-EVANS auxiliary $\mathbf{S4}^{s2}$ (1.00 g, 4.3 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (16 ml) and cooled to 0 °C. Et₃N (0.7 ml, 5.2 mmol, 1.2 eq) and *n*-Bu₂BOTf (5.2 ml, $c = 1 \text{ mol/l in CH}_2$ Cl₂, 5.2 mmol, 1.2 eq) were slowly added. The solution was stirred for 2 h at 0 °C, cooled to -78 °C and pivaldehyde (**S25**) (0.7 ml, 6.4 mmol, 1.5 eq) in CH₂Cl₂ (2 ml) was added over a period of 5 min. After stirring for 2 h at -78 °C the solution was left at 0 °C overnight. The reaction was terminated by addition of MeOH (20 ml), phosphate buffer (pH = 7, 6.2 ml) and a solution of MeOH (14 ml) and aq. H₂O₂ (7 ml, 30%ig). The mixture was stirred for 4.5 h at rt. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1 \rightarrow 5:1) to furnish product **S24** (1.28 g, 4.0 mmol, 93%) as a colourless oil.

 R_f = 0.48 (PE:EE = 2:1); $[α]_D^{20}$ = +36.9 (*c* = 1.0, CHCl₃); mp. = 108 °C; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.37-7.18 (m, 5H, Ph), 4.68 (dddd, 1H, *J* = 9.7, 6.9, 3.2, 3.1 Hz, H-9), 4.15-4.25 (m, 2H, H-8), 4.09, (qd, 1H, *J* = 6.9, 3.1 Hz, H-2), 3.67 (d, 1H, *J* = 3.1 Hz, H-3), 3.26 (dd, 1H, *J* = 13.3, 3.1 Hz, H-10_a), 2.77 (dd, 1H, *J* = 13.3, 9.7 Hz, H-10_b), 1.30 (d, 3H, *J* = 6.9 Hz, H-6), 0.97 (s, 9H, H-5) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 178.5 (q, C-1), 153.0 (q, C-7), 135.2 (q, Ph), 129.6 (t, Ph), 129.1 (t, Ph), 127.6 (q, Ph), 77.8 (t, C-3), 66.2 (s, C-8), 55.3 (t, C-9), 38.9 (t, C-2), 38.0 (s, C-10), 35.8 (q, C-4), 27.0 (p, C-5), 12.9 (p, C-6) ppm; HRMS (ESI): *m*/*z*: calculated for C₁₈H₂₆O₄N: 320.1862 [M + H]⁺, found: 320.1859 [M + H]⁺.

Alcohol **S24** (500 mg, 1.6 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (26 ml) and cooled to 0 °C. ^{*i*}Pr₂NEt (3.5 ml, 21.9 mmol, 14.0 eq) and MOMCl (0.8 ml, 11.0 mmol, 7.0 eq) were added. The solution was stirred for 20 min at 0 °C and then for 6 d at RT. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 5:1) to furnish product **S26** (503 mg, 1.4 mmol, 88%) as a colourless solid.

 R_f = 0.36 (PE:EE = 5:1); [α]_D²⁰ = +62.3 (*c* = 1.0, CHCl₃); m.p. = 47 °C; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.19-7.36 (m, 5H, Ph), 4.81 (d, 1H, *J* = 6.5 Hz, MOM), 4.69 (d, 1H, *J* = 6.5 Hz, MOM), 4.60-4.67 (m, 1H, H-9), 4.14-4.22 (m, 2H, H-8), 4.07-4.14 (m, 1H, H-2), 3.72 (d, 1H, *J* = 5.5 Hz, H-3), 3.43 (s, 3H, MOM), 3.28 (dd, 1H, *J* = 13.4, 3.2 Hz, H-10_a), 2.76 (dd, 1H, *J* = 13.4, 9.6 Hz, H-10_b), 1.26 (d, 3H, *J* = 7.2 Hz, H-6), 0.92 (s, 9H, H-5) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 177.1 (q, C-1), 153.1 (q, C-5), 135.5 (q, Ph), 129.6 (t, Ph), 129.1 (t, Ph), 127.5 (t, Ph), 98.9 (s, MOM), 85.4 (t, C-3), 66.2 (s, C-8), 56.8 (p, MOM), 55.8 (t, C-9), 39.6 (t, C-2), 38.0 (s, C-10), 36.5 (q, C-4), 26.6 (p, C-5), 14.8 (p, C-6) ppm; HRMS (ESI): *m*/*z*: calculated for C₂₀H₂₉NaNO₅: 386.1943 [M + Na]⁺.

Alcohol S27

Oxazolidinone **S26** (500 mg, 1.38 mmol, 1.0 eq) was dissolved in Et_2O (28 ml) and cooled to 0 °C. H₂O (0.03 ml, 1.68 mmol, 1.2 eq) and LiBH₄ (150 mg, 6.88 mmol, 5.0 eq) were added and the solution was stirred for 2 h at 0 °C and then overnight at rt. The reaction was terminated by addition of aq. NH₄Cl and stirred for 1.5 h at rt. The layers were separated and the aqueous layer was extracted with Et_2O . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified

by flash chromatography (petroleum ether : ethyl acetate = 5:1) to furnish alcohol **S27** (214 mg, 1.12 mmol, 82%) as a colourless liquid.

 $R_f = 0.34$ (PE:EE = 2:1); $[α]_D^{20} = -93.5$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 4.69 (s, 2H, MOM), 3.47-3.51 (m, 2H, H-1), 3.42 (s, 3H, MOM), 3.31 (d, 1H, *J* = 1.6 Hz, H-3), 2.16 (brs, 1H, OH), 1.92-2.03 (m, 1H, H-2), 0.93 (s, 9H, H-5), 0.91 (d, 3H, *J* = 7.0 Hz, H-6) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 99.6 (s, MOM), 87.1 (t, C-3), 67.4 (s, C-1), 56.3 (p, MOM), 36.6 (q, C-4), 36.2 (t, C-2), 27.1 (p, C-5), 12.1 (p, C-6) ppm; HRMS (ESI): *m/z*: calculated for C₁₀H₂₂NaO₃: 213.1467 [M + Na]⁺, found: 213.1463 [M + Na]⁺.

Aldehyde 24

Alcohol **S27** (107 mg, 0.56 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (11 ml) and NaHCO₃ (20 mg) was added. DESS-MARTIN periodinane (286 mg, 0.67 mmol, 1.2 eq) was added and stirring was continued for 75 min at rt. The reaction was terminated by addition of aq. Na₂S₂O₃ and mixture was stirred for 1 h at rt. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish aldehyde **24** (86 mg, 0.46 mmol, 81%) as a colourless liquid, which was used immediately in the next step.

 $R_f = 0.72$ (PE:EE = 2:1); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.58 (s, 1H, H-1), 4.50 (d, 1H, J = 6.8 Hz, MOM), 4.43 (d, 1H, J = 6.8 Hz, MOM), 3.63 (d, 1H, J = 2.0 Hz, H-3), 3.20 (s, 3H, MOM), 2.44 (qd, 1H, J = 7.0, 2.0 Hz, H-2), 1.10 (d, 3H, J = 7.0 Hz, H-6), 0.87 (s, 9H, H-5) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 204.7 (t, C-1), 98.3 (s, MOM), 83.6 (t, C-3), 56.2 (p, MOM), 47.8 (t, C-2), 36.4 (q, C-4), 27.1 (p, C-5), 9.3 (p, C-6) ppm; HRMS (ESI): *m/z*: Compound **24** could not be detected by mass spectrometry.

(2E,4E,7S,8R,9S)-Ethyl-7-hydroxy-9-(methoxymethoxy)-4,8,10,10-tetramethylundeca-

2,4-dienoate (7,8-*syn*,8,9-*syn* **30a**) and

(2*E*,4*E*,7*R*,8*R*,9*S*)-ethyl-7-hydroxy-9-(methoxymethoxy)-4,8,10,10-tetramethylundeca-2,4-dienoate (7,8-*anti*,8,9-*syn* 30b)

Following the general procedure aldehyde **24** (36 mg, 0.19 µmol, 1.0 eq) was reacted with ester **6** (59 mg, 0.38 mmol, 2.0 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 5:1$) to furnish alcohols 7,8-*syn*,8,9-*syn* **30a** and 7,8-*anti*,8,9-*syn* **30b** (*d.r.*: 1:5.9 (**30b**:**30a**), 45 mg, 0.13 mmol, 69%) as a yellow oil.

R_f = 0.16 (PE:EE = 5:1); the diastereomers could not be separated by column chromatography; 7,8-*syn*,8,9-*syn* **30a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33 (d, 1H, J = 15.7 Hz, H-3), 5.93 (dd, 1H, J = 7.2, 7.2 Hz, H-5), 5.80 (d, 1H, J = 15.7 Hz, H-2), 4.76 (d, 1H, J = 6.5 Hz, MOM), 4.71 (d, 1H, J = 6.5 Hz, MOM), 4.20 (q, 2H, J = 7.2 Hz, H-14), 3.72-3.78 (m, 1H, H-7), 3.42 (s, 3H, MOM), 3.15 (d, 1H, J = 1.4 Hz, H-9), 2.39-2.49 (m, 1H, H-6_a), 2.28-2.39 (m, 1H, H-6_b), 1.79-1.88 (m, 1H, H-8), 1.80 (s, 3H, H-12), 1.29 (t, 3H, J = 7.2 Hz, H-15), 0.96 (d, 3H, J = 7.2 Hz, H-13), 0.87 (s, 9H, H-11) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.4 (t, C-3), 138.3 (t, C-5), 134.5 (q, C-4), 116.1 (t, C-2), 100.3 (s, MOM), 92.3 (t, C-9), 77.5 (t, C-7), 60.3 (s, C-14), 56.3 (p, MOM), 37.7 (t, C-8), 37.3 (q, C-10), 34.7 (s, C-6), 26.3 (p, C-11), 14.5 (p, C-15), 12.6 (p, C-12), 8.1 (p, C-13) ppm; HRMS (ESI): m/z: calculated for C₁₉H₃₄NaO₅: 365.2304 [M + Na]⁺, found: 365.2301 [M + Na]⁺.

Oxazolidinone S28

Alcohol **S24** (500 mg, 1.6 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (30 ml) and cooled to 0 °C. 2,6-Lutidine (0.55 ml, 4.7 mmol, 3.0 eq) and TBSOTf (0.54 ml, 2.3 mmol, 1.5 eq) were added and stirred for 3 h at 0 °C. Additional 2,6-lutidine (0.30 ml, 2.6 mmol, 1.6 eq) and TBSOTf (0.35 ml, 1.5 mmol, 1.0 eq) were added and stirring was continued overnight at rt. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and the solvent was removed under reduced pressure. The

crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish product **S28** (660 mg, 1.5 mmol, 97%) as a colourless, waxy solid.

 R_f = 0.51 (PE:EE = 5:1); $[α]_D^{20}$ = +28.5 (*c* = 1.0, CHCl₃); mp. = 83 °C; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.19-7.36 (m, 5H, Ph), 4.63-4.70 (m, 1H, H-9), 4.12-4.22 (m, 2H, H-8), 3.97-4.06 (m, 1H, H-2), 3.94-3.97 (m, 1H, H-3), 3.26 (dd, 1H, *J* = 13.4, 3.4 Hz, H-10_a), 2.74 (dd, 1H, *J* = 13.4, 9.7 Hz, H-10_b), 1.22 (d, 3H, *J* = 6.8 Hz, H-6), 0.95 (s, 9H, H-5), 0.87 (s, 9H, TBS), 0.14 (s, 3H, TBS), 0.13 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 177.5 (q, C-1), 153.0 (q, C-7), 135.4 (q, Ph), 129.6 (t, Ph), 129.1 (t, Ph), 127.5 (t, Ph), 78.0 (t, C-3), 66.1 (s, C-8), 55.5 (t, C-9), 40.0 (t, C-2), 38.1 (q, C-4), 37.0 (s, C-10), 26.5 (p, C-5), 26.4 (p, TBS), 18.8 (q, TBS), 15.1 (p, C-6), -3.0 (p, TBS), -4.0 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₂₄H₃₉NaNO₄Si: 456.2546 [M + Na]⁺, found: 456.2555 [M + Na]⁺.

Alcohol S29

Oxazolidinone **S28** (630 mg, 1.45 mmol, 1.0 eq) was dissolved in Et₂O (28 ml) and cooled to 0 °C. H₂O (0.03 ml, 1.68 mmol, 1.1 eq) and LiBH₄ (158 mg, 7.27 mmol, 5.0 eq) were added. The solution was stirred for 2 h at 0 °C and then overnight at rt. The reaction was terminated by addition of aq. NH₄Cl and stirred for 1.75 h at rt. The layers were separated and the aqueous layer was extracted with Et₂O. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $10:1 \rightarrow 5:1$) to furnish alcohol **S29** (279 mg, 1.07 mmol, 74%) as a colourless liquid.

 $R_f = 0.42$ (PE:EE = 5:1); $[α]_D^{20} = -7.4$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 3.42-3.50 (m, 2H, H-1), 3.37 (d, 1H, *J* = 1.4 Hz, H-3), 1.96 (qddd, 1H, *J* = 7.1, 7.0, 6.9, 1.4 Hz, H-2), 1.43 (brs, 1H, OH), 0.92 (s, 9H, H-5), 0.89 (s, 9H, TBS), 0.87 (d, 3H, *J* = 7.1 Hz, H-6), 0.06 (s, 3H, TBS), 0.05 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 78.8 (s, C-3), 67.8 (t, C-1), 37.6 (t, C-2), 36.7 (q, C-4), 27.1 (p, C-5), 26.5 (p, TBS), 18.9 (q, TBS), 12.3 (p, C-6), -2.9 (p, TBS), -3.9 (p, TBS) ppm; HRMS (ESI): *m*/*z*: calculated for C₁₄H₃₂NaO₂Si: 283.2069 [M + Na]⁺, found: 283.2075 [M + Na]⁺.

Alcohol **S29** (120 mg, 0.46 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (9.2 ml) and NaHCO₃ (20 mg) added. DESS-MARTIN periodinane (234 mg, 0.55 mmol, 1.2 eq) was added and the mixture was stirred for 75 min at RT. The reaction was terminated by addition of aq. Na₂S₂O₃ and stirring was continued for 1 h. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 30:1) to furnish aldehyde **25** (104 mg, 0.40 mmol, 88%) as a colourless liquid, which was immediately used in the next step.

 $R_f = 0.69$ (PE:EE = 5:1); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.67 (s, 1H, H-1), 3.92 (d, 1H, J = 2.0 Hz, H-3), 2.52 (qd, 1H, J = 7.4, 2.0 Hz, H-2), 1.18 (d, 3H, J = 7.4 Hz, H-6), 0.92 (s, 9H, H-5), 0.90 (s, 9H, TBS), 0.07 (s, 3H, TBS), -0.09 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 205.8 (t, C-1), 76.4 (t, C-3), 48.8 (t, C-2), 36.8 (q, C-4), 27.0 (p, C-5), 26.3 (p, TBS), 18.6 (q, TBS), 9.5 (p, C-6), -3.4 (p, TBS), -4.4 (p, TBS) ppm; HRMS (ESI): m/z: Compound **25** could not be detected by mass spectrometry.

YAMAMOTO aldol product 7,8-syn,8,9-syn 31a

Following the general procedure, aldehyde **25** (48 mg, 0.18 mmol, 1.0 eq) was reacted with ester **6** (56 mg, 0.36 mmol, 2.0 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 10:1$) to furnish alcohol 7,8-*syn*,8,9-*syn* **31a** (*d.r.*: >10:1, 46 mg, 0.11 µmol, 62%) as a yellow oil.

 $R_f = 0.23$ (PE:EE = 10:1); $[\alpha]_D^{20} = -13.0$ (c = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33 (d, 1H, J = 15.7 Hz, H-3), 5.96 (dd, 1H, J = 7.5, 7.2 Hz, H-5), 5.82 (d, 1H, J = 15.7 Hz, H-2), 4.20 (q, 2H, J = 7.3 Hz, H-14), 3.55 (ddd, 1H, J = 6.2, 6.2, 6.2 Hz, H-7), 3.33 (d, 1H, J = 2.4 Hz, H-9), 2.40-2.48 (m, 1H, H-6_a), 2.28-2.39 (m, 1H, H-6_b), 1.79-1.90 (m, 1H, H-8), 1.80 (s, 3H, H-12), 1.54 (brs, 1H, OH), 1.29 (t, 3H, J = 7.3 Hz, H-15), 0.88-0.96 (m, 12H, H-11 + H-13), 0.86 (s, 9H, TBS), 0.08 (s, 3H, TBS), 0.05 (s, 3H, 1.54)
TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.2 (t, C-3), 137.9 (t, H-5), 135.0 (q, C-4), 116.4 (t, C-2), 80.2 (t, C-9), 75.4 (t, C-7), 60.4 (s, C-14), 39.8 (t, C-8), 37.2 (q, C-10), 35.3 (s, C-6), 26.7 (p, C-11), 26.5 (p, TBS), 18.9 (q, TBS), 14.5 (p, C-15), 12.6 (p, C-12), 10.2 (p, C-13), -2.8 (p, TBS), -4.0 (p, TBS) ppm; **HRMS** (ESI): m/z: calculated for C₂₃H₄₅O₄Si: 413.3087 [M + H]⁺, found: 413.3075 [M + H]⁺.

Diol 7,8-syn,8,9-syn S31a

7,8-syn,8,9-syn **S31a**

Alcohol 7,8-syn,8,9-syn **31a** (15 mg, 36 mol, 1.0 eq) was dissolved in THF (0.6 ml) and cooled to 0 °C. TBAF·3H₂O (17 mg, 55 [mol, 1.5 eq) was dissolved in THF (0.4 ml) and slowly added. The solution was stirred for 2 h at 0 °C and then for 1.5 h at rt. An additional portion of TBAF·3H₂O (10 mg, 32 \square mol, 0.9 eq) was added and stirring was continued for 2 h at rt. I final portion of TBAF·3H₂O (10 mg, 32 \square mol, 0.9 eq) was added and the reaction mixture was stirred overnight at rt. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $20:1 \rightarrow 2:1$) to furnish diol 7,8-syn,8,9-syn **S31a** (5 mg, 17 \square mol, 47%) as a colourless liquid. $R_f = 0.32$ (PE:EE = 2:1); $[\alpha]_D^{20} = -5.4$ (c = 0.4, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 7.33 (d, 1H, J = 15.7 Hz, H-3), 5.90 (dd, 1H, J = 7.3, 6.7 Hz, H-5), 5.83 (d, 1H, J = 15.7 Hz, H-2), 4.21 (q, 2H, J = 7.3 Hz, H-14), 3.81-3.87 (m, 1H, H-7), 3.49 (s, 1H, H-9), 2.42-2.54 (m, 1H, H-6a), 2.27-2.37 (m, 1H, H-6b), 1.80-1.90 (m, 1H, H-8), 1.81 (s, 3H, H-12), 1.30 (t, 3H, *J* = 7.3 Hz, H-15), 0.97 (d, 3H, *J* = 7.2 Hz, H-13), 0.95 (s, 9H, H-11) ppm; ¹³**C-NMR** (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.5 (q, C-1), 149.2 (t, C-3), 137.5 (t, C-5), 135.0 (q, C-4), 116.5 (t, C-2), 84.2 (t, C-9), 78.1 (t, C-7), 60.4 (s, C-14), 37.2 (t, C-8), 35.9 (q, C-10), 34.4 (s, C-6), 27.0 (p, C-11), 14.5 (p, C-15), 12.6 (p, C-12), 6.5 (p, C-13) ppm; **HRMS** (ESI): m/z: calculated for C₁₇H₃₁O₄: 299.2222 [M + H]⁺, found: 299.2224 [M + H]⁺.

Diol 7,8-syn,8,9-syn S31a (4.5 mg, 15 \square mol, 1.0 eq) was dissolved in CH₂Cl₂ (0.5 ml) and 2,2-dimethoxypropane (0.05 ml) was added. PPTS (0.5 mg, catalytic) was added and stirring was continued for 2 h at rt. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1). Acetonide 7,8-syn,8,9-syn S32a (3.3 mg, 10 □mol, 65%) was obtained as a colourless liquid. $R_f = 0.85$ (PE:EE = 2:1); $[\alpha]_D^{20} = -10.3$ (c = 0.3, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 7.32 (d, 1H, J = 15.7 Hz, H-3), 5.90 (dd, 1H, J = 7.2, 6.8 Hz, H-5), 5.81 (d, 1H, J = 15.7 Hz, H-2), 4.21 (q, 2H, J = 7.1 Hz, H-14), 3.87 (td, 1H, J = 7.0, 1.7 Hz, H-7), 3.43 (d, 1H, J = 2.1 Hz, H-9), 2.34-2.44 (m, 1H, H-6_a), 2.23-2.32 (m, 1H, H-6_b), 1.79 (s, 3H, H-12), 1.47-1.57 (m, 1H, H-8), 1.40 (s, 3H, H-17_a), 1.38 (s, 3H, H-17_b), 1.30 (t, 3H, J = 7.1 Hz, H-15), 0.89-0.95 (m, 12H, H-11 + H-13) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.5 (t, C-3), 137.6 (t, C-5), 134.4 (q, C-4), 116.5 (t, C-2), 99.2 (q, C-16), 80.6 (t, C-9), 74.6 (t, C-7), 60.4 (s, C-14), 34.3 (q, C-10), 33.9 (t, C-8), 32.6 (s, C-6), 30.0 (p, C-17_a), 27.1 (p, C-11), 19.5 (p, C-17_b), 14.5 (p, C-15), 12.6 (p, C-12), 6.8 (p, C-13) ppm; **HRMS** (ESI): m/z: calculated for C₂₀H₃₅O₄: 339.2535 [M + H]⁺, found: $339.2533 [M + H]^+$.

3-(tert-Butyldimethylsilyl)propionaldehyde (S33)

TBS-Acetylene (**S34**) (2.1 ml, 11.3 mmol, 1.0 eq) was dissolved in THF (25 ml) and cooled to 0 °C. *n*-BuLi (4.7 ml, c = 2.5 mol/l in hexane, 11.8 mmol, 1.1 eq) was added and the solution was stirred for 20 min during which time the temperature was raised from 0 °C to rt. The solution was cooled to 0 °C and DMF (0.9 ml, 11.8 mmol, 1.1 eq.) was added. After warming to rt over a period of 20 min, the solution was heated to reflux for 1 h. The solution was cooled to 0 °C and the reaction was terminated by addition of aq. H₂SO₄ (20 ml, 5%ig). The layers were separated and the aqueous layer was extracted with Et₂O. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by distillation under reduced pressure (13 mbar, 66 $^{\circ}$ C) to furnish aldehyde **S33** (1.37 g, 8.1 mmol, 72%) as a colourless liquid.

¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.18 (s, 1H, H-1), 0.97 (s, 9H, TBS), 0.20 (s, 6H, TBS) ppm; ¹³**C-NMR** (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 176.8 (t, C-1), 103.2 (q, C-2), 102.1 (q, C-3), 26.1 (p, TBS), 16.7 (q, TBS), -5.1 (p, TBS) ppm. The NMR-data is in accordance with literature.^{S7}

(S)-9-Benzyl-3-[(2S,3S)-5-(*tert*-butyldimethylsilyl)-3-hydroxy-2-methylpent-4-ynoyl]oxazolidin-2-one (S35)

Propionated (*S*)-EvANS auxiliary **S4**^{S2} (12.9 g, 55 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (205 ml) and cooled to -78 °C. Et₃N (8.6 ml, 61 mmol, 1.1 eq) and *n*-Bu₂BOTf (61.0 ml, $c = 1 \text{ mol/l in CH}_2$ Cl₂, 61 mmol, 1.1 eq) were added. The solution was stirred for 1 h at -78 °C during which time the temperature was raised to 0 °C before it was cooled to -78 °C. Aldehyde **S33** (10.2 g, 61 mmol, 1.1 eq) was dissolved in CH₂Cl₂ (20 ml) and the solution was added over a period of 20 min to the first solution. It was stirred for 2 h at -78 °C and then at 0 °C overnight. The reaction was terminated by addition of MeOH (660 ml), NaOAc (36 g), aq. H₂O₂ (40 ml, 30%ig) and stirred 2 h. The layers were separated and the aqueous layer extracted with CH₂Cl₂. The combined, organic layers were washed with aq. HCl (c = 1 mol/l), aq. NaCl, dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product **S35** (19.7 g, 49 mmol, 89%) as a colourless solid. R_f = 0.64 (PE:EE = 2:1); $[\alpha]_D^{20} = +55.6$ (c = 1.0, CHCl₃); m.p. = 113 °C; ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.27-7.37 (m, 3H, Ph), 7.18-7.22 (m, 2H, Ph), 4.73 (dd, 1H, $l = 4.8 \pm 4.7$ Hz H 3) 4.65 ± 4.75 (m, 1H, H 9) 4.18 ± 4.26 (m, 2H, H 8) 3.96 (ad 1H, l = 6.9

J = 4.8, 4.7 Hz, H-3), 4.65-4.75 (m, 1H, H-9), 4.18-4.26 (m, 2H, H-8), 3.96 (qd, 1H, J = 6.9, 4.7 Hz, H-2), 3.24 (dd, 1H, J = 13.5, 3.2 Hz, H-10_a), 2.81 (dd, 1H, J = 13.5, 9.4 Hz, H-10_b), 2.77 (d, 1H, J = 4.8 Hz, OH), 1.42 (d, 3H, J = 6.9 Hz, H-6), 0.93 (s, 9H, TBS), 0.11 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 175.5 (q, C-1), 153.0 (q, C-7), 135.1 (q, Ph), 129.6 (t, Ph), 129.2 (t, Ph), 127.6 (t, Ph), 104.5 (q, C-4), 89.0 (q, C-5), 66.4 (s, C-8), 63.9 (t, C-3), 55.2 (t, C-9), 44.2 (t, C-2), 37.9 (s, C-10), 26.2 (p, TBS), 16.6 (q,

TBS), 12.4 (p, C-6), -4.6 (p, TBS), -4.6 (p, TBS) ppm; **HRMS** (ESI): m/z: calculated for $C_{22}H_{31}NNaO_4Si$: 424.1920 [M + Na]⁺, found: 424.1938 [M + Na]⁺.

(S)-9-Benzyl-3-[(2S,3S)-5-(*tert*-butyldimethylsilyl)-3-(methoxymethoxy)-2-methylpent-4ynoyl]oxazolidin-2-one (S36)

Alcohol **S35** (1.0 g, 3.1 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (50 ml) and cooled to 0 °C. ¹Pr₂NEt (5.1 ml, 30.7 mmol, 10.0 eq) was added and the solution was stirred for 30 min at 0 °C. MOMCl (1.2 ml, 15.4 mmol, 5.0 eq) was added and stirring was continued for 2 d at rt. More ${}^{1}Pr_{2}NEt$ (5.1 ml, 30.7 mmol, 10.0 eq) and MOMCl (1.2 ml, 15.4 mmol, 5.0 eq) were added and the solution was stirred for another 4 d. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $20:1 \rightarrow 10:1$) to furnish alcohol **S36** (1.1 g, 2.4 mmol, 78%) as a colourless solid. $R_f = 0.68$ (PE:EE = 2:1); $[\alpha]_D^{20} = -36.0$ (c = 1.0, CHCl₃); mp. = 109 °C; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.27-7.36 (m, 3H, Ph), 7.19-7.23 (m, 2H, Ph), 4.95 (d, 1H, J = 6.8 Hz, MOM), 4.62-4.69 (m, 1H, H-9), 4.61 (d, 1H, J = 6.8 Hz, MOM), 4.58 (d, 1H, J = 7.2 Hz, H-3), 4.13-4.23 (m, 3H, H-2 + H-8), 3.37 (s, 3H, MOM), 3.28 (dd, 1H, J = 13.4, $3.2 \text{ Hz}, \text{H}-10_{a}$, $2.80 \text{ (dd, 1H, } J = 13.4, 9.6 \text{ Hz}, \text{H}-10_{b}$), 1.38 (d, 3H, J = 6.8 Hz, H-6), 0.92 (s, J = 0.000 Hz9H, TBS), 0.09 (s, 3H, TBS), 0.09 (s, 3H, TBS) ppm; 13 C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 173.4 (q, C-1), 153.1 (q, C-7), 135.4 (q, Ph), 129.6 (t, Ph), 129.1 (t, Ph), 127.5 (t, Ph), 102.9 (q, C-4), 94.3 (s, MOM), 90.0 (q, C-5), 67.3 (t, C-3), 66.2 (s, C-8), 56.0 (p, MOM), 55.7 (t, C-9), 43.2 (t, C-2), 37.9 (s, C-10), 26.2 (p, TBS), 16.6 (q, TBS), 13.6 (p, C-6), -4.6 (p, TBS), -4.6 (p, TBS) ppm; **HRMS** (ESI): m/z: calculated for C₂₄H₃₅NNaO₅Si: $468.2182 [M + Na]^+$, found: $468.2180 [M + Na]^+$.

(2R,3S)-5-(tert-Butyldimethylsilyl)-3-(methoxymethoxy)-2-methylpent-4-yn-1-ol (S37)

S40

(*S*)-EvANS aldol product **S36** (2.14 g, 4.8 mmol, 1.0 eq) was dissolved in Et₂O (100 ml), cooled to 0 °C and H₂O (0.1 ml, 4.8 mmol, 1.0 eq) added. LiBH₄ (250 mg, 11.5 mmol, 2.9 eq) was added and the reaction mixture was stirred for 1 h at 0 °C and 75 min at rt. The reaction was terminated by addition of aq. NH₄Cl and stirring was continued for 30 min. The layers were separated and the aqueous layer was extracted with Et₂O. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 5:1) and furnished alcohol **S37** (1.16 mg, 4.3 mmol, 89%) as a colourless liquid.

R_f = 0.49 (PE:EE = 2:1); $[\alpha]_D^{20}$ = -167.4 (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 4.97 (d, 1H, *J* = 6.7 Hz, MOM), 4.60 (d, 1H, *J* = 6.7 Hz, MOM), 4.48 (d, 1H, *J* = 4.4 Hz, H-3), 3.81 (ddd, 1H, *J* = 11.3, 7.4, 4.2 Hz, H-1_a), 3.60 (ddd, 1H, *J* = 11.3, 7.2, 4.3 Hz, H-1_b), 3.39 (s, 3H, MOM), 2.32 (dd, 1H, *J* = 7.2, 4.2 Hz, OH), 2.04-2.15 (m, 1H, H-2), 1.01 (d, 3H, *J* = 7.2 Hz, H-6), 0.93 (s, 9H, TBS), 0.11 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 102.9 (q, C-4), 94.3 (s, MOM), 90.7 (q, C-5), 69.7 (t, C-3), 65.5 (s, C-1), 56.0 (p, MOM), 40.0 (t, C-2), 26.2 (p, TBS), 16.6 (q, TBS), 12.9 (p, C-6), -4.5 (p, TBS) ppm; **HRMS** (ESI): *m/z*: calculated for C₁₄H₂₈NaO₃Si: 295.1705 [M + Na]⁺, found: 295.1707 [M + Na]⁺.

(2S,3S)-5-(*tert*-Butyldimethylsilyl)-3-(methoxymethoxy)-2-methylpent-4-ynal (32)

Alcohol **S37** (20 mg, 0.1 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (1.5 ml). NaHCO₃ (5 mg) and DESS-MARTIN periodinane (41 mg, 0.1 mmol, 1.3 eq) were added and the reaction mixture was stirred at rt overnight. The reaction was terminated by addition of aq. Na₂SO₃/NaHCO₃ and stirring was continued for 1 h at rt. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1) to furnish aldehyde **32** (20 mg, 0.1 mmol, 99%) as a colourless oil.

 $R_f = 0.63$ (PE:EE = 5:1); $[\alpha]_D^{20} = -124.2$ (*c* = 1.0, CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.80 (d, 1H, *J* = 0.9 Hz, H-1), 4.99 (d, 1H, *J* = 6.8 Hz, MOM), 4.78 (d, 1H, *J* = 5.4 Hz, H-3), 4.59 (d, 1H, *J* = 6.8 Hz, MOM), 3.36 (s, 3H, MOM), 2.64 (qdd, 1H, *J* = 7.0, 5.4, 0.9 Hz, H-2), 1.25 (d, 3H, *J* = 7.0 Hz, H-6), 0.93 (s, 9H, TBS), 0.11 (s, 6H, TBS)

ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 202.8 (t, C-1), 101.8 (q, C-4), 94.2 (s, MOM), 91.8 (q, C-5), 66.1 (t, C-3), 56.1 (p, MOM), 50.4 (t, C-2), 26.2 (p, TBS), 16.6 (q, TBS), 9.6 (p, C-6), -4.6 (p, TBS) ppm; **HRMS** (ESI): *m*/*z*: calculated for C₁₄H₂₆NaO₃Si: 293.1549 [M + Na]⁺, found: 293.1544 [M + Na]⁺.

(2E,4E,7S,8R,9S)-Ethyl-11-(*tert*-butyldimethylsilyl)-7-hydroxy-9-(methoxymethoxy)-4,8dimethylundeca-2,4-dien-10-ynoate (7,8-*syn*,8,9-*syn* 33a) and

(2*E*,4*E*,7*R*,8*R*,9*S*)-ethyl-11-(*tert*-butyldimethylsilyl)-7-hydroxy-9-(methoxymethoxy)-4,8dimethylundeca-2,4-dien-10-ynoate (7,8-*anti*,8,9-*syn* 33b)

7,8-anti,8,9-syn 33b

Following the general procedure, aldehyde **32** (33 mg, 120 µmol, 1.0 eq) was reacted with ester **6** (37 mg, 240 µmol, 2.0 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $20:1 \rightarrow 5:1$) to furnish alcohols 7,8-*syn*,8,9-*syn* **33a** and 7,8-*anti*,8,9-*syn* **33b** [*d.r.*: 1.4:1 (**33b**:**33a**), 41 mg, 97 µmol, 80%] as a yellow oil.

 $R_f = 0.32$ (PE:EE = 5:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): m/z: calculated for C₂₅H₃₉NaO₅Si: 447.2543 [M + Na]⁺, found: 447.2536 [M + Na]⁺.

7,8-*syn*,8,9-*syn* **33a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.36 (d, 1H, J = 15.7 Hz, H-3), 5.94 (dd, 1H, J = 7.2, 7.2 Hz, H-5), 5.81 (d, 1H, J = 15.7 Hz, H-2), 5.00 (d, 1H, J = 6.8 Hz, MOM), 4.60 (d, 1H, J = 6.8 Hz, MOM), 4.44 (d, 1H, J = 4.4 Hz, H-9), 4.20 (q, 2H, J = 7.1 Hz, H-14), 4.04-4.10 (m, 1H, H-7), 3.38 (s, 3H, MOM), 2.70 (d, 1H, J = 2.4 Hz, OH), 2.44-2.55 (m, 1H, H-6_a), 2.30-2.42 (m, 1H, H-6_b), 1.80-1.92 (m, 1H, H-8), 1.80 (s, 3H, H-12), 1.30 (t, 3H, J = 7.1 Hz, H-15), 1.11 (d, 3H, J = 7.2 Hz, H-13), 0.93 (s, 9H, TBS), 0.11 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.3 (t, C-3), 137.8 (t, C-5), 134.7 (q, C-4), 116.3 (t, C-2), 103.3 (q, C-10), 94.2 (s, MOM), 91.3 (q, C-11), 72.8 (t, C-7), 70.1 (t, C-9), 60.3 (s, C-14), 56.2 (p, MOM), 41.9 (t, C-8), 34.5 (s, C-6), 26.2 (p, TBS), 16.6 (q, TBS), 14.5 (p, C-15), 12.6 (p, C-12), 8.3 (p, C-13), -4.5 (p, TBS) ppm.

7,8-*anti*,8,9-*syn* **33b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33 (d, 1H, J = 15.7 Hz, H-3), 6.06 (dd, 1H, J = 7.0, 7.0 Hz, H-5), 5.81 (d, 1H, J = 15.7 Hz, H-2), 4.96 (d, 1H, J = 6.5 Hz, MOM), 4.63 (d, 1H, J = 3.4 Hz, H-9), 4.61 (d, 1H, J = 6.5 Hz, MOM), 4.20

(q, 2H, J = 7.1 Hz, H-14), 3.85-3.93 (m, 1H, H-7), 3.40 (s, 3H, MOM), 3.06 (d, 1H, J = 3.4 Hz, OH), 2.44-2.55 (m, 1H, H-6_a), 2.30-2.42 (m, 1H, H-6_b), 1.80-1.92 (m, 1H, H-8), 1.80 (s, 3H, H-12), 1.30 (t, 3H, J = 7.1 Hz, H-15), 1.02 (d, 3H, J = 7.2 Hz, H-13),0.93 (s, 9H, TBS), 0.11 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.5 (t, C-3), 137.8 (t, C-5), 134.7 (q, C-4), 116.1 (t, C-2), 102.7 (q, C-10), 94.5 (s, MOM), 91.0 (q, C-11), 72.8 (t, C-7), 69.5 (t, C-9), 60.3 (s, C-14), 56.2 (p, MOM), 42.7 (t, C-8), 34.1 (s, C-6), 26.2 (p, TBS), 16.6 (q, TBS), 14.5 (p, C-15), 12.7 (p, C-13), 12.6 (p, C-12), -4.5 (p, TBS) ppm.

(*R*)-9-Benzyl-3-[(2*R*,3*R*)-5-(*tert*-butyldimethylsilyl)-3-hydroxy-2-methylpent-4-ynoyl]oxazolidin-2-one (*ent*-S35)

Propionated (*R*)-EVANS auxiliary *ent*-**S4**^{S2} (300 mg, 1.29 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (5 ml) and the solution was cooled to -78 °C. Et₃N (0.2 ml, 1.42 mmol, 1.1 eq) and *n*-Bu₂BOTf (1.42 ml, c = 1 mol/l in CH₂Cl₂, 1.42 mmol, 1.1 eq) were added. The solution was stirred for 1 h during which time the temperature was raised from -78 °C to 0 °C. Then, the reaction was cooled again down to -78 °C and aldehyde **S33** (260 mg, 1.54 mmol, 1.2 eq) dissolved in CH₂Cl₂ (0.5 ml) was added. The solution was stirred for 2 h at -78 °C and then for 16 h at 0 °C. The reaction was terminated by addition of MeOH (17 ml), NaOAc (1.0 g) and aq. H₂O₂ (1 ml, 30%ig) and stirring was continued for 2 h. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish product *ent*-**S35** (446 mg, 1.11 mmol, 86%) as a colourless solid.

R_f = 0.65 (PE:EE = 2:1); $[α]_D^{20}$ = -51.9 (*c* = 1.0, CHCl₃); m.p. = 76 °C; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.27-7.37 (m, 3H, Ph), 7.18-7.23 (m, 2H, Ph), 4.73 (d, 1H, *J* = 4.5 Hz, H-3), 4.65-4.72 (m, 1H, H-9), 4.15-4.26 (m, 2H, H-8), 3.96 (qd, 1H, *J* = 6.9, 4.5 Hz, H-2), 3.24 (dd, 1H, *J* = 13.2, 3.1 Hz, H-10_a), 2.81 (dd, 1H, *J* = 13.2, 9.1 Hz, H-10_b), 1.43 (d, 3H, *J* = 6.9 Hz, H-6), 0.93 (s, 9H, TBS), 0.11 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 175.5 (q, C-1), 153.0 (q, C-7), 135.1 (q, Ph), 129.6 (t, Ph), 129.2 (t, Ph), 127.6 (t, Ph), 104.5 (q, C-4), 89.0 (q, C-5), 66.4 (s, C-8), 63.9 (t, C-3),

55.2 (t, C-9), 44.2 (t, C-2), 37.9 (s, C-10), 26.2 (p, TBS), 16.6 (q, TBS), 12.4 (p, C-6), -4.6 (p, TBS), -4.6 (p, TBS) ppm; **HRMS** (ESI): m/z: calculated for C₂₂H₃₂NO₄Si: 402.2101 [M + Na]⁺, found: 402.2086 [M + Na]⁺.

(2*R*,3*R*)-5-(*tert*-Butyldimethylsilyl)-3-hydroxy-*N*-methoxy-*N*,2-dimethylpent-4-ynamide (S38)

N,*O*-Dimethylhydroxylamine hydrochloride (2.44 g, 25.1 mmol, 9.0 eq) was suspended in THF (4.0 ml), cooled to -30 °C and AlMe₃ (12.5 ml, c = 2 mol/l in hexane, 25.1 mmol, 9.0 eq) was added over 5 min. The solution was warmed up to rt, stirred for 15 min and then cooled to -10 °C. Alcohol *ent*-**S35** (0.91 g, 2.8 mmol, 1.0 eq) was dissolved in THF (10.0 ml) and added to the first solution. The reaction mixture was stirred for 2 h at 0 °C. The slurry was slowly transferred into a solution of aq. Na-K-tartrate (75 ml), aq. NaHCO₃ (30 ml) and ethyl acetate (100 ml) and stirred for 1 h, while the temperature was slowly raised from 0 °C to rt. The layers were separated and the aqueous layer was extracted with ethyl acetate. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 5:1 \rightarrow 3:1) to furnish Weinreb amide **S38** (584 mg, 2.1 mmol, 74%) as a colourless liquid.

 $R_f = 0.17$ (PE:EE = 5:1); $[α]_D^{20} = -10.5$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 4.72 (dd, 1H, *J* = 3.2, 3.2 Hz, H-3), 3.77 (s, 1H, OH), 3.73 (s, 3H, H-8), 3.19 (s, 3H, H-7), 2.98-3.08 (m, 1H, H-2), 1.35 (d, 3H, *J* = 7.2 Hz, H-6), 0.93 (s, 9H, TBS), 0.10 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 174.4 (q, C-1), 105.1 (q, C-4), 88.1 (q, C-5), 64.0 (t, C-3), 61.8 (p, C-8), 40.9 (t, C-2), 32.0 (p, C-7), 26.2 (p, TBS), 16.6 (q, TBS), 11.6 (p, C-6), -4.5 (p, TBS), -4.6 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₁₄H₂₈NO₃Si: 286.1838 [M + H]⁺, found: 286.1832 [M + H]⁺.

(2*R*,3*R*)-5-(*tert*-Butyldimethylsilyl)-*N*-methoxy-3-(4-methoxybenzyloxy)-*N*,2-dimethyl-pent-4-ynamide (S39)

S38 Alcohol (580 mg, 2.9 mmol, $1.0 \, eq$) was dissolved in CH_2Cl_2 (7 ml). PMB-trichloroacetimidate (1.15 g, 4.1 mmol, 2.0 eq) was dissolved in CH₂Cl₂ (3 ml) and added to the first solution. CSA (38.0 mg, 0.2 mmol, 0.1 eq) was added and stirring was continued for 2 d at rt. A second portion of PMB-trichloroacetimidate (287 mg, 1.0 mmol, 0.5 eq) was added and the mixture was stirred for additional 3 d. The reaction was terminated by addition of aq. NaHCO₃. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were washed with aq. NaHCO₃ and aq. NaCl, dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $10:1 \rightarrow 2:1$) and to furnish Weinreb amide S39 (668 mg, 1.7 mmol, 81%) as a colourless oil.

 $R_f = 0.25$ (PE:EE = 5:1); $[\alpha]_D^{20} = +62.9$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 7.25-7.29 (m, 2H, PMB), 6.85-6.88 (m, 2H, PMB), 4.74 (d, 1H, J = 11.3 Hz, PMB), 4.46 (d, 1H, J = 11.3 Hz, PMB), 4.20 (d, 1H, J = 9.2 Hz, H-3), 3.80 (s, 3H, PMB), 3.70 (s, 3H, H-8), 3.21-3.33 (m, 1H, H-2), 3.17 (s, 3H, H-7), 1.22 (d, 3H, J = 6.8 Hz, H-6), 0.93 (s, 9H, TBS), 0.10 (s, 6H, TBS) ppm; 13 C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 174.7 (q, C-1), 159.5 (q, PMB), 129.9 (t, PMB), 129.4 (q, PMB), 114.0 (t, PMB), 104.4 (q, C-4), 89.6 (q, C-5), 70.6 (s, PMB), 70.5 (t, C-3), 61.7 (p, C-8), 55.4 (p, PMB), 41.6 (t, C-2), 32.1 (p, C-7), 26.2 (p, TBS), 16.6 (q, TBS), 14.4 (p, C-6), -4.5 (p, TBS) m/z: calculated for C₂₀H₃₇NO₄Si HRMS (ESI): and $C_{20}H_{36}NNaO_4Si$: ppm; $406.2414 [M + H]^+$ $428.2233 [M + Na]^+$, found: $406.2409 [M + H]^+$ and and $428.2246 [M + Na]^+$.

(2R,3R)-5-(tert-Butyldimethylsilyl)-3-(4-methoxybenzyloxy)-2-methylpent-4-ynal (35)

Weinreb amide **S39** (100 mg, 0.3 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (4 ml) and the solution was cooled to -78 °C. DIBAL-H (0.42 ml, c = 1.2 mol/l in toluene, 0.5 mmol, 2.0 eq) was added and stirring was continued for 1 h at -78 °C. More DIBAL-H (0.1 ml, c = 1.2 mol/l in toluene, 0.1 mmol, 0.5 eq) was added and the solution was stirred for 1 h. The reaction was terminated by addition of ethyl acetate and the mixture was warmed up to rt. Then, aq. Na-K-tartrate was added and the mixture was stirred for 2 h at rt. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. Aldehyde **35** was used in the next step without further purification.

(2*R*,3*R*)-5-(*tert*-Butyldimethylsilyl)-*N*-methoxy-*N*,2-dimethyl-3-(triethylsilyloxy)pent-4ynamide (S40)

Alcohol **S38** (150 mg, 0.5 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (10 ml) and cooled to -78 °C. 2,6-Lutidine (0.25 ml, 2.1 mmol, 4.0 eq) was added and after 5 min TESOTF (0.24 ml, 1.1 mmol, 2.0 eq). The solution was stirred for 2.5 h at -78 °C. The reaction was terminated by addition of aq. NaHCO₃ and warmed to rt. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1 \rightarrow 2:1) to furnish Weinreb amide **S40** (104 mg, 0.3 mmol, 50%) as a colourless oil.

 $R_f = 0.48$ (PE:EE = 5:1); $[\alpha]_D^{20} = +65.0$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 4.47 (d, 1H, *J* = 9.6 Hz, H-3), 3.72 (s, 3H, H-8), 3.14-3.22 (m, 4H, H-2 + H-7), 1.20 (d, 3H, *J* = 6.8 Hz, H-6), 0.98 (t, 9H, *J* = 8.0 Hz, TES), 0.89 (s, 9H, TBS), 0.57-0.76 (m, 6H, TES), 0.05 (s, 3H, TBS), 0.05 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 174.9 (q, C-1), 107.2 (q, C-4), 87.4 (q, C-5), 64.9 (t, C-3), 61.7 (p, C-8), 43.9 (t, C-2), 32.1 (p, C-7), 26.1 (p, TBS), 16.6 (q, TBS), 14.5 (p, C-6), 6.9 (p, TES), 4.9 (s, TES), -4.6 (p, TBS), -4.6 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₂₀H₄₂NO₃Si₂: 400.2703 [M + Na]⁺, found: 400.711 [M + Na]⁺.

(2R,3R)-5-(tert-Butyldimethylsilyl)-2-methyl-3-(triethylsilyloxy)pent-4-ynal (36)

Weinreb amide **S40** (50 mg, 130 μ mol, 1.0 eq) was dissolved in CH₂Cl₂ (2.0 ml) and cooled to -78 °C. DIBAL-H (0.3 ml, c = 1.2 mol/l in toluene, 0.4 mmol, 2.5 eq) was added and the mixture was stirred for 4 h at -78 °C. The reaction was terminated by addition of ethyl acetate and after addition of Na-K-tartrate stirred 3 h. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 30:1) to furnish aldehyde **36** (33 mg, 0.1 mmol, 77%) as a colourless liquid, which was used immediately in the next step. $R_f = 0.85$ (PE:EE = 2:1).

(2*E*,4*E*,7*R*,8*S*,9*R*)-Ethyl-11-(*tert*-butyldimethylsilyl)-9-(triethylsilyloxy)-7-hydroxy-4,8dimethylundeca-2,4-dien-10-ynoate (7,8-*syn*,8,9-*syn* 41a) and (2*E*,4*E*,7*S*,8*S*,9*R*)-ethyl-11-(*tert*-butyldimethylsilyl)-9-(triethylsilyloxy)-7-hydroxy-4,8dimethylundeca-2,4-dien-10-ynoate (7,8-*anti*,8,9-*syn* 41b)

Following the general procedure, aldehyde **36** (38 mg, 0.11 mmol, 1.0 eq) was reacted with ester **6** (37 mg, 0.24 mmol, 2.0 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 10:1$) to furnish alcohols 7,8-*syn*,8,9-*syn* **41a** and 7,8-*anti*,8,9-*syn* **41b** (*d.r.*: 1:1, 30 mg, 0.06 µmol, 55%) as a colourless liquid.

 $R_f = 0.31$ (PE:EE = 10:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): *m/z*: calculated for C₂₇H₅₀NaO₄Si₂: 517.3145 [M + Na]⁺, found: 517.3134 [M + Na]⁺.

7,8-*syn*,8,9-*syn* **41a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33 (d, 1H, J = 15.7 Hz, H-3), 5.93 (dd, 1H, J = 7.2, 7.2 Hz, H-5), 5.80 (d, 1H, J = 15.7 Hz, H-2), 4.53 (d, 1H, J = 3.8 Hz, H-9), 4.20 (q, 4H, J = 7.1 Hz, H-14), 4.03-4.09 (m, 1H, H-7), 3.02 (s, 1H, OH), 2.42-2.53 (m, 2H, H-6_a), 2.29-2.41 (m, 2H, H-6_b), 1.80 (s, 6H, H-12), 1.68-1.76 (m, 1H, H-8), 1.30 (t, 6H, J = 7.1 Hz, H-15), 1.07 (d, 3H, J = 7.2 Hz, H-13), 0.98 (t, 9H, J = 8.0 Hz, TES), 0.93 (s, 18H, TBS), 0.59-0.76 (m, 12H, TES), 0.10 (s, 12H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.4 (t, C-3), 138.0 (t, C-5), 134.6 (q, C-4), 116.2 (t, C-2), 106.5 (q, C-10), 89.5 (q, C-11), 73.3 (t, C-7), 67.9 (t, C-9), 60.3 (s, C-14), 43.4 (t, C-8), 34.5 (s, C-6), 26.2 (p, TBS), 16.6 (q, TBS), 14.5 (p, C-15), 12.6 (p, C-12), 7.6 (p, C-13), 6.9 (p, TES), 5.0 (s, TES), -4.6 (p, TBS) ppm.

7,8-*anti*,8,9-*syn* **41b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.37 (d, 1H, J = 15.7 Hz, H-3), 6.10 (dd, 1H, J = 7.0, 7.0 Hz, H-5), 5.80 (d, 1H, J = 15.7 Hz, H-2), 4.59 (d, 1H, J = 3.8 Hz, H-9), 4.20 (q, 4H, J = 7.1 Hz, H-14), 3.97-4.03 (m, 1H, H-7), 3.97 (s, 1H, OH), 2.42-2.53 (m, 2H, H-6_a), 2.29-2.41 (m, 2H, H-6_b), 1.80-1.90 (m, 1H, H-8), 1.80 (s, 6H, H-12), 1.30 (t, 6H, J = 7.1 Hz, H-15), 0.98 (t, 9H, J = 7.9 Hz, TES), 0.93 (s, 18H, TBS), 0.91

(d, 3H, J = 7.2 Hz, H-13), 0.59-0.76 (m, 12H, TES), 0.10 (s, 12H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.7 (t, C-3), 138.2 (t, C-5), 134.4 (q, C-4), 115.8 (t, C-2), 104.9 (q, C-10), 89.9 (q, C-11), 73.3 (t, C-7), 68.3 (t, C-9), 60.3 (s, C-14), 43.6 (t, C-8), 34.5 (s, C-6), 26.2 (p, TBS), 16.6 (q, TBS), 14.5 (p, C-15), 13.1 (p, C-13), 12.6 (p, C-12), 6.9 (p, TES), 4.79 (s, TES), -4.7 (p, TBS) ppm.

(S)-9-Benzyl-3-[(2S,3S)-5-(*tert*-butyldimethylsilyl)-3-(*tert*-butyldimethylsilyloxy)-2methylpent-4-ynoyl]oxazolidin-2-one (S41)

Alcohol **S35** (8.2 g, 20 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (300 ml) and cooled to 0 °C. 2,6-Lutidine (11.7 ml, 101 mmol, 5.0 eq) and TBSOTf (11.6 ml, 50 mmol, 2.5 eq) were added and the mixture was stirred for 2 h at 0 °C. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer extracted with CH_2Cl_2 . The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish product **S41** (10.0 g, 19 mmol, 95%) as a colourless solid.

 R_f = 0.67 (PE:EE = 5:1); $[α]_D^{20}$ = +22.3 (*c* = 1.0, CHCl₃); m.p.: 91 °C; ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.28-7.42 (m, 3H, Ph), 7.16-7.22 (m, 2H, Ph), 4.58-4.65 (m, 1H, H-9), 4.58 (d, 1H, *J* = 7.9 Hz, H-3), 4.05-4.20 (m, 3H, H-2 + H-8), 3.27 (dd, 1H, *J* = 13.5, 3.2 Hz, H-10_a), 2.80 (dd, 1H, *J* = 13.5, 9.4 Hz, H-10_b), 1.31 (d, 3H, *J* = 7.2 Hz, H-6), 0.90 (s, 9H, TBS), 0.90 (s, 9H, TBS), 0.15 (s, 3H, TBS), 0.11 (s, 3H, TBS), 0.07 (s, 3H, TBS), 0.07 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 174.0 (q, C-1), 153.1 (q, C-7), 135.4 (q, Ph), 129.6 (t, Ph), 129.1 (t, Ph), 127.5 (t, Ph), 106.4 (q, C-4), 88.2 (q, C-5), 66.2 (s, C-8), 64.9 (t, C-3), 55.7 (t, C-9), 45.5 (p, C-2), 37.9 (s, C-10), 26.2 (p, TBS), 25.8 (p, TBS), 18.4 (q, TBS), 16.6 (q, TBS), 13.7 (p, C-6), -4.4 (p, TBS), -4.7 (p, TBS), -5.0 (p, TBS) ppm; **HRMS** (ESI): *m*/*z*: calculated for C₂₈H₄₅NNaO₄Si₂: 538.2785 [M + Na]⁺, found: 538.2786 [M + Na]⁺.

(2*R*,3*S*)-5-(*tert*-Butyldimethylsilyl)-3-(*tert*-butyldimethylsilyloxy)-2-methylpent-4-yn-1-ol (S42)

Alcohol **S41** (1.2 g, 2.3 mmol, 1.0 eq) was dissolved in Et₂O (46 ml), cooled to 0 °C and H₂O (0.04 ml, 2.3 mmol, 1.0 eq) added. LiBH₄ (250 mg, 11.5 mmol, 5.0 eq) was added. The solution was stirred for 2 h at 0 °C and overnight at rt. The reaction was terminated by addition of aq. NH₄Cl and stirring was continued for 3 h. The layers were separated and the aqueous layer was extracted with Et₂O. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish alcohol **S42** (591 mg, 1.7 mmol, 75%) as a colourless liquid.

 $R_f = 0.58$ (PE:EE = 5:1); $[α]_D^{20} = -45.5$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 4.49 (d, 1H, *J* = 4.4 Hz, H-3), 3.81-3.88 (m, 1H, H-1_a), 3.52-3.59 (m, 1H, H-1_b), 2.72 (brs, 1H, OH), 1.98-2.09 (m, 1H, H-2), 0.93 (s, 9H, TBS), 0.92 (d, 3H, *J* = 7.2 Hz, H-6), 0.90 (s, 9H, TBS), 0.16 (s, 3H, TBS), 0.13 (s, 3H, TBS), 0.10 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 105.7 (q, C-4), 89.4 (q, C-5), 67.9 (t, C-3), 65.9 (s, C-1), 41.4 (t, C-2), 26.2 (p, TBS), 25.8 (p, TBS), 18.2 (q, TBS), 16.6 (q, TBS), 12.8 (p, C-6), -4.4 (p, TBS), -4.6 (p, TBS), -5.1 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₁₈H₃₈NaO₂Si₂: 365.2308 [M + Na]⁺, found: 365.2305 [M + Na]⁺.

(2*S*,3*S*)-5-(*tert*-Butyldimethylsilyl)-3-(*tert*-butyldimethylsilyloxy)-2-methylpent-4-ynal (37)

Alcohol **S42** (478 mg, 1.4 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (28 ml) and NaHCO₃ (100 mg) was added. DESS-MARTIN periodinane (890 mg, 2.1 mmol, 1.5 eq) was added and the reaction mixture was stirred for 1 h at rt. The reaction was terminated by addition of aq. Na₂S₂O₃ and stirring was continued for 1.5 h at rt. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish aldehyde **37** (416 mg, 1.2 mg, 87%) as a colourless liquid.

 $R_f = 0.56$ (PE:EE = 20:1); $[\alpha]_D^{20} = -33.2$ (c = 0.4 in CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.79 (d, 1H, J = 1.4 Hz, H-1), 4.71 (d, 1H, J = 4.4 Hz, H-3), 2.50-2.58 (m, 1H, H-2), 1.19 (d, 3H, J = 6.8 Hz, H-6), 0.93 (s, 9H, TBS), 0.88 (s, 9H, TBS), 0.16 (s, 3H, TBS), 0.12 (s, 3H, TBS), 0.10 (s, 6H, TBS) ppm; 13 C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 203.7 (t, C-1), 105.3 (q, C-4), 89.9 (q, C-5), 63.8 (t, C-3), 52.6 (t, C-2), 26.2 (p, TBS), 25.8 (p, TBS), 18.3 (q, TBS), 16.6 (q, TBS), 9.3 (p, C-6), -4.3 (p, TBS), -4.7 (p, TBS), -5.0 (p, TBS) ppm; **HRMS** (ESI): m/z: calculated for C₁₈H₃₆NaO₂Si₂: 363.2152 [M + Na]⁺, found: 363.2148 [M + Na]⁺.

(2E,4E,7S,8R,9S)-Ethyl-11-(tert-butyldimethylsilyl)-9-(tert-butyldimethylsilyloxy)-7hydroxy-4,8-dimethylundeca-2,4-dien-10-ynoate (7,8-syn,8,9-syn 42a) and (2E,4E,7R,8R,9S)-ethyl-11-(tert-butyldimethylsilyl)-9-(tert-butyldimethylsilyloxy)-7hvdroxv-4,8-dimethylundeca-2,4-dien-10-ynoate (7,8-anti,8,9-syn 42b)

Following the general procedure, aldehyde 37 (401 mg, 1.2 mmol, 1.0 eq) was reacted with ester 6 (364 mg, 2.36 mmol, 2.0 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 10:1$) and to furnish alcohols 7,8-syn,8,9-syn **42a** and 7,8-anti,8,9-syn **42b** [d.r.: 3.4:1 (**42b**:**42a**), 466 mg, 0.94 mmol, 80%] as a colourless oil.

 $R_f = 0.38$ (PE:EE = 10:1); HRMS (ESI): m/z: calculated for $C_{27}H_{50}NaO_4Si_2$: $517.3145 [M + Na]^+$, found: $517.3140 [M + Na]^+$.

7,8-anti,8,9-syn **42b**: $[\alpha]_D^{20} = -8.0$ (c = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.37 (d, 1H, J = 15.7 Hz, H-3), 6.09 (dd, 1H, J = 7.2, 5.8 Hz, H-5), 5.79 (d, 1H, *J* = 15.7 Hz, H-2), 4.58 (d, 1H, *J* = 3.4 Hz, H-9), 4.20 (q, 2H, *J* = 7.1 Hz, H-14), 3.95-4.01 (m, 1H, H-7), 3.81 (d, 1H, J = 1.7 Hz, OH), 2.47 (ddd, 1H, J = 15.5, 5.8, 4.7 Hz, H-6_a), 2.36 (ddd, 1H, J = 15.5, 7.6, 7.2 Hz, H-6_b), 1.77-1.88 (m, 1H, H-8), 1.79 (s, 3H, H-12), 1.29 (t, 3H, J = 7.1 Hz, H-15), 0.91-0.95 (m, 12H, TBS + H-13), 0.90 (s, 9H, TBS), 0.18 (s, 3H, TBS), 0.14 (s, 3H, TBS), 0.10 (s, 6H, TBS) ppm; 13 C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.6 (t, C-3), 138.1 (t, C-5), 134.4 (q, C-4), 115.8 (t, C-2), 105.1 (q, C10), 90.0 (q, C-11), 73.2 (t, C-7), 68.3 (t, C-9), 60.3 (s, C-14), 43.7 (t, C-8), 34.3 (s, C-6), 26.2 (p, TBS), 25.8 (p, TBS), 18.2 (q, TBS), 16.6 (q, TBS), 14.5 (p, C-15), 12.9 (p, C-13), 12.6 (p, C-12), -4.4 (p, TBS), -4.6 (p, TBS), -5.1 (p, TBS) ppm.

7,8-*syn*,8,9-*syn* **42a**: Isolated as a mixture with 7,8-*anti*,8,9-*syn* **42b**; ¹**H-NMR** (500 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33 (d, 1H, *J* = 16.1 Hz, H-3), 5.92 (dd, 1H, *J* = 7.2, 7.2 Hz, H-5), 5.80 (d, 1H, *J* = 16.1 Hz, H-2), 4.49 (d, 1H, *J* = 4.2 Hz, H-9), 4.20 (q, 2H, *J* = 7.1 Hz, H-14), 4.03-4.09 (m, 1H, H-7), 2.89 (s, 1H, OH), 2.42-2.51 (m, 1H, H-6_a), 2.30-2.40 (m, 1H, H-6_b), 1.80 (s, 3H, H-12), 1.68-1.77 (m, 1H, H-8), 1.30 (t, 3H, *J* = 7.1 Hz, H-13), 0.93 (s, 9H, TBS), 0.90 (s, 9H, TBS), 0.14 (s, 6H, TBS), 0.10 (s, 6H, TBS) ppm; ¹³C-NMR (125 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.4 (t, C-3), 138.0 (t, C-5), 134.6 (q, C-4), 116.2 (t, C-2), 106.6 (q, C10), 89.7 (q, C-11), 73.1 (t, C-7), 67.9 (t, C-9), 60.6 (s, C-14), 43.4 (s, C-6), 26.2 (p, TBS), 25.8 (p, TBS), 18.2 (q, TBS), 16.6 (q, TBS), 14.5 (p, C-15), 12.6 (p, C-12), 7.8 (p, C-13), -4.1 (p, TBS), -4.4 (p, TBS), -4.9 (p, TBS) ppm.

(2*R*,3*R*)-5-(*tert*-Butyldimethylsilyl)-*N*-methoxy-*N*,2-dimethyl-3-(triisopropylsilyloxy)pent-4-ynamide (S43)

Alcohol **S38** (150 mg, 0.5 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (7 ml) and cooled to -78 °C. 2,6-Lutidine (0.24 ml, 2.1 mmol, 4.0 eq) was added and after 5 min TIPSOTF (0.28 ml, 1.1 mmol, 2.0 eq). The solution was stirred for 3 h at -78 °C. The reaction was terminated by addition of aq. NaHCO₃ and warmed to rt. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish Weinreb amide **S43** (229 mg, 0.5 mmol, 99%) as a colourless liquid.

 $R_f = 0.51$ (PE:EE = 5:1); $[α]_D^{20} = +44.3$ (*c* = 1.0, CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 4.63 (d, 1H, *J* = 8.9 Hz, H-3), 3.73 (s, 3H, H-8), 3.14-3.23 (m, 4H, H-2 + H-7), 1.24 (d, 3H, *J* = 6.8 Hz, C-6), 1.13-1.23 (m, 3H, TIPS), 1.06-1.12 (m, 18H, TIPS), 0.89 (s, 9H, TBS), 0.05 (s, 3H, TBS), 0.04 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 174.9 (q, C-1), 107.6 (q, C-4), 87.7 (q, C-5), 65.2 (t, C-3), 61.7 (p, C-8), 44.4 (t, C-2), 32.1 (p, C-7), 26.1 (p, TBS), 18.3 (p, TIPS), 18.3 (p, TIPS), 16.6 (q, TBS), 14.5 (p, C-6), 12.5 (t, TIPS), -4.6 (p, TBS), -4.7 (p, TBS) ppm; **HRMS** (ESI): *m/z*: calculated for C₂₃H₄₈NO₃Si₂ and C₂₃H₄₇NNaO₃Si₂: 442.3173 [M + H]⁺ and 464.2992 [M + Na]⁺, found: 442.3181 [M + H]⁺ and 464.3003 [M + Na]⁺.

Weinreb amide S43 (114 mg, 0.3 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (4.0 ml) and cooled to -78 °C. DIBAL-H (1.3 ml, c = 1.2 mol/l in toluene, 1.5 mmol, 6.0 eq.) was slowly added and stirred for 4 h at -78 °C. The reaction was terminated by addition of ethyl acetate and after the addition of Na-K-tartrate stirring was continued overnight. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 20:1$) to furnish aldehyde **38** (46 mg, 120 μ mol, 47%) as a colourless liquid, which was used immediately in the next step.

 $R_f = 0.70$ (PE:EE = 20:1).

(2E,4E,7R,8S,9R)-Ethyl-11-(tert-butyl-dimethylsilyl)-7-hydroxy-4,8-dimethyl-9-(triisopropylsilyloxy)undeca-2,4-dien-10-ynoate (7,8-syn,8,9-syn 43a) and (2E,4E,7S,8S,9R)-Ethyl-11-(tert-butyldimethylsilyl)-7-hydroxy-4,8-dimethyl-9-(triisopropylsilyloxy)undeca-2,4-dien-10-ynoate (7,8-anti,8,9-syn 43b)

Following the general procedure, aldehyde 38 (23 mg, 60 µmol, 1.0 eq) was reacted with ester 6 (19 mg, 120 µmol, 2.0 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $50:1 \rightarrow 20:1$) to furnish alcohols 7,8syn,8,9-syn **43a** and 7,8-anti,8,9-syn **43b** [d.r.: 2:1 (**43b**:**43a**), 14 mg, 25 µmol, 43%] as a colourless liquid.

 $R_f = 0.36$ (PE:EE = 10:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): m/z: calculated for C₃₀H₅₆NaO₄Si₂: 559.3615 [M + Na]⁺, found: 559.3608 $[M + Na]^+$.

7,8-syn,8,9-syn **43a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33 (d, 1H, *J* = 15.7 Hz, H-3), 5.93 (dd, 1H, *J* = 7.3, 7.3 Hz, H-5), 5.80 (d, 1H, *J* = 15.7 Hz, H-2), 4.57 (d, 1H, J = 3.8 Hz, H-9), 4.20 (q, 2H, J = 7.2 Hz, H-14), 4.14-4.20 (m, 1H, H-7), 2.90 (s, 1H, OH), 2.44-2.53 (m, 1H, H-6a), 2.28-2.41 (m, 1H, H-6b), 1.80 (s, 3H, H-12), 1.73-1.79 (m, 1H, H-8), 1.30 (t, 3H, J = 7.2 Hz, H-15), 1.12-1.22 (m, 3H, TIPS), 1.05-1.12 (m, 21H, TIPS + H-13), 0.93 (s, 9H, TBS), 0.10 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): 167.6 (q, C-1), 149.4 (t, C-3), 138.1 (t, C-5), 134.6 (q, C-4), 116.1 (t, C-2), 106.9 (q, C10), 89.8 (q, C-11), 72.2 (t, C-7), 67.7 (t, C-9), 60.3 (s, C-14), 43.8 (t, C-8), 34.5 (s, C-6), 26.2 (p, TBS), 18.2 (p, TIPS), 16.6 (q, TBS), 14.5 (p, C-15), 12.6 (p, C-12), 12.5 (t, TIPS), 8.4 (p, C-13), -4.7 (p, TBS) ppm.

7,8-*anti*,8,9-*syn* **43b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.37 (d, 1H, J = 15.7 Hz, H-3), 6.12 (dd, 1H, J = 6.8, 6.8 Hz, H-5), 5.79 (d, 1H, J = 15.7 Hz, H-2), 4.66 (d, 1H, J = 3.4 Hz, H-9), 4.20 (q, 2H, J = 7.2 Hz, H-14), 4.03-4.10 (m, 1H, H-7), 3.17 (s, 1H, OH), 2.44-2.53 (m, 1H, H-6_a), 2.28-2.41 (m, 1H, H-6_b), 1.85-1.96 (m, 1H, H-8), 1.80 (s, 3H, H-12), 1.30 (t, 3H, J = 7.2 Hz, H-15), 1.12-1.22 (m, 3H, TIPS), 1.05-1.12 (m, 18H, TIPS), 0.92-0.95 (m, 12H, TBS + H-13), 0.10 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.7 (t, C-3), 138.3 (t, C-5), 134.3 (q, C-4), 115.8 (t, C-2), 104.8 (q, C10), 90.2 (q, C-11), 73.3 (t, C-7), 69.3 (t, C-9), 60.3 (s, C-14), 43.8 (t, C-8), 34.3 (s, C-6), 26.2 (p, TBS), 18.1 (p, TIPS), 16.6 (q, TBS), 14.5 (p, C-15), 13.4 (p, C-13), 12.5 (p, C-12), 12.2 (t, TIPS), -4.6 (p, TBS) ppm.

(S)-9-Benzyl-3-[(2S,3S)-5-(*tert*-butyldimethylsilyl)-3-(triphenylsilyloxy)-2-methylpent-4ynoyl]oxazolidin-2-one (S44)

EVANS aldol product **S35** (300 mg, 0.9 mmol, 1.0 eq) was dissolved in DMF (3.8 ml) and imidazole (201 mg, 3.0 mmol, 3.2 eq) was added. TPSCl (353 mg, 1.2 mmol, 1.3 eq) was added and the slurry was stirred for 4 d. Additional TPSCl (177 mg, 0.6 mmol, 0.7 eq) and imidazole (100 mg, 1.5 mmol, 1.6 eq) were added and the reaction mixture was stirred overnight. The reaction was diluted with Et₂O. The organic layer was washed with aq. HCl (c = 1 mol/l) and aq. NaCl, dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 50:1 \rightarrow 10:1) to furnish product **S44** (544 mg, 0.8 mmol, 90%) as a colourless oil.^{S8} $R_f = 0.60$ (PE:EE = 5:1); [α] $_D^{20} = -3.5$ (c = 1.0, CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.62-7.69 (m, 8H, Ph), 7.24-7.50 (m, 10H, Ph), 7.14-7.18 (m, 2H, Ph), 4.82 (d, 1H, J = 6.6 Hz, H-3), 4.34-4.41 (m, 1H, H-9), 4.18 (dq, 1H, J = 6.7, 6.6 Hz, H-2), 4.04 (dd, 1H, J = 8.6, 2.0 Hz, H-8_a), 3.85 (dd, 1H, J = 8.6, 8.4 Hz, H-8_b), 3.22 (dd, 1H, J = 13.4, 2.9 Hz, H-10_a), 2.73 (dd, 1H, J = 13.4, 9.6 Hz, H-10_b), 1.40 (d, 3H, J = 6.7 Hz, H-6), 0.86 (s, 9H, TBS), -0.03 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 173.5 (q, C-1), 153.1 (q, C-7), 127.5-135.9 (t+q, Ph), 105.3 (C-4), 89.5 (q, C-5), 66.1 (s, C-8), 65.5 (t, C-3), 55.5 (t, C-9), 45.4 (C-2), 37.8 (s, C-10), 26.2 (p, TBS), 16.5 (q, TBS), 13.1 (p, C-6), -4.8 (p, TBS), -4.8 (p, TBS) ppm; **HRMS** (ESI): m/z: calculated for C₄₂H₄₄NNaO₄Si₂: 682.2785 [M + Na]⁺, found: 682.2798 [M + Na]⁺.

(2R,3S)-5-(tert-Butyldimethylsilyl)-3-(triphenylsilyloxy)-2-methylpent-4-yn-1-ol (S45)

EVANS aldol product **S44** (530 mg, 0.8 mmol, 1.0 eq) was dissolved in Et₂O (18 ml), cooled to 0 °C and H₂O (0.02 ml, 0.8 mmol, 1.0 eq) was added. LiBH₄ (36 mg, 1.6 mmol, 2.0 eq) was added and the reaction mixture was stirred for 1 h at 0 °C and then for 75 min at rt. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with Et₂O. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $20:1 \rightarrow 2:1$) and furnished alcohol **S45** (331 mg, 0.7 mmol, 85%) as a colourless liquid.

 $R_f = 0.51$ (PE:EE = 5:1); $[α]_D^{20} = -55.3$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 7.63-7.70 (m, 6H, Ph), 7.34-7.49 (m, 9H, Ph), 4.58 (d, 1H, *J* = 4.1 Hz, H-3), 3.87 (ddd, 1H, *J* = 11.2, 7.6, 3.8 Hz, H-1_a), 3.61 (ddd, 1H, *J* = 11.2, 7.3, 4.1 Hz, H1_b), 2.23-2.30 (m, 1H, OH), 2.03-2.13 (m, 1H, H-2), 0.94 (d, 3H, *J* = 6.8 Hz, H-6), 0.87 (s, 9H, TBS), -0.002 (s, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 127.8-135.3 (q+t, Ph), 105.2 (q, C-4), 90.2 (q, C-5), 68.0 (t, C-3), 65.4 (s, C-1), 41.9 (t, C-2), 26.2 (p, TBS), 16.6 (q, TBS), 12.8 (p, C-6), -4.7 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₃₀H₃₈NaO₂Si₂: 509.2308 [M + Na]⁺, found: 509.2298 [M + Na]⁺.

(2S,3S)-5-(tert-Butyldimethylsilyl)-3-(triphenylsilyloxy)-2-methylpent-4-ynal (39)

Alcohol **S45** (75 mg, 150 μ mol, 1.0 eq) was dissolved in CH₂Cl₂ (3 ml) and NaHCO₃ (10 mg) was added. DESS-MARTIN periodinane (98 mg, 230 μ mol, 1.5 eq) was added und the mixture was stirred for 2 h at rt. The reaction was terminated by addition of aq. NaHCO₃/Na₂SO₃ and the solution was stirred for 75 min. The layers were separated and the aqueous layer was

extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $20:1 \rightarrow 10:1$) to furnish aldehyde **39** (59 mg, 120 µmol, 80%) as a colourless liquid.

 R_f = 0.67 (PE:EE = 5:1); [α]_D²⁰ = -60.4 (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.88 (d, 1H, *J* = 1.0 Hz, H-1), 7.62-7.67 (m, 6H, TPS), 7.41-7.49 (m, 3H, TPS), 7.34-7.41 (m, 6H, TPS), 4.76 (d, 1H, *J* = 4.4 Hz, H-3), 2.56-2.65 (m, 1H, H-2), 1.20 (d, 3H, *J* = 7.2 Hz, H-6), 0.86 (s, 9H, TBS), -0.02 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 203.5 (t, C-1), 127.8-135.7 (q+t, TPS), 104.1 (q, C-4), 91.2 (q, C-5), 65.0 (t, C-3), 52.6 (t, C-2), 26.1 (p, TBS), 16.5 (q, TBS), 9.7 (p, C-6), -4.8 (p, TBS) ppm; **HRMS** (ESI): *m/z*: calculated for C₃₀H₃₆NaO₂Si₂: 507.2152 [M + Na]⁺, found: 507.2165 [M + Na]⁺.

(2*E*,4*E*,7*S*,8*R*,9*S*)-Ethyl-11-(*tert*-butyldimethylsilyl)-9-(triphenylsilyloxy)-7-hydroxy-4,8dimethylundeca-2,4-dien-10-ynoate (7,8-*syn*,8,9-*syn* 44a) and (2*E*,4*E*,7*R*,8*R*,9*S*)-ethyl-11-(*tert*-butyldimethylsilyl)-9-(triphenylsilyloxy)-7-hydroxy-4,8-

dimethylundeca-2,4-dien-10-ynoate (7,8-anti,8,9-syn 44b)

Following the general procedure, aldehyde **39** (40 mg, 80 µmol, 1.0 eq) was reacted with ester **6** (25 mg, 160 µmol, 2.0 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 10:1$) to furnish alcohols 7,8-*anti*,8,9-*syn* **44b** and 7,8-*syn*,8,9-*syn* **44a** [*d.r.*: 2.2:1 (**44b**:**44a**), 40 mg, 62 µmol, 78%] as a colourless liquid.

 $R_f = 0.26$ (PE:EE = 2:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): *m/z*: calculated for C₃₉H₅₀NaO₄Si₂: 661.3145 [M + Na]⁺, found: 661.3143 [M + Na]⁺.

7,8-*syn*,8,9-*syn* **44a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.61-7.69 (m, 6H, TPS), 7.32-7.48 (m, 10H, TPS + H-3), 5.88 (dd, 1H, *J* = 7.5, 7.2 Hz, H-5), 5.80 (d, 1H, *J* = 15.7 Hz, H-2), 4.49 (d, 1H, *J* = 4.4 Hz, H-9), 4.26-4.33 (m, 1H, H-7), 4.22 (q, 2H, *J* = 7.3 Hz, H-14), 2.65 (d, 1H, *J* = 2.1 Hz, OH), 2.42-2.52 (m, 1H, H-6_a), 2.26-2.39 (m, 1H, H-6_b), 1.76 (s, 4H, H-12 + H-8), 1.31 (t, 3H, *J* = 7.3 Hz, H-15), 1.03 (d, 3H, *J* = 6.8 Hz, H-13), 0.86 (s, 9H, TBS), -0.02 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ =

77.16 ppm): δ 167.6 (q, C-1), 149.4 (t, C-3), 137.9 (t, C-5), 135.7 (t, TPS), 134.7 (q, C-4), 133.8 (q, TPS), 130.4 (t, TPS), 128.1 (t, TPS), 116.2 (t, C-2), 106.1 (q, C-10), 91.1 (q, C-11), 71.5 (t, C-7), 67.9 (t, C-9), 60.3 (s, C-14), 43.6 (t, C-8), 34.4 (s, C-6), 26.1 (p, TBS), 16.5 (q, TBS), 14.5 (p, C-15), 12.6 (p, C-12), 9.0 (p, C-13), -4.7 (p, TBS), -4.8 (p, TBS) ppm.

7,8-*anti*,8,9-*syn* **44b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.61-7.69 (m, 6H, TPS), 7.32-7.48 (m, 10H, TPS + H-3), 6.02 (dd, 1H, *J* = 7.0, 7.0 Hz, H-5), 5.80 (d, 1H, *J* = 15.7 Hz, H-2), 4.70 (d, 1H, *J* = 3.4 Hz, H-9), 4.22 (q, 2H, *J* = 7.3 Hz, H-14), 3.93-4.00 (m, 1H, H-7), 3.19 (d, 1H, *J* = 2.7 Hz, OH), 2.42-2.52 (m, 1H, H-6_a), 2.26-2.39 (m, 1H, H-6_b), 1.80-1.89 (m, 1H, H-8), 1.76 (s, 3H, H-12), 1.31 (t, 3H, *J* = 7.3 Hz, H-15), 0.93 (d, 3H, *J* = 6.8 Hz, H-13), 0.87 (s, 9H, TBS), -0.01 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.6 (t, C-3), 138.0 (t, C-5), 135.1 (t, TPS), 134.5 (q, C-4), 133.5 (q, TPS), 130.3 (t, TPS), 128.1 (t, TPS), 115.9 (t, C-2), 104.8 (q, C-10), 90.6 (q, C-11), 72.8 (t, C-7), 68.4 (t, C-9), 60.3 (s, C-14), 44.2 (t, C-8), 34.2 (s, C-6), 26.1 (p, TBS), 16.6 (q, TBS), 14.5 (p, C-15), 12.7 (p, C-13), 12.5 (p, C-12), -4.7 (p, TBS) ppm.

(2*E*,4*E*,7*R*,8*R*,9*S*)-Ethyl-11-(*tert*-butyldimethylsilyl)-7,9-dihydroxy-4,8-dimethylundeca-2,4-dien-10-ynoate (7,8-*anti*,8,9-*syn* S46b),

(2*E*,4*E*,7*S*,8*R*,9*S*)-ethyl-7,9-dihydroxy-4,8-dimethylundeca-2,4-dien-10-ynoate (7,8-*syn*,8,9-*syn* 45a) and

(2*E*,4*E*,7*R*,8*R*,9*S*)-ethyl-7,9-dihydroxy-4,8-dimethylundeca-2,4-dien-10-ynoate (7,8-*anti*,8,9-*syn* 45b)

7,8-anti,8,9-syn 45b

7,8-syn,8,9-syn **45a**

A mixture of alcohols **42** [*d.r.*: 3.4:1 (**42b**:**42a**), 80 mg, 0.16 mmol, 1.0 eq] was dissolved in THF (3 ml) and cooled to 0 °C. TBAF·3H₂O (102 mg, 0.32 mmol, 2.0 eq) was dissolved in THF (2 ml) and added to the first solution. The reaction mixture was stirred for 2 h and the reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash

chromatography (petroleum ether : ethyl acetate = $5:1 \rightarrow 2:1$) to furnish diols 7,8-*anti*,8,9-*syn* **S46b** [42 mg, 0.11 mmol, 69% (92% referring to the 7,8-*anti*,8,9-*syn*-diastereomer)] and 7,8-*anti*,8,9-*syn* **45b** and 7,8-*syn*,8,9-*syn* **45a** (~1:1, 7 mg, 0.03 mmol, 17%) as colourless liquids.

7,8-*anti*,8,9-*syn* **S46b**: $R_f = 0.5$ (PE:EE = 2:1); $[\alpha]_D^{20} = -3.3$ (c = 1.0 in CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.34 (d, 1H, J = 15.7 Hz, H-3), 6.00 (dd, 1H, J = 7.6, 6.6 Hz, H-5), 5.82 (d, 1H, J = 15.7 Hz, H-2), 4.55 (dd, 1H, J = 6.0, 2.9 Hz, H-9), 4.21 (q, 2H, J = 7.2 Hz, H-14), 3.93-4.01 (m, 1H, H-7), 3.45-3.60 (m, 1H, OH_{C9}), 2.73-2.83 (m, 1H, OH_{C7}), 2.50 (ddd, 1H, J = 15.5, 6.6, 4.4 Hz, H-6_a), 2.42 (ddd, 1H, J = 15.5, 7.9, 7.6 Hz, H-6_b), 1.87-1.98 (m, 1H, H-8), 1.81 (s, 3H, H-12), 1.30 (t, 3H, J = 7.2 Hz, H-15), 0.98 (d, 3H, J = 7.2 Hz, H-13), 0.93 (s, 9H, TBS), 0.11 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.2 (t, C-3), 136.8 (t, C-5), 135.6 (q, C-4), 116.5 (t, C-2), 105.5 (q, C-10), 89.3 (q, C-11), 74.2 (t, C-7), 67.1 (t, C-9), 60.5 (s, C-14), 43.0 (t, C-8), 34.9 (s, C-6), 26.2 (p, TBS), 16.6 (q, TBS), 14.4 (p, C-15), 13.3 (p, C-13), 12.6 (p, C-12), -4.5 (p, TBS), -4.5 (p, TBS) ppm; **HRMS** (ESI): m/z: calculated for C₂₁H₃₆NaO₃Si: 403.2281 [M + Na]⁺, found: 403.2269 [M + Na]⁺.

7,8-*syn*,8,9-*syn* **45a** and 7,8-*anti*,8,9-*syn* **45b**: $R_f = 0.23$ (PE:EE = 2:1); the diastereomers could not be separated; **HRMS** (ESI): *m/z*: calculated for C₁₅H₂₂NaO₄: 289.1416 [M + Na]⁺, found: 289.1407 [M + Na]⁺.

7,8-*syn*,8,9-*syn* **45a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33 (d, 1H, J = 15.7 Hz, H-3), 5.90 (dd, 1H, J = 7.3, 7.3 Hz, H-5), 5.83 (d, 1H, J = 15.7 Hz, H-2), 4.60 (dd, 1H, J = 3.6, 2.3 Hz, H-9), 4.21 (q, 2H, J = 7.2 Hz, H-14), 4.07 (ddd, 1H, J = 7.2, 6.5, 1.4 Hz, H-7), 2.53 (d, 1H, J = 2.3 Hz, H-11), (m, 2H, H-6), 1.81 (s, 3H, H-12), 1.77-1.83 (m, 1H, H-8), 1.30 (t, 3H, J = 7.2 Hz, H-15), 1.13 (d, 3H, J = 6.8 Hz, H-13) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.1 (t, C-3), 137.0 (t, C-5), 135.2 (q, C-4), 116.7 (t, C-2), 83.6 (q, C-10), 74.3 (t, C-7), 73.9 (t, C-11), 66.9 (t, C-9), 60.4 (s, C-14), 42.6 (t, C-8), 34.7 (s, C-6), 14.5 (p, C-15), 6.9 (p, C-13), 12.6 (p, C-12) ppm.

7,8-*anti*,8,9-*syn* **45b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.35 (d, 1H, J = 15.7 Hz, H-3), 5.99 (dd, 1H, J = 7.5, 7.5 Hz, H-5), 5.85 (d, 1H, J = 15.7 Hz, H-2), 4.54 (dd, 1H, J = 2.4, 2.2 Hz, H-9), 4.22 (q, 2H, J = 7.2 Hz, H-14), 4.00 (ddd, 1H, J = 8.2, 8.2, 3.8 Hz, H-7), 2.50 (d, 1H, J = 2.2 Hz, H-11), 2.32-2.55 (m, 2H, H-6), 1.91-2.00 (m, 1H, H-8), 1.82 (s, 3H, H-12), 1.30 (t, 3H, J = 7.2 Hz, H-15), 1.00 (d, 3H, J = 7.2 Hz, H-13) ppm; ¹³**C-NMR** (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 148.9 (t, C-3), 136.3 (t, C-5), 136.0 (q, C-4), 116.8 (t, C-2), 83.1 (q, C-10), 74.3 (t, C-7), 73.9 (t, C-11), 66.7 (t, C-5), 136.0 (q, C-4), 116.8 (t, C-2), 83.1 (q, C-10), 74.3 (t, C-7), 73.9 (t, C-11), 66.7 (t, C-5), 136.0 (t, C-5), 136.0

C-9), 60.5 (s, C-14), 42.9 (t, C-8), 35.0 (s, C-6), 14.4 (p, C-15), 13.3 (p, C-13), 12.7 (p, C-12) ppm.

(2E,4E,7R,8R,9S)-Acetonide (7,8-anti,8,9-syn S47b)

Diol **S46b** (997 mg, 2.6 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (160 ml). 2,2-Dimethoxypropane (32 ml) and PPTS (20 mg, catalytic) were added. The solution was stirred for 2 h at rt. The solvent was removed under reduced pressure and the crude product purified by flash chromatography (petroleum ether : ethyl acetate = 10:1). Acetonide **S47b** (1.0 g, 2.5 mmol, 95%) was obtained as a yellow liquid.

 R_f = 0.8 (PE:EE = 2:1); $[α]_D^{20}$ = +22.2 (*c* = 1.0, CH₂Cl₂); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.34 (d, 1H, *J* = 15.7 Hz, H-3), 6.00 (dd, 1H, *J* = 7.6, 6.5 Hz, H-5), 5.81 (d, 1H, *J* = 15.7 Hz, H-2), 4.64 (d, 1H, *J* = 6.2 Hz, H-9), 4.21 (q, 2H, *J* = 7.0 Hz, H-14), 3.75 (ddd, 1H, *J* = 9.5, 7.6, 3.5 Hz, H-7), 2.50 (ddd, 1H, *J* = 15.9, 6.5, 3.5 Hz, H-6_a), 2.35 (ddd, 1H, *J* = 15.9, 7.6, 7.6 Hz, H-6_b), 1.87 (dqd, 1H, *J* = 9.5, 7.7, 6.2 Hz, H-8), 1.79 (s, 3H, H-12), 1.59 (s, 3H, H-17_a), 1.36 (s, 3H, H-17_b), 1.30 (t, 3H, *J* = 7.0 Hz, H-15), 0.95 (d, 3H, *J* = 7.7 Hz, H-13), 0.94 (s, 9H, TBS), 0.11 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.4 (t, C-3), 137.5 (t, C-5), 134.4 (q, C-4), 116.0 (q, C-2), 104.4 (q, C-10), 100.5 (q, C-16), 91.4 (q, C-11), 71.7 (t, C-7), 65.4 (t, C-9), 60.4 (s, C-14), 37.6 (t, C-8), 32.7 (s, C-6), 29.1 (p, C-17_a), 26.2 (p, TBS), 23.5 (p, C-17_b), 16.7 (q, TBS), 14.5 (p, C-13), 13.4 (p, C-15), 12.6 (p, C-12), -4.6 (p, TBS), -4.7 (p, TBS) ppm; **HRMS** (ESI): *m/z*: Compound **S47b** could not be detected by mass spectrometry.

(2E,4E,7R,8R,9S)-Acetonide (7,8-anti,8,9-syn 46b)

7,8-anti,8,9-syn 46b

Acetonide **S47b** (203 mg, 0.48 mmol, 1.0 eq) was dissolved in THF (10 ml) and cooled to 0 °C. A solution of TBAF·3H₂O (259 mg, 0.82 mmol, 1.7 eq) in THF (5 ml) was slowly added and stirring was continued for 25 min at 0 °C. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 .

The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1) to furnish alkyne **46b** (141 mg, 0.46 mmol, 96%) as a colourless liquid. R_f = 0.59 (PE:EE = 5:1); $[\alpha]_D^{20} = +33.7 (c = 1.0, CH_2Cl_2)$; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.34 (d, 1H, *J* = 15.7 Hz, H-3), 5.99 (dd, 1H, *J* = 7.0, 7.0 Hz, H-5), 5.81 (d, 1H, *J* = 15.7 Hz, H-2), 4.66 (dd, 1H, *J* = 5.5, 2.4 Hz, H-9), 4.21 (q, 2H, *J* = 7.1 Hz, H-14), 3.71 (ddd, 1H, *J* = 9.0, 8.0, 3.6 Hz, H-7), 2.51 (d, 1H, *J* = 2.4 Hz, H-11), 2.45-2.54 (m, 1H, H-6_a), 2.31-2.40 (m, 1H, H-6_b), 1.82-1.93 (m, 1H, H-8), 1.78 (s, 3H, H-12), 1.55 (s, 3H, H-17_a), 1.37 (s, 3H, H-17_b), 1.30 (t, 3H, *J* = 7.1 Hz, H-15), 0.98 (d, 3H, *J* = 7.2 Hz, H-13) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.4 (t, C-3), 137.3 (t, C-5), 134.4 (q, C-4), 116.1 (t, C-2), 100.8 (q, C-16), 81.6 (q, C-10), 76.2 (t, C-11), 72.0 (t, C-7), 64.3 (t, C-9), 60.4 (s, C-14), 37.8 (t, C-8), 32.8 (s, C-6), 28.4 (p, C-17_a), 23.5 (p, C-17_b), 14.5 (p, C-15), 13.3 (p, C-13), 12.6 (p, C-12) ppm; **HRMS** (ESI): *m/z*: calculated for C₁₈H₂₆NaO₄: 329.1729 [M + Na]⁺, found: 329.1741 [M + Na]⁺.

(2E,4E,7S,8R,9S)-Acetonide (7,8-syn,8,9-syn 46a)

7,8-syn,8,9-syn **46a**

Diol **45a** (7.3 mg, 27 μ mol, 1.0 eq) was dissolved in CH₂Cl₂ (1 ml) and 2,2-dimethoxypropane (0.2 ml) was added. Then PPTS (0.5 mg, catalytic) was added and the reaction mixture was stirred for 3 h at rt. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 3:1 \rightarrow 10:1). Acetonide **46a** (6.9 mg, 23 μ mol, 85%) was obtained as a yellow liquid.

R_f = 0.42 (PE:EE = 5:1); $[\alpha]_D^{20}$ = +18.5 (*c* = 0.6, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.31 (d, 1H, *J* = 15.5 Hz, H-3), 5.81-5.86 (m, 1H, H-5), 5.82 (d, 1H, *J* = 15.5 Hz, H-2), 4.79 (dd, 1H, *J* = 2.2, 2.1 Hz, H-9), 4.21 (q, 2H, *J* = 7.2 Hz, H-14), 3.98 (ddd, 1H, *J* = 7.4, 7.1, 1.7 Hz, H-7), 2.49 (d, 1H, *J* = 2.1 Hz, H-11), 2.43 (ddd, 1H, *J* = 15.0, 7.4, 7.4 Hz, H-6_a), 2.31 (ddd, 1H, *J* = 15.0, 7.4, 7.1 Hz, H-6_b), 1.80 (s, 3H, H-12), 1.55-1.63 (m, 1H, H-8), 1.46 (s, 3H, H-17_a), 1.44 (s, 3H, H-17_b), 1.30 (t, 3H, *J* = 7.2 Hz, H-15), 1.13 (d, 3H, *J* = 6.8 Hz, H-13) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.1 (t, C-3), 136.4 (t, C-5), 134.9 (q, C-4), 116.5 (t, C-2), 99.9 (q, C-16), 81.6 (q, C-10), 74.2 (t, C-11), 71.8 (t, C-7), 65.6 (t, C-9), 60.4 (s, C-14), 35.7 (t, C-8), 32.6 (s, C-6),

30.0 (p, C-17_a), 19.3 (p, C-17_b), 14.5 (p, C-15), 12.6 (p, C-12), 6.4 (p, C-13) ppm; **HRMS** (ESI): m/z: calculated for C₁₈H₂₆NaO₄: 329.1729 [M + Na]⁺, found: 329.1745 [M + Na]⁺.

Acetonide (7,8-anti,8,9-syn 47b)

7,8-anti,8,9-syn **47b**

Alkyne **46b** (12.0 mg, 33 \square mol, 1 eq) was dissolved in CH₂Cl₂ (2.4 ml) and LINDLAR-catalyst (2.5 mg, 5 % Pd, 1 \square mol, 3 mol%) was added. The flask was filled with H₂ and the solution stirred for 105 min at rt. The mixture was filtered through CeliteTM and the solvent removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish alkene **47b** (7.7 mg, 25 \square mol, 75%) as a colourless liquid. In addition alkyne **46b** (~3.0 mg, ~1 \square mol, 25%) was reisolated.

 R_f = 0.64 (PE:EE = 5:1); [α]_D²⁰ = -4.0 (*c* = 0.6, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.34 (d, 1H, *J* = 15.7 Hz, H-3), 5.98 (t, 1H, *J* = 7.0 Hz, H-5), 5.81 (d, 1H, *J* = 15.7 Hz, H-2), 5.79 (ddd, 1H, *J* = 17.2, 10.8, 6.1 Hz, H-10), 5.25 (d, 1H, *J* = 17.2 Hz, H-11_a), 5.17 (d, 1H, *J* = 10.8 Hz, H-11_b), 4.42 (dd, 1H, *J* = 6.1, 5.6 Hz, H-9), 4.21 (q, 2H, *J* = 7.2 Hz, H-14), 3.40 (td, 1H, *J* = 7.9, 4.1 Hz, H-7), 2.35-2.52 (m, 2H, H-6), 1.78 (s, 4H, H-12), 1.71-1.77 (m, 1H, H-8), 1.36 (s, 6H, H-17), 1.30 (t, 3H, *J* = 7.2 Hz, H-15), 0.84 (d, 3H, *J* = 6.8 Hz, H-13) ppm; ¹³C-NMR (100 MHz, CDCl₃, CHCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.4 (t, C-3), 138.0 (t, C-5), 135.8 (t, C-10), 134.3 (q, C-4), 116.1 (t, C-2), 115.9 (s, C-11), 101.0 (q, C-16), 74.2 (t, C-7), 70.9 (t, C-9), 60.4 (s, C-14), 40.4 (t, C-8), 33.8 (s, C-6), 25.3 (p, C-17_a), 24.1 (p, C-17_b), 14.5 (p, C-15), 12.8 (p, C-12), 12.6 (p, C-13) ppm; **HRMS** (ESI): Compound **47b** could not be detected by mass spectrometry.

(2*E*,4*E*,7*S*,8*S*,9*R*)-Ethyl-11-(*tert*-butyldimethylsilyl)-7,9-dihydroxy-4,8-dimethylundeca-2,4-dien-10-ynoate (*ent*-7,8-*anti*,8,9-*syn*-S46b)

A mixture of alcohols **43** [*d.r.*: 2:1 (7,8-*anti*,8,9-*syn*:7,8-*syn*,8,9-*syn*), 13 mg, 24 µmol, 1.0 eq] was dissolved in THF (0.4 ml) and cooled to 0 °C. TBAF·3H₂O (15 mg, 50 µmol, 2.0 eq) was dissolved in THF (0.3 ml) and added slowly. The solution was stirred for 1 h and the reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with Et₂O. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $10:1 \rightarrow 5:1$) and furnished diols *ent*-7,8-*anti*,8,9-*syn* **45b** and *ent*-7,8-*syn*,8,9-*syn* **45a** (*d.r.*: ~1.1, 1.5 mg, 5.6 \square mol, 24%) as colourless liquids.

ent-7,8-*anti*,8,9-*syn* **S46b**: $R_f = 0.48$ (PE:EE = 2:1); $[\alpha]_D^{20} = +0.8$ (c = 0.6, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.35 (d, 1H, J = 15.7 Hz, H-3), 5.99 (dd, 1H, J = 7.5, 7.5 Hz, H-5), 5.84 (d, 1H, J = 15.7 Hz, H-2), 4.55 (d, 1H, J = 3.1 Hz, H-9), 4.22 (q, 2H, J = 7.1 Hz, H-14), 3.97 (ddd, 1H, J = 8.2, 8.2, 3.8 Hz, H-7), 2.35-2.55 (m, 2H, H-6), 1.88-1.98 (m, 1H, H-8), 1.81 (s, 3H, H-12), 1.30 (t, 3H, J = 7.0 Hz, H-15), 0.99 (d, 3H, J = 7.1 Hz, H-13), 0.94 (s, 9H, TBS), 0.12 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.0 (t, C-3), 136.6 (t, C-5), 135.8 (q, C-4), 116.7 (t, C-2), 105.5 (q, C-10), 89.4 (q, C-11), 74.3 (t, C-7), 67.1 (t, C-9), 60.4 (s, C-14), 43.1 (t, C-8), 34.9 (s, C-6), 26.2 (p, TBS), 16.7 (q, TBS), 14.5 (p, C-15), 13.3 (p, C-13), 12.7 (p, C-12), -4.5 (p, TBS), -4.5 (p, TBS) ppm; HRMS (ESI): m/z: calculated for C₂₁H₃₆NaO₄Si: 403.2281 [M + Na]⁺, found: 403.2276 [M + Na]⁺.

(2E,4E,7S,8S,9R)-Acetonide (ent-7,8-anti,8,9-syn S47b)

ent-7,8-anti,8,9-syn S47b

Diol **S46b** (6.1 mg, 16 μ mol, 1.0 eq) was dissolved in CH₂Cl₂ (1 ml). 2,2-Dimethoxypropane (0.2 ml) and PPTS (0.5 mg, catalytic) were added. The solution was stirred for 2 h. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1). Acetonide **S47b** (4.3 mg, 10 μ mol, 64%) was obtained as a colourless liquid.

 $R_f = 0.8$ (PE:EE = 2:1); $[\alpha]_D^{20} = -21.8$ (c = 0.4, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 7.35 (d, 1H, J = 15.7 Hz, H-3), 6.00 (dd, 1H, J = 7.3, 6.6 Hz, H-5), 5.81 (d, 1H, J = 15.7 Hz, H-2), 4.65 (d, 1H, J = 5.8 Hz, H-9), 4.21 (q, 2H, J = 7.2 Hz, H-14), 3.75 (ddd, 1H, J = 9.6, 7.6, 3.5 Hz, H-7), 2.50 (ddd, 1H, J = 15.8, 6.6, 3.5 Hz, H-6_a), 2.36 (ddd, 1H, J = 15.8 Hz, H-15), 5.81 (ddd, 1H, J = 15.8 Hz, H-6_a), 2.36 (ddd, 1H, J = 15.8 Hz, H-16), 3.75

1H, J = 15.8, 7.6, 7.3 Hz, H-6_b), 1.82-1.93 (m, 1H, H-8), 1.79 (s, 3H, H-12), 1.60 (s, 3H, H-17_a), 1.36 (s, 3H, H-17_b), 1.21-1.34 (m, 3H, H-15), 0.94 (s, 9H, TBS), 0.84-0.91 (m, 3H, H-13), 0.11 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.5 (t, C-3), 137.5 (t, C-5), 134.4 (q, C-4), 116.0 (q, C-2), 104.4 (q, C-10), 100.5 (q, C-16), 91.4 (q, C-11), 71.7 (t, C-7), 65.4 (t, C-9), 60.4 (s, C-14), 37.6 (t, C-8), 32.7 (s, C-6), 29.2 (p, C-17_a), 26.2 (p, TBS), 23.5 (p, C-17_b), 16.7 (q, TBS), 14.5 (p, C-13), 14.2 (p, C-15), 12.6 (p, C-12), -4.6 (p, TBS), -4.6 (p, TBS) ppm; HRMS (ESI): *m/z*: Compound S47b could not be detected by mass spectrometry.

(2E,4E,7S,8S,9R)-Acetonide (ent-7,8-anti,8,9-syn 46b)

ent-7,8-anti,8,9-syn 46b

Acetonide 45b (7.5 mg, 18 µmol, 1.0 eq) was dissolved in THF (0.3 ml) and cooled to 0 °C. TBAF·3H₂O (8.0 mg, 20 µmol, 1.3 eq) was dissolved in THF (0.4 ml) and added to the first solution. The reaction mixture was stirred for 1 h at 0 °C and terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 10:1$) to furnish alkyne **46b** (4.2 mg, 14 µmol, 77%) as a colourless liquid. $R_f = 0.50 (PE:EE = 5:1); [\alpha]_D^{20} = -19.2 (c = 0.5, CH_2Cl_2); {}^{1}H-NMR (400 \text{ MHz}, CDCl_3),$ CHCl₃ = 7.26 ppm): δ 7.34 (d, 1H, *J* = 15.7 Hz, H-3), 5.99 (dd, 1H, *J* = 6.8, 6.8 Hz, H-5), 5.81 (d, 1H, J = 15.7 Hz, H-2), 4.67 (dd, 1H, J = 5.8, 2.4 Hz, H-9), 4.22 (q, 2H, J = 7.1 Hz, H-14), 3.71 (ddd, 1H, J = 9.1, 7.9, 3.7 Hz, H-7), 2.52 (d, 1H, J = 2.4 Hz, H-11), 2.44-2.55 (m, 1H, H-6_a), 2.31-2.41 (m, 1H, H-6_b), 1.83-1.94 (m, 1H, H-8), 1.79 (s, 3H, H-12), 1.55 (s, 3H, H-17_a), 1.37 (s, 3H, H-17_b), 1.30 (t, 3H, J = 7.1 Hz, H-15), 0.98 (d, 3H, J = 7.2 Hz, H-13) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.4 (t, C-3), 137.3 (t, C-5), 134.5 (q, C-4), 116.1 (t, C-2), 100.8 (q, C-16), 81.6 (q, C-10), 76.2 (t, C-11), 72.0 (t, C-7), 64.3 (t, C-8), 60.4 (s, C-14), 37.8 (t, C-8), 32.8 (s, C-6), 28.4 (p, C-17_a), 23.5 (p, C-17_b), 14.5 (p, C-15), 13.3 (p, C-13), 12.6 (p, C-12) ppm; **HRMS** (ESI): *m/z*: calculated for $C_{18}H_{26}NaO_4$: 329.1729 [M + Na]⁺, found: 329.1741 [M + Na]⁺.

Alcohol **S42** (1.0 g, 2.92 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (7 ml). PMBtrichloroacetimidate (3.3 g, 11.68 mmol, 4.0 eq) was dissolved in CH₂Cl₂ (3 ml) and added to the solution. Then, CSA (68 mg, 0.29 mmol, 0.1 eq) was added and the reaction mixture stirred for 5 d at rt. A second portion of PMB-trichloroacetimidate (1.2 g, 4.3 mmol, 1.5 eq) was added and stirring was continued for another 2 d. The reaction was terminated by addition of aq. NaHCO₃ and the mixture was stirred for 3 h. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 10:1$). A second purification by flash chromatography (petroleum ether : ethyl acetate = $40:1 \rightarrow 10:1$) furnished PMB-protected alcohol **S48** (1.0 g, 2.28 mmol, 78%) as a colourless liquid. Additionally, alcohol **S42** (200 mg, 0.58 mmol, 20%) was reisolated.

R_f = 0.71 (PE:EE = 5:1); $[a]_D^{20}$ = -24.9 (*c* = 1.0, CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.22-7.28 (m, 2H, PMB), 6.85-6.90 (m, 2H, PMB), 4.51 (d, 1H, *J* = 4.2 Hz, H-3), 4.43 (d, 1H, *J* = 11.4 Hz, PMB), 4.38 (d, 1H, *J* = 11.4 Hz, PMB), 3.80 (s, 3H, PMB), 3.48 (dd, 1H, *J* = 9.1, 7.0 Hz, H-1_a), 3.33 (dd, 1H, *J* = 9.1, 7.0 Hz, H-1_b), 1.99 (dqdd, 1H, *J* = 7.0, 6.7, 6.3, 4.2 Hz, H-2), 1.00 (d, 3H, *J* = 6.7 Hz, H-6), 0.92 (s, 9H, TBS), 0.89 (s, 9H, TBS), 0.13 (s, 3H, TBS), 0.08 (s, 3H, TBS), 0.07 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 159.2 (q, PMB), 130.9 (q, PMB), 129.3 (t, PMB), 113.9 (t, PMB), 107.8 (q, C-4), 87.3 (q, C-5), 72.9 (s, PMB), 71.8 (s, C-1), 63.9 (t, C-3), 55.4 (p, PMB), 40.8 (t, C-2), 26.2 (p, TBS), 25.9 (p, TBS), 18.4 (q, TBS), 16.6 (q, TBS), 12.0 (p, C-6), -4.3 (p, TBS), -4.6 (p, TBS), -5.0 (p, TBS) ppm; **HRMS** (ESI): *m/z*: calculated for C₂₆H₄₆NaO₃Si₂: 485.2883 [M + Na]⁺, found: 485.2871 [M + Na]⁺.

Alkyne S50

Alkyne **S48** (100 mg, 0.22 mmol, 1 eq) was dissolved in THF (4 ml) and cooled to 0 °C. TBAF·3H₂O (205 mg, 0.65 mmol, 3 eq) was dissolved in THF (2 ml) and added. The solution was stirred 1.5 h at 0 °C and rt respectively. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The

combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $5:1 \rightarrow 3:1$) to furnish alkyne **S49** (50 mg, 0.22 mmol, 99%) as a colourless liquid. Alkyne **S49** (50 mg, 0.21 mmol, 1 eq) was dissolved in CH₂Cl₂ (3.5 ml) and cooled to 0 °C. 2,6-Lutidine (0.07 ml, 0.63 mmol, 3 eq) and TBSOTf (0.07 ml, 0.32 ml, 1.5 eq) were added and the reaction mixture was stirred for 2 h at 0 °C. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and

the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 40:1) to furnish alkyne **S50** (68 mg, 0.20 mmol, 94%) as a colourless liquid.

R_f = 0.77 (PE:EE = 5:1); $[α]_D^{20}$ = -22.4 (*c* = 1.0, CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.22-7.28 (m, 2H, PMB), 6.69-6.85 (m, 2H, PMB), 4.54 (dd, 1H, *J* = 3.9, 2.1 Hz, H-4), 4.44 (d, 1H, *J* = 11.6 Hz, PMB), 4.38 (d, 1H, *J* = 11.6 Hz, PMB), 3.81 (s, 3H, PMB), 3.47 (dd, 1H, *J* = 9.1, 7.1 Hz, H-1_a), 3.34 (dd, 1H, *J* = 9.1, 6.4 Hz, H-1_b), 2.34 (d, 1H, *J* = 2,1 Hz, H-5), 2.00 (dqdd, 1H, *J* = 7.1, 6.9, 6.4, 3.9 Hz, H-2), 1.01 (d, 2H, *J* = 6.9 Hz, H-6), 0.89 (s, 9H, TBS), 0.14 (s, 3H, TBS), 0.09 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 159.3 (q, PMB), 130.8 (q, PMB), 129.4 (t, PMB), 114.0 (t, PMB), 85.0 (q, C-4), 72.9 (s, PMB), 72.6 (t, C-5), 71.6 (t, C-3), 63.1 (s, C-1), 55.4 (p, PMB), 40.7 (t, C-2), 25.9 (p, TBS), 18.3 (q, TBS), 11.7 (p, C-6), -4.4 (p, TBS), -5.1 (p, TBS) ppm; **HRMS** (ESI): *m/z*: calculated for C₂₀H₃₂NaO₃Si: 371.2018 [M + Na]⁺, found: 371.2026 [M + Na]⁺.

(2R,3S)-3-(tert-Butyldimethylsilyloxy)-2-methylpent-4-yn-1-ol (S51)

Alkyne **S50** (66 mg, 0.19 mmol, 1.0 eq) was dissolved in CH₂Cl₂/phosphate buffer (pH = 7) (6.6 ml, 10:1) at rt. DDQ (52 mg, 0.23 mmol, 1.2 eq) was added and the mixture was stirred for 3 h. The reaction was terminated by addition of aq. NaHCO₃ and stirring was continued for 20 min. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was dissolved in MeOH/CH₂Cl₂ (15 ml, 1:2) and NaBH₄ (~20 mg) was added. The reaction was terminated after 30 min by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, may added. The reaction was terminated after 30 min by addition of aq. NH₄Cl. The layers were dried over MgSO₄ and the solvent was removed under reduced pressure.

The crude product was purified by flash chromatography (petroleum ether : ethyl acetate $= 20:1 \rightarrow 10:1$) to furnish alcohol S51 (30 mg, 0.13 mmol, 68%) as a colourless liquid.

 $R_f = 0.46$ (PE:EE = 5:1); $[\alpha]_D^{20} = -45.1$ (c = 1.0, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 4.51 (dd, 1H, J = 5.3, 2.1 Hz, H-3), 3.83 (dd, 1H, J = 11.0, 7.7 Hz, H-1_a), 3.57 (dd, 1H, J = 11.0, 4.0 Hz, H-1_b), 2.55 (brs, 1H, OH), 2.44 (d, 1H, J = 2.1 Hz, H-5), 2.04 (dqdd, 1H, J = 7.7, 7.2, 5.3, 4.0 Hz, H-2), 0.93 (d, 3H, J = 7.2 Hz, H-6), 0.90 (s, 9H, TBS), 0.17 (s, 3H, TBS), 0.13 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 83.1 (q, C-4), 74.2 (t, C-5), 66.9 (t, C-3), 65.6 (s, C-1), 41.4 (t, C-2), 25.8 (p, TBS), 18.2 (q, TBS), 12.5 (p, C-6), -4.5 (p, TBS), -5.2 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for $C_{12}H_{24}NaO_2Si: 251.1443 [M + Na]^+$, found: 251.1442 [M + Na]⁺.

(2S,3S)-3-(tert-Butyldimethylsilyloxy)-2-methylpent-4-ynal (48)

Alcohol S51 (21 mg, 0.09 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (5 ml) and NaHCO₃ (10 mg) and DESS-MARTIN periodinane (47 mg, 0.11 mmol, 1.2 eq) were added and the reaction mixture was stirred for 1 h at rt. The reaction was terminated by addition of an aq. Na₂S₂O₃ solution and stirring was continued for 1 h. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish aldehyde 48 (18 mg, 0.08 mmol, 87%) as a colourless liquid, which was used immediately in the next step. $R_f = 0.71$ (PE:EE = 5:1).

(2E,4E,7S,8R,9S)-Ethyl-9-(tert-butyldimethylsilyloxy)-7-hydroxy-4,8-dimethylundeca-2,4-dien-10-ynoate (7,8-syn,8,9-syn 49a) and

(2E,4E,7R,8R,9S)-ethyl-9-(tert-butyldimethylsilyloxy)-7-hydroxy-4,8-dimethylundeca-**2,4-dien-10-ynoate** (7,8-*anti*,8,9-*syn* **49b**)

Following the general procedure, aldehyde 48 (18 mg, 0.08 mmol, 1 eq) was reacted with ester 6 (25 mg, 0.16 mmol, 2 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 8:1$) to furnish alcohols 7,8-*syn*,8,9-*syn* **49a** and 7,8-*anti*,8,9-*syn* **49b** (*d.r.*: 1:1, 23 mg, 0.06 mmol, 77%) as yellow liquids.

HRMS (ESI): m/z: calculated for C₂₁H₃₆NaO₄Si: 403.2281 [M + Na]⁺, found: 403.2261 [M + Na]⁺.

7,8-*syn*,8,9-*syn* **49a**: $R_f = 0.39$ (PE:EE = 5:1); $[\alpha]_D^{20} = -21.5$ (c = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.32 (d, 1H, J = 15.7 Hz, H-3), 5.92 (dd, 1H, J = 7.3, 7.3 Hz, H-5), 5.81 (d, 1H, J = 15.7 Hz, H-2), 4.50 (dd, 1H, J = 3.4, 2.1 Hz, H-9), 4.20 (q, 2H, J = 7.2 Hz, H-14), 4.06 (ddd, 1H, J = 7.5, 6.5, 1.4 Hz, H-7), 2.67 (brs, 1H, OH), 2.48 (d, 1H, J = 2.1 Hz, H-11), 2.43-2.52 (m, 1H, H-6_a), 2.36 (ddd, 1H, J = 7.5, 7.4, 7.3 Hz, H-6_b), 1.70-1.77 (m, 1H, H-8), 1.80 (s, 3H, H-12), 1.30 (t, 3H, J = 7.2 Hz, H-15), 1.07 (d, 3H, J = 7.2 Hz, H-13), 0.90 (s, 9H, TBS), 0.18 (s, 3H, TBS), 0.15 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.3 (t, C-3), 137.7 (t, C-5), 134.7 (q, C-4), 116.3 (t, C-2), 84.7 (q, C-10), 74.5 (t, C-7), 73.0 (t, C-11), 67.3 (t, C-9), 60.3 (s, C-14), 43.4 (t, C-8), 34.6 (s, C-6), 25.8 (p, TBS), 18.2 (q, TBS), 14.5 (p, C-15), 12.6 (p, C-12), 7.7 (p, C-13), -4.5 (p, TBS), -5.2 (p, TBS) ppm.

7,8-*anti*,8,9-*syn* **49b**: $R_f = 0.48$ (PE:EE = 5:1); $[\alpha]_D^{20} = -3.2$ (c = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.37 (d, 1H, J = 15.7 Hz, H-3), 6.10 (dd, 1H, J = 7.0, 7.0 Hz, H-5), 5.80 (d, 1H, J = 15.7 Hz, H-2), 4.60 (dd, 1H, J = 3.4, 2.2 Hz, H-9), 4.20 (q, 2H, J = 7.1 Hz, H-14), 3.98 (ddd, 1H, J = 7.9, 7.9, 3.8 Hz, H-7), 3.69 (brs, 1H, OH), 2.47 (d, 1H, J = 2.2 Hz, H-11), 2.43-2.52 (m, 1H, H-6_a), 2.32-2.41 (m, 1H, H-6_b), 1.81-1.90 (m, 1H, H-8), 1.80 (s, 3H, H-12), 1.30 (t, 3H, J = 7.1 Hz, H-15), 0.89-0.94 (m, 3H, H-13), 0.91 (s, 9H, TBS), 0.18 (s, 3H, TBS), 0.15 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.6 (t, C-3), 137.9 (t, C-5), 134.5 (q, C-4), 116.0 (t, C-2), 82.6 (q, C-10), 74.8 (t, C-7), 72.9 (t, C-11), 67.6 (t, C-9), 60.3 (s, C-14), 43.7 (t, C-8), 34.3 (s, C-6), 25.8 (p, TBS), 18.2 (q, TBS), 14.5 (p, C-15), 12.8 (p, C-13), 12.6 (p, C-12), -4.5 (p, TBS), -5.2 (p, TBS) ppm.

(5*S*,6*R*,7*R*,*E*)-Ethyl-5-hydroxy-7-(methoxymethoxy)-2,6-dimethyloct-2-enoate (5,6-*syn*,6,7-*syn*-51a) and

(5*R*,6*R*,7*R*,*E*)-ethyl-5-hydroxy-7-(methoxymethoxy)-2,6-dimethyloct-2-enoate (5,6-*anti*,6,7-*syn*-51b)

5,6-*anti*,6,7-*syn* **51b**

5,6-*syn*,6,7-*syn* **51a**

Following the general procedure, aldehyde 20 (33 mg, 0.23 mmol, 1 eq) was reacted with ethyl-trans-2-methyl-2-butenoate (50) (0.06 ml, 0.46 mmol, 2 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 2:1$) to furnish alcohols 5,6-anti,6,7-syn **51b** and 5,6-syn,6,7-syn **51a** [d.r.: 1:2.7] (**51b**:**51a**), 45 mg, 0.16 mmol, 72%] as a yellow liquid.

 $R_f = 0.31$ (PE:EE = 5:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): m/z: calculated for C₁₄H₂₆NaOi: 297.1678 [M + Na]⁺, found: $297.1678 [M + Na]^+$.

5,6-syn,6,7-syn **51a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 6.78 (ddd, 1H, *J* = 7.7, 7.0, 1.0 Hz, H-3), 4.75 (d, 1H, *J* = 6.8 Hz, MOM), 4.61 (d, 1H, *J* = 6.8 Hz, MOM), 4.19 (q, 2H, J = 7.1 Hz, H-11), 3.90-4.00 (m, 2H, H-5 + H-7), 3.39 (s, 3H, MOM), 2.40-2.50 (m, 1H, H-4_a), 2.27-2.38 (m, 1H, H-4_b), 1.86 (s, 3H, H-9), 1.49-1.56 (m, 1H, H-6), 1.29 (t, 3H, J = 7.1 Hz, H-12), 1.20 (d, 3H, J = 6.5 Hz, H-8), 0.98 (d, 3H, J = 7.2 Hz, H-10) ppm; ¹³**C-NMR** (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 168.2 (q, C-1), 138.4 (t, C-3), 129.7 (q, C-2), 94.7 (s, MOM), 77.6 (t, C-5), 74.7 (t, C-7), 60.7 (s, C-11), 56.0 (p, MOM), 42.1 (t, C-6), 34.5 (s, C-4), 17.7 (p, C-8), 14.4 (p, C-12), 12.8 (p, C-9), 5.9 (p, C-10) ppm.

5,6-*anti*,6,7-*syn* **51b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 6.94 (ddd, 1H, *J* = 7.9, 6.5, 1.4 Hz, H-3), 4.69 (d, 1H, *J* = 7.2 Hz, MOM), 4.63 (d, 1H, *J* = 7.2 Hz, MOM), 4.19 (q, 2H, *J* = 7.1 Hz, H-11), 4.03 (qd, 1H, *J* = 6.5, 2.8 Hz, H-7), 3.77 (ddd, 1H, *J* = 8.2, 8.2, 8.2 Hz, H-5), 3.39 (s, 3H, MOM), 2.40-2.50 (m, 1H, H-4a), 2.27-2.38 (m, 1H, H-4b), 1.86 (s, 3H, H-9), 1.66-1.76 (m, 1H, H-6), 1.29 (t, 3H, J = 7.1 Hz, H-12), 1.19 (d, 3H, J = 6.5 Hz, H-8), 0.88 (d, 3H, J = 7.2 Hz, H-10) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 168.2 (q, C-1), 138.8 (t, C-3), 129.4 (q, C-2), 95.4 (s, MOM), 75.6 (t, C-5), 72.7 (t, C-7), 60.6 (s, C-11), 55.9 (p, MOM), 42.5 (t, C-6), 34.4 (s, C-4), 16.1 (p, C-8), 14.4 (p, C-12), 12.8 (p, C-9), 12.1 (p, C-10) ppm.

(5S,6R,7R,E)-Ethyl-7-(tert-butyldimethylsilyloxy)-5-hydroxy-2,6-dimethyloct-2-enoate (5,6-*syn*,6,7-*syn* **52a**) and

(5R,6R,7R,E)-ethyl-7-(tert-butyldimethylsilyloxy)-5-hydroxy-2,6-dimethyloct-2-enoate (5,6-anti,6,7-syn 52b)

^{5,6-}anti,6,7-syn 52b

Following the general procedure, aldehyde **21** (38 mg, 0.18 mmol, 1 eq) was reacted with ethyl-*trans*-2-methyl-2-butenoate (**50**) (0.05 ml, 0.35 mmol, 2 eq) in accordance with the general procedure at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 10:1$) to furnished alcohols 5,6-*syn*,6,7-*syn* **52a** and 5,6-*anti*,6,7-*syn* **52b** [*d.r.*: 1:2.4 (**52b:52a**), 48 mg, 0.14 mmol, 80%] as a yellow liquid.

 $R_f = 0.32$ (PE:EE = 10:1); the diastereomers could not be separated by column chromatography, **HRMS** (ESI): *m/z*: calculated for C₁₈H₃₇O₄Si: 345.2461 [M + H]⁺, found: 345.2453 [M + Na]⁺.

5,6-syn,6,7-syn 52a: ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 6.66 (ddd, 1H, *J* = 7.7, 7.2, 0.9 Hz, H-3), 4.09 (q, 2H, *J* = 7.1 Hz, H-11), 3.99 (qd, 1H, *J* = 6.2, 2.7 Hz, H-7), 3.85 (ddd, 1H, J = 7.0, 7.0, 1.9 Hz, H-5), 2.15-2.37 (m, 2H, H-4), 1.76 (s, 3H, H-9), 1.28-1.37 (m, 1H, H-6), 1.19 (t, 3H, J = 7.1 Hz, H-12), 1.07 (d, 3H, J = 6.2 Hz, H-8), 0.83 (d, 3H, J = 7.2 Hz, H-10), 0.79 (s, 9H, TBS), 0.01 (s, 3H, TBS), 0.00 (s, 3H, TBS) ppm; ¹³C-NMR $(100 \text{ MHz}, \text{CDCl}_3, \text{CDCl}_3 = 77.16 \text{ ppm}): \delta 168.2 (q, C-1), 138.5 (t, C-3), 129.7 (q, C-2), 74.8$ (t, C-5), 74.0 (t, C-7), 60.5 (s, C-11), 42.8 (t, C-6), 34.5 (s, C-4), 26.0 (p, TBS), 21.9 (p, C-8), 18.1 (q, TBS), 14.4 (p, C-12), 12.8 (p, C-9), 5.5 (p, C-10), -3.4 (p, TBS), -4.6 (p, TBS) ppm. 5,6-*anti*,6,7-*syn* **52b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 6.87 (ddd, 1H, *J* = 7.5, 6.7, 1.0 Hz, H-3), 4.08 (q, 2H, *J* = 7.1 Hz, H-11), 3.91 (qd, 1H, *J* = 6.4, 3.2 Hz, H-7), 3.75 (ddd, 1H, J = 9.6, 6.7, 3.5 Hz, H-5), 2.15-2.37 (m, 2H, H-4), 1.76 (s, 3H, H-9), 1.60-1.71 (m, 1H, H-6), 1.18 (t, 3H, J = 7.1 Hz, H-12), 1.09 (d, 3H, J = 6.4 Hz, H-8), 0.79 (s, 9H, TBS), 0.68 (d, 3H, J = 7.2 Hz, H-10), 0.01 (s, 3H, TBS), 0.00 (s, 3H, TBS) ppm; ¹³C-NMR $(100 \text{ MHz}, \text{CDCl}_3, \text{CDCl}_3 = 77.16 \text{ ppm}): \delta 168.2 \text{ (q, C-1)}, 138.8 \text{ (t, C-3)}, 129.3 \text{ (q, C-2)}, 73.7$ (t, C-5), 72.7 (t, C-7), 60.4 (s, C-11), 43.1 (t, C-6), 34.8 (s, C-4), 25.9 (p, TBS), 18.0 (q, TBS), 17.7 (p, C-8), 14.4 (p, C-12), 13.8 (p, C-10), 12.9 (p, C-9), -4.5 (p, TBS), -5.0 (p, TBS) ppm.

(5*S*,6*S*,7*R*,*E*)-Ethyl 5,7-dihydroxy-2,6-dimethyloct-2-enoate (5,6-*syn*,6,7-*syn* S52a) and (5*R*,6*S*,7*R*,*E*)-ethyl-5,7-dihydroxy-2,6-dimethyloct-2-enoate (5,6-*anti*,6,7-*syn* S52b)

A mixture of alcohols **52** [*d.r.*: 1:2.4 (**52b**:**52a**), 18 mg, 52 \Box mol, 1.0 eq] was dissolved in THF (1.2 ml) and cooled to 0 °C. TBAF·3H₂O (21 mg, 65 \Box mol, 1.5 eq) was added and the mixture was stirred for 1 h while the temperature was raised from °C to rt. The reaction was

terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with Et₂O. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $5:1 \rightarrow 2:1$) to furnish diols 5,6-*syn*,6,7-*syn* **S52a** and 5,6-*anti*,6,7-*syn* **S52b** [*d.r.*: 1:2 (**S52b**:**S52a**), 12 mg, 51 \square mol, 98%] as a colourless liquid.

 $R_f = 0.23$ (PE:EE = 2:1); the diastereomer could not be separated by column chromatography; **HRMS** (ESI): m/z: calculated for $C_{12}H_{23}O_4$ and $C_{12}H_{22}NaO_4$: 231.1596 [M + H]⁺ and 253.1416 [M + Na]⁺, found: 231.1595 [M + H]⁺ and 253.1405 [M + Na]⁺.

5,6-*syn*,6,7-*syn* **S52a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 6.75 (ddd, 1H, J = 7.5, 7.5, 1.4 Hz, H-3), 4.19 (q, 2H, J = 7.1 Hz, H-11), 3.99 (qd, 1H, J = 6.4, 2.0 Hz, H-7), 4.03 (ddd, 1H, J = 7.4, 6.4, 1.7 Hz, H-5), 2.41-2.51 (m, 1H, H-4_a), 2.25-2.39 (m, 1H, H-4_b), 1.87 (s, 3H, H-9), 1.47 (qdd, 1H, J = 7.1, 2.0, 1.7 Hz, H-6), 1.30 (t, 3H, J = 7.1 Hz, H-12), 1.21 (d, 3H, J = 6.4 Hz, H-8), 0.96 (d, 3H, J = 7.1 Hz, H-10) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 168.1 (q, C-1), 137.9 (t, C-3), 130.2 (q, C-2), 76.0 (t, C-5), 73.0 (t, C-7), 60.8 (s, C-11), 41.8 (t, C-6), 34.7 (s, C-4), 21.8 (p, C-8), 14.4 (p, C-12), 12.8 (p, C-9), 4.2 (p, C-10) ppm.

5,6-*anti*,6,7-*syn* **S52b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 6.85 (ddd, 1H, J = 7.3, 7.3, 1.2 Hz, H-3), 4.19 (q, 2H, J = 7.1 Hz, H-11), 4.15-4.21 (m, 1H, H-7), 3.80-3.86 (m, 1H, H-5), 2.41-2.51 (m, 1H, H-4_a), 2.25-2.39 (m, 1H, H-4_b), 1.87 (s, 3H, H-9), 1.68 (qdd, 1H, J = 7.1, 6.8, 2.6 Hz, H-6), 1.30 (t, 3H, J = 7.1 Hz, H-12), 1.21 (d, 3H, J = 6.5 Hz, H-8), 0.94 (d, 3H, J = 7.1 Hz, H-10) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 168.1 (q, C-1), 138.0 (t, C-3), 130.3 (q, C-2), 74.5 (t, C-5), 69.6 (t, C-7), 60.8 (s, C-11), 42.4 (t, C-6), 35.1 (s, C-4), 19.6 (p, C-8), 14.4 (p, C-12), 12.9 (p, C-9) 12.1 (p, C-10), ppm.

Acetonides (5,6-syn,6,7-syn S53a) and (5,6-anti,6,7-syn S53b)

A mixture of diols **S52** [*d.r.*: 1:2 (**S52b**:**S52a**), 14 mg, 61 \Box mol, 1 eq] was dissolved in CH₂Cl₂ (1.0 ml). 2,2-Dimethoxypropane (0.2 ml) and CSA (2 mg, catalytic) were added and stirred for 3 h at rt. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1). Acetonides

5,6-*syn*,6,7-*syn* **S53a** and 5,6-*anti*,6,7-*syn* **S53b** [*d.r.*: ~1:2.5 (**S53b**:**S53a**), 15 mg, 56 □mol, 91%] were obtained as a colourless liquid.

 $R_f = 0.22$ (PE:EE = 20:1); the diastereomers could not be separated by column chromatography; 5,6-syn,6,7-syn S53a: ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 6.70 (ddd, 1H, J = 7.6, 6.7, 1.1 Hz, H-3), 4.19 (q, 2H, J = 7.2 Hz, H-11), 4.09 (qd, 1H, J = 6.4, 2.3 Hz, H-7), 4.01 (ddd, 1H, J = 7.2, 7.2, 2.1 Hz, H-5), 2.24-2.40 (m, 2H, H-4), 1.86 (s, 3H, H-9), 1.27.1.35 (m, 1H, H-6), 1.44 (s, 3H, H-14_a), 1.40 (s, 3H, H-14_b), 1.29 (t, 3H, *J* = 7.2 Hz, H-12), 1.13 (d, 3H, J = 6.4 Hz, H-8), 0.87 (d, 3H, J = 6.8 Hz, H-10) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 168.2 (q, C-1), 137.6 (t, C-3), 129.8 (q, C-2), 99.1 (q, C-13), 72.6 (t, C-5), 69.0 (t, C-7), 60.7 (s, C-11), 35.8 (t, C-6), 32.5 (s, C-4), 30.1 (p, C-14_a), 19.8 (p, C-8), 19.1 (p, C-14_b), 14.4 (p, C-12), 12.9 (p, C-9), 4.5 (p, C-10) ppm; m/z: HRMS (ESI): calculated for $C_{15}H_{26}NaO_4$: $293.1729 [M + Na]^+$, found: $293.1726 [M + Na]^+$.

(2*E*,5*S*,6*R*,7*S*)-Ethyl-9-(*tert*-butyldimethylsilyl)-5-hydroxy-7-(methoxymethoxy)-2,6dimethylnon-2-en-8-ynoate (5,6-*syn*,6,7-*syn* 53a) and

(2*E*,5*R*,6*R*,7*S*)-ethyl-9-(*tert*-butyldimethylsilyl)-5-hydroxy-7-(methoxymethoxy)-2,6dimethylnon-2-en-8-ynoate (5,6-*anti*,6,7-*syn* 53b)

Following the general procedure, aldehyde **32** (36 mg, 130 µmol, 1.0 eq) was reacted with ethyl-*trans*-2-methyl-2-butenoate (**50**) (0.04 ml, 280 µmol, 2.0 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $20:1 \rightarrow 5:1$) to furnish alcohols 5,6-*syn*,6,7-*syn* **53a** and 5,6-*anti*,6,7-*syn* **53b** [*d.r.*: 1:3.8 (**53b**:**53a**), 38 mg, 0.1 mmol, 70%] as a colourless liquid.

 $R_f = 0.31$ (PE:EE = 5:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): m/z: calculated for $C_{21}H_{38}NaO_5Si$: 421.2386 [M + Na]⁺, found: 421.2386 [M + Na]⁺.

5,6-*syn*,6,7-*syn* **53a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 6.79 (dd, 1H, J = 6.8, 6.8 Hz, H-3), 5.00 (d, 1H, J = 6.8 Hz, MOM), 4.60 (d, 1H, J = 6.8 Hz, MOM), 4.45 (d, 1H, J = 4.4 Hz, H-7), 4.18 (q, 2H, J = 7.5 Hz, H-12), 4.07-4.4.14 (m, 1H, H-5), 3.38 (s, 3H, MOM), 2.73 (s, 1H, OH), 2.41-2.50 (m, 1H, H-4_a), 2.29-2.39 (m, 1H, H-4_b), 1.87-1.97 (m, 1H, H-6), 1.86 (s, 3H, H-10), 1.29 (t, 3H, J = 7.5 Hz, H-13), 1.11 (d, 3H, J = 7.2 Hz, H-

11), 0.93 (s, 9H, TBS), 0.11 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 168.1 (q, C-1), 138.3 (t, C-3), 129.8 (q, C-2), 103.2 (q, C-8), 94.2 (s, MOM), 91.2 (q, C-9), 72.5 (t, C-5), 70.1 (t, C-7), 60.6 (s, C-12), 56.1 (p, MOM), 42.0 (t, C-6), 34.4 (s, C-4), 26.2 (p, TBS), 16.6 (q, TBS), 14.4 (p, C-13), 12.8 (p, C-10), 8.3 (p, C-11), -4.6 (p, TBS) ppm.

5,6-*anti*,6,7-*syn* **53b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 6.91 (dd, 1H, J = 6.7, 6.7 Hz, H-3), 4.96 (d, 1H, J = 6.7 Hz, MOM), 4.64 (d, 1H, J = 3.4 Hz, H-7), 4.60 (d, 1H, J = 6.7 Hz, MOM), 4.18 (q, 2H, J = 7.5 Hz, H-12), 3.88-3.96 (m, 1H, H-5), 3.40 (s, 3H, MOM), 3.10 (s, 1H, OH), 2.41-2.50 (m, 1H, H-4_a), 2.29-2.39 (m, 1H, H-4_b), 1.87-1.97 (m, 1H, H-6), 1.86 (s, 3H, H-10), 1.29 (t, 3H, J = 7.5 Hz, H-13), 1.03 (d, 3H, J = 7.2 Hz, H-11), 0.93 (s, 9H, TBS), 0.11 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 168.1 (q, C-1), 138.3 (t, C-3), 129.8 (q, C-2), 102.7 (q, C-8), 94.5 (s, MOM), 91.0 (q, C-9), 72.5 (t, C-5), 69.5 (t, C-7), 60.6 (s, C-12), 56.2 (p, MOM), 42.8 (t, C-6), 34.1 (s, C-4), 26.2 (p, TBS), 16.6 (q, TBS), 14.4 (p, C-13), 12.8 (p, C-10), 12.7 (p, C-11), -4.6 (p, TBS) ppm.

(5*S*,6*R*,7*S*,*E*)-Ethyl-9-(*tert*-butyldimethylsilyl)-7-(*tert*-butyldimethylsilyloxy)-5-hydroxy-2,6-dimethylnon-2-en-8-ynoate (5,6-*syn*,6,7-*syn* 54a) and (5*R* 6*R* 7*S E*) othyl-9 (*tert* butyldimethylsilyl) 7 (*tert* butyldimethylsilyloxy) 5 bydroxy-

(5*R*,6*R*,7*S*,*E*)-ethyl-9-(*tert*-butyldimethylsilyl)-7-(*tert*-butyldimethylsilyloxy)-5-hydroxy-2,6-dimethylnon-2-en-8-ynoate (5,6-*anti*,6,7-*syn* 54b)

Following the general procedure, aldehyde **37** (48 mg, 140 µmol, 1.0 eq) was reacted with ethyl-*trans*-2-methyl-2-butenoate (**50**) (0.05 ml, 360 µmol, 2.6 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 10:1$) to furnish alcohols 5,6-*syn*,6,7-*syn* **54a** and 5,6-*anti*,6,7-*syn* **54b** [*d.r.*: 2.5:1 (**54b**: **54a**), 57 mg, 122 µmol, 87%] as a yellow liquid.

 $R_f = 0.17$ (PE:EE = 20:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): m/z: calculated for C₂₅H₄₈NaO₄Si₂: 491.2989 [M + Na]⁺, found: 491.2983 [M + Na]⁺.

5,6-*syn*,6,7-*syn* **54a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 6.78 (dd, 1H, J = 7.7, 7.3 Hz, H-3), 4.50 (d, 1H, J = 4.1 Hz, H-7), 4.19 (q, 2H, J = 7.1 Hz, H-12), 4.08-4.15 (m, 1H, H-5), 2.38-2.49 (m, 1H, H-4_a), 2.28-2.38 (m, 1H, H-4_b), 1.86 (s, 3H, H-10), 1.69-1.78

(m, 1H, H-6), 1.29 (t, 3H, J = 7.1 Hz, H-13), 1.06 (d, 3H, J = 7.2 Hz, H-11), 0.90 (s, 18H, TBS), 0.18 (s, 6H, TBS), 0.15 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 168.2 (q, C-1), 138.4 (t, C-3), 129.7 (q, C2), 106.7 (q, C-8), 89.8 (q, C-9), 72.6 (t, C-5), 67.9 (t, C-7), 60.6 (s, C-12), 43.5 (t, C-6), 34.4 (s, C-4), 25.8 (p, TBS), 18.2 (q, TBS), 16.6 (q, TBS), 14.4 (p, C-13), 12.8 (p, C-10), 8.0 (p, C-11), -4.1 (p, TBS), -4.6 (p, TBS), -4.9 (p, TBS) ppm.

5,6-*anti*,6,7-*syn* **54b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 6.95 (dd, 1H, J = 7.2, 7.0 Hz, H-3), 4.59 (d, 1H, J = 3.4 Hz, H-7), 4.19 (q, 2H, J = 7.1 Hz, H-12), 4.01 (ddd, 1H, J = 7.9, 7.9, 3.8 Hz, H-5), 2.38-2.49 (m, 1H, H-4_a), 2.28-2.38 (m, 1H, H-4_b), 1.86 (s, 3H, H-10), 1.80-1.86 (m, 1H, H-6), 1.29 (t, 3H, J = 7.1 Hz, H-13), 0.93 (s, 18H, TBS), 0.88-0.92 (m, 3H, H-11), 0.10 (s, 12H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 168.2 (q, C-1), 138.6 (t, C-3), 129.5 (q, C2), 105.1 (q, C-8), 90.1 (q, C-9), 73.0 (t, C-5), 68.4 (t, C-7), 60.6 (s, C-12), 43.8 (t, C-6), 34.4 (s, C-4), 26.2 (p, TBS), 18.2 (q, TBS), 16.6 (q, TBS), 14.4 (p, C-13), 13.0 (p, C-11), 12.8 (p, C-10), -4.4 (p, TBS), -4.6 (p, TBS), -5.1 (p, TBS) ppm.

(2*E*,5*S*,6*R*,7*S*)-Ethyl-9-(*tert*-butyldimethylsilyl)-5,7-dihydroxy-2,6-dimethylnon-2-en-8ynoate (5,6-*syn*,6,7-*syn* S54a) and

(2*E*,5*R*,6*R*,7*S*)-ethyl-9-(*tert*-butyldimethylsilyl)-5,7-dihydroxy-2,6-dimethylnon-2-en-8ynoate (5,6-*anti*,6,7-*syn* S54b)

5,6-anti,6,7-syn **S54b**

5,6-syn,6,7-syn **S54a**

A mixture of alcohols **53** [*d.r.*: 1:3.8 (**53b**:**53a**), 10 mg, 25 µmol, 1.0 eq] was dissolved in EtOH (0.8 ml) and cooled to 0 °C. Concentrated aq. HCl (~0.1 ml) was added dropwise over a period of 6 d until tlc revealed complete transformation. The reaction was terminated by addition of aq. NaHCO₃. The layers were separated and the aqueous layer was extracted with ethyl acetate. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $10:1 \rightarrow 5:1$) to furnish diols 5,6-*syn*,6,7-*syn* **S54a** and 5,6-*anti*,6,7-*syn* **S54b** [*d.r.*: 1:4 (**S54b**:**S54a**), 8.6 mg, 24 µmol, 97%] as a colourless liquid. $R_f = 0.19$ (PE:EE = 5:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): m/z: calculated for C₁₉H₃₄NaO₄Si: 377.2124 [M + Na]⁺, found: 377.2116 [M + Na]⁺.
5,6-*syn*,6,7-*syn* **S54a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 6.77 (ddd, 1H, J = 7.6, 7.1, 0.9 Hz, H-3), 4.55-4.60 (m, 1H, H-7), 4.19 (q, 2H, J = 7.1 Hz, H-12), 4.06-4.15 (m, 1H, H-5), 2.68 (d, 1H, J = 1.7 Hz, OH₅), 2.39-2.52 (m, 1H, H-4_a), 2.28-2.39 (m, 1H, H-4_b), 1.87 (s, 3H, H-10), 1.76-1.84 (m, 1H, H-6), 1.29 (t, 3H, J = 7.1 Hz, H-13), 1.12 (d, 3H, J = 6.8 Hz, H-11), 0.94 (s, 9H, TBS), 0.12 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 168.1 (q, C-1), 137.9 (t, C-3), 130.1 (q, C-2), 106.0 (q, C-8), 89.8 (q, C-9), 73.3 (t, C-5), 67.4 (t, C-7), 60.7 (s, C-12), 42.7 (t, C-6), 34.5 (s, C-4), 26.2 (p, TBS), 16.6 (q, TBS), 14.4 (p, C-13), 12.8 (p, C-10), 7.3 (p, C-11), -4.6 (p, TBS) ppm.

5,6-*anti*,6,7-*syn* **S54b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 6.85 (ddd, 1H, J = 7.7, 7.0, 0.9 Hz, H-3), 4.55-4.60 (m, 1H, H-7), 4.20 (q, 2H, J = 7.1 Hz, H-12), 3.97-4.05 (m, 1H, H-5), 3.33 (d, 1H, J = 6.8 Hz, OH₇), 2.61 (d, 1H, J = 3.1 Hz, OH₅), 2.39-2.52 (m, 1H, H-4_a), 2.28-2.39 (m, 1H, H-4_b), 1.89-1.99 (m, 1H, H-6), 1.87 (s, 3H, H-10), 1.30 (t, 3H, J = 7.1 Hz, H-13), 0.99 (d, 3H, J = 6.8 Hz, H-11), 0.94 (s, 9H, TBS), 0.12 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 168.1 (q, C-1), 137.3 (t, C-3), 130.1 (q, C-2), 105.4 (q, C-8), 89.4 (q, C-9), 74.0 (t, C-5), 67.1 (t, C-7), 60.8 (s, C-12), 43.1 (t, C-6), 34.8 (s, C-4), 26.2 (p, TBS), 16.6 (q, TBS), 14.4 (p, C-13), 13.3 (p, C-11), 12.9 (p, C-10), -4.6 (p, TBS) ppm.

Acetonides (5,6-syn,6,7-syn S55a) and (5,6-anti,6,7-syn S55b)

A mixture of diols **S54** [*d.r.*: 1:4 (**S54b**:**S54a**), 8.6 mg, 24 μ mol, 1.0 eq] was dissolved in CH₂Cl₂ (1.0 ml) and 2,2-dimethoxypropane (0.2 ml) was added. After addition of PPTS (0.5 mg, catalytic), the solution was stirred for 4 h at rt. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1). Acetonides 5,6-*anti*,6,7-*syn* **S55b** and 5,6-*syn*,6,7-*syn* **S55a** [*d.r.*: 1:4 (**S55b**:**S55a**), 6.8 mg, 17 μ mol, 72%] were obtained as a colourless liquid.

 $R_f = 0.57 (PE:EE = 5:1); [\alpha]_D^{20} =$ the diastereomers could not be separated by column chromatography; **HRMS** (ESI): *m/z*: calculated for C₂₂H₃₈NaO₄Si: 417.2437 [M + Na]⁺, found: 417.2435 [M + Na]⁺.

5,6-*syn*,6,7-*syn* **S55**a: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 6.68 (dd, 1H, *J* = 6.7, 6.7 Hz, H-3), 4.81 (d, 1H, *J* = 2.1 Hz, H-7), 4.20 (q, 2H, *J* = 7.2 Hz, H-12), 4.01 (ddd, 1H, *J* = 7.1, 7.1, 2.1 Hz, H-5), 2.24-2.50 (m, 2H, H-4), 1.86 (s, 3H, H-10), 1.57-1.63 (m, 1H, H-6), 1.45 (s, 3H, H-15_b), 1.44 (s, 3H, H-15_a), 1.30 (t, 3H, J = 7.2 Hz, H-13), 1.12 (d, 3H, J = 6.8 Hz, H-11), 0.94 (s, 9H, TBS), 0.12 (s, 3H, TBS), 0.11 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 168.1 (q, C-1), 137.0 (t, C-3), 130.1 (q, C-2), 103.9 (q, C-8), 99.8 (q, C-14), 88.8 (q, C-9), 71.5 (t, C-5), 66.1 (t, C-7), 60.7 (s, C-12), 36.1 (t, C-6), 32.6 (s, C-4), 30.0 (p, C-15_a), 26.2 (p, TBS), 19.4 (p, C-15_b), 16.7 (q, TBS), 14.4 (p, C-13), 12.9 (p, C-10), 6.5 (p, C-11), -4.5 (p, TBS) ppm.

5,6-*anti*,6,7-*syn* **S55b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 6.84 (dd, 1H, J = 6.3, 6.3 Hz, H-3), 4.66 (d, 1H, J = 5.8 Hz, H-7), 4.20 (q, 2H, J = 7.2 Hz, H-12), 3.79 (ddd, 1H, J = 9.9, 7.2, 3.2 Hz, H-5), 2.24-2.50 (m, 2H, H-4), 1.85 (s, 3H, H-10), 1.61 (s, 3H, H-15_b), 1.86-1.93 (m, 1H, H-6), 1.37 (s, 3H, H-15_a), 1.30 (t, 3H, J = 7.2 Hz, H-13), 0.93-0.98 (m, 3H, H-11), 0.94 (s, 9H, TBS), 0.12 (s, 3H, TBS), 0.11 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 168.1 (q, C-1), 137.9 (t, C-3), 130.1 (q, C-2), 104.3 (q, C-8), 100.6 (q, C-14), 91.4 (q, C-9), 71.4 (t, C-5), 65.4 (t, C-7), 60.6 (s, C-12), 37.5 (t, C-6), 32.7 (s, C-4), 29.2 (p, C-15_a), 26.2 (p, TBS), 23.5 (p, C-15_b), 16.7 (q, TBS), 14.4 (p, C-13), 13.4 (p, C-11), 12.8 (p, C-10), -4.6 (p, TBS), -4.6 (p, TBS) ppm.

(2*E*,4*E*,6*E*)-Ethyl-6-methylocta-2,4,6-trienoate (55)

Ester 6 (500 mg, 3.2 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (60 ml) and cooled to -78 °C. DIBAL-H (c = 1.2 mol/l in toluene, 11 ml, 13.0 mmol, 4.0 eq) was slowly added and the reaction mixture was stirred for 30 min. The reaction was terminated by addition of ethyl acetate, warmed to rt and after addition of Na-K-tartrate stirring was continued for 1 h. The layers were separated and the aqueous layer extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (100% petroleum ether \rightarrow petroleum ether : ethyl acetate = 5:1). The resulting alcohol was dissolved in CH_2Cl_2 (65 ml) and NaHCO₃ (1 g) and the DESS-MARTIN periodinane (1.65 g, 3.9 mmol, 1.2 eq) were added and the solution was stirred for 45 min at rt. The reaction was terminated by addition of aq. Na₂S₂O₃ and the mixture was stirred for another 1 h. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was dissolved in CHCl₃ (4 ml) and (1-ethoxycarbonylmethyliden)-triphenylphosphorane (14) (2.3 g, 6.5 mmol, 2.0 eq) was added. The solution was stirred for 4 d. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography

(petroleum ether : ethyl acetate = 50:1). Ester **55** (367 mg, 2.0 mmol, 64%) was obtained as a yellow liquid.

 $R_f = 0.59$ (PE:EE = 5:1); The ester was obtained as *all-E*-isomer (*E:Z*> 10:1). ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.36 (dd, 1H, *J* = 15.3, 11.1 Hz, H-3), 6.60 (d, 1H, *J* = 15.3 Hz, H-5), 6.25 (dd, 1H, *J* = 15.3, 11.1 Hz, H-4), 5.88 (d, 1H, *J* = 15.3 Hz, H-2), 5.81 (q, 1H, *J* = 6.7 Hz, H-7), 4.22 (q, 2H, *J* = 7.2 Hz, H-10), 1.81 (d, 3H, *J* = 6.7 Hz, H-8), 1.80 (s, 3H, H-9), 1.32 (t, 3H, *J* = 7.2 Hz, H-11) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.5 (q, C-1), 145.9 (t, C-5), 145.6 (t, C-3), 134.8 (q, C-6), 132.8 (t, C-7), 123.6 (t, C-4), 119.8 (t, C-2), 60.3 (s, C-10), 14.5 (p, C-11), 14.5 (p, C-8), 12.0 (p, C-9) ppm; HRMS (ESI): Compound **55** could not be detected by mass spectrometry.

(2*E*,4*E*,6*E*,9*S*,10*R*,11*S*)-Ethyl-13-(*tert*-butyldimethylsilyl)-11-(*tert*-butyldimethylsilyloxy)-9-hydroxy-6,10-dimethyltrideca-2,4,6-trien-12-ynoate (9,10-*syn*,10,11-*syn* 56a) and (2*E*,4*E*,6*E*,9*R*,10*R*,11*S*)-ethyl-13-(*tert*-butyldimethylsilyl)-11-(*tert*-butyldimethysilyloxy)-9-hydroxy-6,10-dimethyltrideca-2,4,6-trien-12-ynoate (9,10-*anti*,10,11-*syn* 56b)

9,10-anti,10,11-syn 56b

Following the general procedure, aldehyde **37** (67 mg, 0.20 mmol, 1 eq) was reacted with ester **55** (72 mg, 0.40 mmol, 2 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 10:1$) to furnish alcohols 9,10-*syn*,10,11-*syn* **56a** and 9,10-*anti*,10,11-*syn* **56b** [*d.r.*: 2.8:1 (**56b**:**56a**), 85 mg, 0.16 mmol, 83%] as a yellow liquid.

 $R_f = 0.33$ (PE:EE = 10:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): *m/z*: calculated for C₂₉H₅₂NaO₄Si₂: 543.3302 [M + Na]⁺, found: 543.3297 [M + Na]⁺.

9,10-*syn*,10,11-*syn* **56a**: ¹**H-NMR** (400 MHz, C₆D₆, C₆D₅H = 7.16 ppm): δ 7.57 (dd, 1H, J = 15.3, 11.1 Hz, H-3), 6.27 (d, 1H, J = 15.3 Hz, H-5), 6.06 (dd, 1H, J = 15.3, 11.1 Hz, H-4), 5.98 (d, 1H, J = 15.3 Hz, H-2), 5.61 (dd, 1H, J = 7.5, 7.5 Hz, H-7), 4.48 (d, 1H, J = 4.8 Hz, H-11), 4.11 (q, 2H, J = 7.2 Hz, H-16), 4.03-4.10 (m, 1H, H-9), 2.39 (d, 1H, J = 2.7 Hz, OH), 2.35-2.45 (m, 1H, H-8_a), 2.12-2.24 (m, 1H, H-8_b), 1.67-1.77 (m, 1H, H-10), 1.54 (s, 3H, H-14), 1.21 (d, 3H, J = 7.2 Hz, H-15), 0.99-1.05 (m, 3H, H-17), 1.00 (s, 9H. TBS), 0.96 (s, 9H, TBS), 0.25 (s, 3H, TBS), 0.14 (s, 3H, TBS), 0.12 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, C₆D₆, C₆D₆ = 128.06 ppm): δ 166.9 (q, C-1), 145.7 (t, C-5), 145.5 (t, C-3), 135.6

(q, C-6), 134.5 (t, C-7), 124.5 (t, C-4), 120.7 (t, C-2), 107.9 (q, C-12), 89.3 (q, C-13), 72.8 (t, C-9), 67.9 (t, C-11), 60.1 (s, C-16), 44.4 (t, C-10), 34.9 (s, C-8), 26.2 (p, TBS), 25.9 (p, TBS), 18.4 (q, TBS), 16.7 (q, TBS), 14.4 (p, C-17), 12.4 (p, C-14), 8.5 (p, C-15), -4.0 (p, TBS), -4.6 (p, TBS), -4.9 (p, TBS) ppm.

9,10-*anti*, 10,11-*syn* **56**b: ¹**H-NMR** (400 MHz, C₆D₆, C₆D₅H = 7.16 ppm): δ 7.57 (dd, 1H, J = 15.3, 11.1 Hz, H-3), 6.25 (d, 1H, J = 15.3 Hz, H-5), 6.06 (dd, 1H, J = 15.3, 11.1 Hz, H-4), 5.98 (d, 1H, J = 15.3 Hz, H-2), 5.72 (dd, 1H, J = 7.3, 7.3 Hz, H-7), 4.83 (d, 1H, J = 3.1 Hz, H-11), 4.11 (q, 2H, J = 7.2 Hz, H-16), 3.86-3.94 (m, 1H, H-9), 2.61 (d, 1H, J = 3.8 Hz, OH), 2.26-2.35 (m, 1H, H-8_a), 2.12-2.24 (m, 1H, H-8_b), 1.76-1.84 (m, 1H, H-10), 1.54 (s, 3H, H-14), 0.99-1.05 (m, 6H, H-15 + H-17), 1.02 (s, 9H. TBS), 0.98 (s, 9H, TBS), 0.27 (s, 3H, TBS), 0.16 (s, 3H, TBS), 0.14 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, C₆D₆, C₆D₆ = 128.06 ppm): δ 166.9 (q, C-1), 145.7 (t, C-5), 145.5 (t, C-3), 135.8 (q, C-6), 134.1 (t, C-7), 124.4 (t, C-4), 120.7 (t, C-2), 107.5 (q, C-12), 89.0 (q, C-13), 72.6 (t, C-9), 66.5 (t, C-11), 60.1 (s, C-16), 45.1 (t, C-10), 34.5 (s, C-8), 26.3 (p, TBS), 26.0 (p, TBS), 18.4 (q, TBS), 16.8 (q, TBS), 14.4 (p, C-17), 12.5 (p, C-14), 12.1 (p, C-15), -4.5 (p, TBS), -4.5 (p, TBS), -5.0 (p, TBS) ppm.

MOM-protected MASAMUNE aldol product S56

Alcohol **S57** (300 mg, 0.5 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (8 ml) and cooled to 0 °C. ^{*i*}Pr₂NEt (1.2 ml, 7.2 mmol, 14.0 eq) and MOMCl (0.27 ml, 3.6 mmol, 7.0 eq) were added and the reaction mixture was stirred for 10 d at rt. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1 \rightarrow 10:1) to furnish product **S56** (324 mg, 0.5 mmol, 99%) as a colourless solid.

 $R_f = 0.68$ (PE:EE = 2:1); $[\alpha]_D^{20} = -9.0$ (c = 1.0, CHCl₃); mp. = 53 °C; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.47-7.11 (m, 13H, Ph), 6.93 (s, 2H, Mes), 6.73-6.77 (m, 2H, Ph), 5.87 (d, 1H, J = 4.0 Hz, H-5), 4.99 (d, 1H, J = 16.7 Hz, H-8_a), 4.70 (d, 1H, J = 10.2 Hz, H-3), 4.68 (d, 1H, J = 16.7 Hz, H-8_b), 4.42 (s, 2H, MOM), 4.07 (qd, 1H, J = 6.7, 4.0 Hz, H-6), 3.24 (s, 3H, MOM), 2.97 (dq, 1H, J = 10.2, 7.2 Hz, H-2), 2.52 (s, 6H, Mes), 2.32 (s, 3H,

Mes), 1.13 (d, 3H, J = 6.7 Hz, H-7), 0.81 (d, 3H, J = 7.2 Hz, H-4) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 174.1 (q, C-1), 142.7 (q, Ph), 140.4 (q, Ph), 139.3 (q, Ph), 138.6 (q, Ph), 138.6 (q, Ph), 133.7 (q, Ph), 132.3 (t, Ph), 128.7 (t, Ph), 128.6 (t, Ph), 128.5 (t, Ph), 128.5 (t, Ph), 128.1 (t, Ph), 127.9 (t, Ph), 127.3 (t, Ph), 125.9 (t, Ph), 94.0 (s, MOM), 80.2 (t, C-3), 78.3 (t, C-5), 57.1 (t, C-6), 56.1 (p, MOM), 48.2 (s, C-8), 47.0 (t, C-2), 23.0 (p, Mes), 21.1 (p, Mes), 14.3 (p, C-4), 13.8 (p, C-7) ppm; HRMS (ESI): m/z: calculated for C₃₇H₄₃NaNO₆S: 652.2709 [M + Na]⁺, found: 652.2731 [M + Na]⁺.

(2S,3S)-3-(Methoxymethoxy)-2-methyl-3-phenylpropan-1-ol (S58)

Ester **S56** (320 mg, 0.5 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (7 ml) and cooled to -78 °C. DIBAL-H (1.7 ml, c = 1.2 mol/l in toluene, 2.0 mmol, 4.0 eq) was slowly added and the solution was stirred for 2.5 h. The reaction was terminated by addition of ethyl acetate and the mixture was stirred overnight at rt after the addition of aq. Na-K-tartrate. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $10:1 \rightarrow 5:1$) to furnish alcohol **S58** (106 mg, 0.5 mmol, 98%) as a colourless liquid.

 R_f = 0.26 (PE:EE = 2:1); [α]_D²⁰ = -161.8 (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.27-7.38 (m, 5H, Ph), 4.48 (s, 2H, MOM), 4.44-4.46 (m, 1H, H-3), 3.68-3.78 (m, 2H, H-1), 3.40 (s, 3H, MOM), 2.98 (s, 1H, OH), 2.05-2.15 (m, 1H, H-2), 0.73 (d, 3H, *J* = 6.8 Hz, H-4) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 104.2 (q, Ph), 128.5 (t, Ph), 128.2 (t, Ph), 127.9 (t, Ph), 94.1 (s, MOM), 83.5 (t, C-3), 67.3 (s, C-1), 56.1 (p, MOM), 41.8 (t, C-2), 14.1 (p, C-4) ppm; HRMS (ESI): *m/z*: calculated for C₁₂H₁₈NaO₃: 233.1154 [M + Na]⁺, found: 233.1156 [M + Na]⁺.

(2R,3S)-3-(Methoxymethoxy)-2-methyl-3-phenylpropanal (57)

Alcohol S58 (100 mg, 0.48 mmol, 1.0 eq) was dissoved in CH₂Cl₂ (9.5 ml) and NaHCO₃ (50 mg) and the DESS-MARTIN periodinane (242 mg, 0.57 mmol, 1.2 eq) were added and the reaction mixture was stirred for 2 h at rt. The reaction was terminated by addition of aq. $Na_2S_2O_3$ and the solution was stirred for 75 min. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1) to furnish aldehyde 57 (88 mg, 0.42 mmol, 89%) as a colourless liquid. The aldehyde was immediately used in the next step. 0.69 (PE:EE = 2:1); HRMS (ESI): m/z: calculated for $C_{12}H_{16}NaO_3Si:$ $\mathbf{R}_f =$ $231.1021 [M + Na]^+$, found: $231.0994 [M + Na]^+$.

(2E,4E,7R,8S,9S)-Ethyl-7-hydroxy-9-(methoxy-methoxy)-4,8-dimethyl-9-phenylnona-

2,4-dienoate (7,8-*anti*,8,9-*anti* **65a**) and

(2*E*,4*E*,7*S*,8*S*,9*S*)-ethyl-7-hydroxy-9-(methoxymethoxy)-4,8-dimethyl-9-phenylnona-2,4dienoate (7,8-*syn*,8,9-*anti* 65b)

Following the general procedure, aldehyde **57** (38 mg, 0.18 mmol, 1.0 eq) was reacted with ester **6** (59 mg, 0.38 mmol, 2.0 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $10:1 \rightarrow 2:1$) to furnish alcohols 7,8-*anti*,8,9-*anti* **65a** and 7,8-*syn*,8,9-*anti* **65b** (*d.r.*: 1:1, 49 mg, 0.13 mmol, 74%) as a colourless liquid.

 $R_f = 0.13$ (PE:EE = 10:1); the diastereomers could not be separated by column chromatography; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.27-7.41 (m, 12H, Ph_{1,2} + H-3_{1,2}), 6.12 (dd, 1H, J = 7.0, 7.0 Hz, H-5₁), 5.91 (dd, 1H, J = 7.2, 7.2 Hz, H-5₂), 5.80 (d, 1H, J = 15.7 Hz, H-2₁), 5.79 (d, 1H, J = 15.7 Hz, H-2₂), 4.60 (d, 1H, J = 7.5 Hz, H-9₁), 4.48-4.54 (m, 3H, H-9₂ + MOM), 4.43-4.47 (m, 2H, MOM), 4.21 (q, 4H, J = 7.2 Hz, H-12_{1,2}), 4.07-4.13 (m, 1H, H-7₁), 3.94 (s, 1H, OH₁), 3.83-3.90 (m, 1H, H-7₂), 3.40 (s, 3H, MOM₁), 3.39 (s, 3H, MOM₂), 2.92 (d, 1H, J = 3.8 Hz, OH₂), 2.48-2.58 (m, 2H, H-6_{a,1,2}), 2.37-2.48 (m, 1H, H-6_{b,1}), 2.22-2.34 (m, 1H, H-6_{b,2}), 2.00-2.11 (m, 1H, H-8₁), 1.87-1.97 (m, 1H, H-8₂), 1.81 (s, 3H, H-10₁), 1.77 (s, 3H, H-10₂), 1.30 (t, 6H, J = 7.2 Hz, H-13_{1,2}), 0.84 (d, 3H, J = 7.2 Hz, H-11₁), 0.62 (d, 3H, J = 7.2 Hz, H-11₂) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1₁), 167.7 (q, C-1₂), 149.6 (t, C-3₁), 149.5 (t, C-3₂), 140.4 (q, Ph),

139.7 (q, Ph), 138.4 (t, C-5₁), 138.1 (t, C-5₂), 134.5 (q, C-4₁), 134.3 (q, C-4₂), 128.6 (t, Ph), 128.5 (t, Ph), 128.3 (t, Ph), 128.2 (t, Ph), 128.0 (t, Ph), 127.5 (t, Ph), 116.1 (t, C-2₁), 115.9 (t, C-2₂), 94.9 (s, MOM), 93.8 (s, MOM), 83.3 (t, C-9₁), 82.1 (t, C-9₂), 74.7 (t, C-7₁), 70.4 (t, C-7₂), 60.3 (s, C-12₁), 60.3 (s, C-12₂), 56.3 (p, MOM₁), 56.3 (p, MOM₂), 44.4 (t, C-8₁), 43.6 (t, C-8₂), 33.8 (s, C-6_{1,2}), 14.5 (p, C-13_{1,2}), 13.0 (p, C-11₁), 12.6 (p, C-10₁), 12.5 (p, C-10₂), 10.8 (p, C-11₂) ppm. **HRMS** (ESI): m/z: calculated for C₂₁H₃₀NaO₅: 385.1991 [M + Na]⁺, found: 385.1985 [M + Na]⁺.

TBS-protected MASAMUNE aldol product S59

Alcohol **S57** (300 mg, 0.5 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (6.5 ml) and cooled to 0 °C. 2,6-Lutidine (0.24 ml, 2.1 mmol, 4.0 eq) and TBSOTf (0.24 ml, 1.0 mmol, 2.0 eq) were added and the mixture was stirred for 1.5 h at 0 °C. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1 \rightarrow 10:1) to furnish alcohol **S59** (341 mg, 0.5 mmol, 95%) as a colourless solid.

 R_f = 0.61 (PE:EE = 5:1); $[α]_D^{20}$ = +21.3 (*c* = 1.0, CHCl₃); m.p. = 52 °C; ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.46-7.04 (m, 13H, Ph), 6.89 (s, 2H, Mes), 6.66-6.70 (m, 2H, Ph), 5.73 (d, 1H, *J* = 5.9 Hz, H-5), 4.89 (d, 1H, *J* = 16.7 Hz, H-8_a), 4.76 (d, 1H, *J* = 8.3 Hz, H-3), 4.46 (d, 1H, *J* = 16.7 Hz, H-8_b), 4.02 (qd, 1H, *J* = 6.7, 5.9 Hz, H-6), 2.75 (dq, 1H, *J* = 8.3, 7.4 Hz, H-2), 2.44 (s, 6H, Mes), 2.31 (s, 3H, Mes), 1.15 (d, 3H, *J* = 6.7 Hz, H-7), 0.77 (s, 9H, TBS), 0.70 (d, 3H, *J* = 7.4 Hz, H-4), -0.06 (s, 3H, TBS), -0.25 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 173.5 (q, C-1), 142.6 (q, Ph), 142.1 (q, Ph), 140.6 (q, Ph), 138.9 (q, Ph), 138.4 (q, Ph), 133.2 (q, Ph), 132.3 (t, Ph), 128.6 (t, Ph), 128.5 (t, Ph), 77.9 (t, C-5), 77.0 (t, C-3), 56.9 (t, C-6), 49.0 (s, C-8), 48.4 (t, C-2), 26.0 (p, TBS), 23.1 (p, Mes), 21.1 (p, Mes), 18.3 (q, TBS), 14.7 (p, C-4), 13.8 (p, C-7), -4.6 (p, TBS), -4.8 (p, TBS) ppm; **HRMS** (ESI): *m/z*: calculated for C₄₁H₅₃NaNO₅SiS: 722.3311 [M + Na]⁺, found: 722.3311 [M + Na]⁺.

(2S,3S)-3-(tert-Butyldimethylsilyloxy)-2-methyl-3-phenylpropan-1-ol (S60)

Ester **S59** (335 mg, 0.5 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (7 ml) and cooled to -78 °C. DIBAL-H (1.6 ml, c = 1.2 mol/l in toluene, 1.9 mmol, 4.0 eq) was added and the reaction mixture was stirred for 2.5 h. The reaction was terminated by addition of ethyl acetate and after addition of aq. Na-K-tartrate stirring was continued overnight at rt. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $20:1 \rightarrow 10:1$) to furnish alcohol **S60** (101 mg, 0.4 mmol, 75%) as a colourless liquid.

 R_f = 0.45 (PE:EE = 5:1); $[α]_D^{20}$ = -65.7 (*c* = 1.0, CHCl₃) [Lit.: -28.6 (*c* = 0.2, CHCl₃)]; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.38-7.21 (m, 5H, Ph), 4.56 (d, 1H, *J* = 6.8 Hz, H-3), 3.68 (ddd, 1H, *J* = 11.0, 6.0, 3.5 Hz, H-1_a), 3.60 (ddd, 1H, *J* = 11.0, 6.8, 5.4 Hz, H-1_b), 2.93 (dd, 1H, *J* = 6.0, 5.4 Hz, OH), 1.93 (qddd, 1H, *J* = 7.0, 6.8, 6.8, 3.5 Hz, H-2), 0.89 (s, 9H, TBS), 0.85 (d, 3H, *J* = 7.0 Hz, H-4), 0.04 (s, 3H, TBS), -0.26 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 143.7 (q, Ph), 128.2 (t, Ph), 127.6 (t, Ph), 126.8 (t, Ph), 81.3 (t, C-3), 66.5 (s, C-1), 43.2 (t, C-2), 26.0 (p, TBS), 18.2 (q, TBS), 14.5 (p, C-4), -4.4 (p, TBS), -5.0 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₁₆H₂₈NaO₂Si: 303.1756 [M + Na]⁺, found: 303.1752 [M + Na]⁺. The analytical data is in accordance with the literature.^{S9}

(2R,3S)-3-(tert-Butyldimethylsilyloxy)-2-methyl-3-phenylpropanal (58)

Alcohol **S60** (100 mg, 0.36 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (7 ml) and NaHCO₃ (30 mg) and the DESS-MARTIN periodinane (181 mg, 0.2 mmol, 1.2 eq) were added and the mixture was stirred for 2 h at rt. The reaction was terminated by addition of aq. Na₂S₂O₃ and stirring was continued for 1 h. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography

(petroleum ether : ethyl acetate = 20:1) to furnish aldehyde **58** (71 mg, 0.25 mmol, 70%) as a colourless liquid. The aldehyde was used immediately in the next step.

 $R_f = 0.63 (PE:EE = 10:1);$ **HRMS** (ESI): m/z: calculated for $C_{16}H_{26}NaO_2Si$: 301.1600 [M + Na]⁺, found: 301.1416 [M + Na]⁺.

(2E,4E,7S,8S,9S)-Ethyl-9-(*tert*-butyldimethyl-silyloxy)-7-hydroxy-4,8-dimethyl-9-phenylnona-2,4-dienoate (7,8-*anti*,8,9-*anti* 66a) and

(2*E*,4*E*,7*R*,8*S*,9*S*)-ethyl-9-(*tert*-butyldimethylsilyloxy)-7-hydroxy-4,8-dimethyl-9-phenylnona-2,4-dienoate (7,8-*syn*,8,9-*anti* 66b)

7,8-syn,8,9-anti 66b

Following the general procedure, aldehyde **58** (34 mg, 0.12 mmol, 1.0 eq) was reacted with ester **6** (37 mg, 0.24 mmol, 2.0 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 5:1$) to furnish alcohols 7,8-*anti*,8,9-*anti* **66a** and 7,8-*syn*,8,9-*anti* **66b** [*d.r.*: 2:1 (**66a:66b**), 42 mg, 0.10 mmol, 79%] as a yellow liquid.

 $R_f = 0.40$ (PE:EE = 5:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): m/z: calculated for $C_{25}H_{40}NaO_4Si$: 455.2594 [M + Na]⁺, found: 455.2589 [M + Na]⁺.

7,8-*anti*,8,9-*anti* **66a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.22-7.40 (m, 6H, Ph + H-3), 6.10 (dd, 1H, J = 6.8, 6.8 Hz, H-5), 5.79 (d, 1H, J = 16.0 Hz, H-2), 4.54 (d, 1H, J = 8.5 Hz, H-9), 4.20 (q, 2H, J = 7.0 Hz, H-12), 3.92 (s, 1H, OH), 3.78-3.84 (m, 1H, H-7), 2.45-2.53 (m, 1H, H-6_a), 2.32-2.43 (m, 1H, H-6_a), 1.89-1.99 (m, 1H, H-8), 1.78 (s, 3H, H-10), 1.30 (t, 3H, J = 7.0 Hz, H-13), 0.87 (s, 9H, TBS), 0.62 (d, 3H, J = 6.8 Hz, H-11), 0.02 (s, 3H, TBS), -0.32 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.6 (t, C-3), 143.3 (q, Ph), 138.3 (t, C-5), 134.4 (q, C-4), 128.3 (t, Ph), 127.8 (t, Ph), 127.5 (t, Ph), 115.8 (t, C-2), 81.5 (t, C-9), 74.4 (t, C-7), 60.3 (s, C-12), 46.2 (t, C-8), 33.8 (s, C-6), 26.0 (p, TBS), 18.2 (q, TBS), 14.5 (p, C-13), 12.8 (p, C-11), 12.6 (p, C-10), -4.3 (p, TBS), -5.0 (p, TBS) ppm.

7,8-*syn*,8,9-*anti* **66b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.22-7.40 (m, 6H, Ph + H-3), 5.72-5.78 (m, 1H, H-5), 5.75 (d, 1H, *J* = 15.7 Hz, H-2), 4.81 (d, 1H, *J* = 3.8 Hz, H-9), 4.20 (q, 2H, *J* = 7.0 Hz, H-12), 3.88-3.94 (m, 1H, H-7), 3.58 (s, 1H, OH), 2.32-2.43 (m, 1H, H-6_a), 2.12-2.22 (m, 1H, H-6_b), 1.66-1.73 (m, 4H, H-8 + H-10), 1.28 (t, 3H, *J* = 7.0 Hz,

H-13), 1.06 (d, 3H, J = 6.8 Hz, H-11), 0.92 (s, 9H, TBS), 0.08 (s, 3H, TBS), -0.21 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.5 (t, C-3), 143.2 (q, Ph), 138.2 (t, C-5), 134.3 (q, C-4), 128.3 (t, Ph), 127.5 (t, Ph), 126.2 (t, Ph), 115.9 (t, C-2), 80.6 (t, C-9), 69.9 (t, C-7), 60.3 (s, C-12), 44.0 (t, C-8), 34.2 (s, C-6), 26.0 (p, TBS), 18.2 (q, TBS), 14.5 (p, C-13), 12.5 (p, C-10), 11.6 (p, C-11), -4.5 (p, TBS), -5.1 (p, TBS) ppm.

(2E,4E,7S,8S,9S)-Ethyl-7,9-dihydroxy-4,8-dimethyl-9-phenylnona-2,4-dienoate

(7,8-anti,8,9-anti S61a) and

(2E,4E,7R,8S,9S)-ethyl-7,9-dihydroxy-4,8-dimethyl-9-phenylnona-2,4-dienoate (7,8-syn,8,9-anti S61b)

A mixture of alcohols **66** [*d.r.*: 2:1 (**66a**:**66b**), 11 mg, 26 µmol, 1.0 eq] was dissoved in THF (0.4 ml) and the solution was cooled to 0 °C. TBAF·3H₂O (15 mg, 48 µmol, 1.8 eq) was dissolved in THF (0.3 ml) and added to the first solution. The reaction mixture was stirred for 1 h at 0 °C. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 5:1 \rightarrow 2:1) to furnish diols 7,8-*anti*,8,9-*anti* **S61a** and 7,8-*syn*,8,9-*anti* **S61b** [*d.r.*: 2:1 (**S61a**:**S61b**), 8.3 mg, 26 µmol, 99%] as a colourless liquid.

 $R_f = 0.26$ (PE:EE = 2:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): m/z: calculated for $C_{19}H_{26}NaO_4$: 341.1729 [M + Na]⁺, found: 341.1729 [M + Na]⁺.

7,8-*anti*,8,9-*anti* **S61a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.26-7.40 (m, 6H, Ph + H-3), 6.10 (dd, 1H, J = 7.5, 7.2 Hz, H-5), 5.82 (d, 1H, J = 15.7 Hz, H-2), 4.57 (d, 1H, J = 8.9 Hz, H-9), 4.21 (q, 2H, J = 7.0 Hz, H-12), 3.88 (ddd, 1H, J = 7.7, 7.7, 3.6 Hz, H-7), 3.67 (brs, 1H, OH), 2.89 (brs, 1H, OH), 2.50-2.59 (m, 1H, H-6_a), 2.39-2.50 (m, 1H, H-6_b), 1.90-2.02 (m, 1H, H-8), 1.81 (s, 3H, H-10), 1.30 (t, 3H, J = 7.2 Hz, H-13), 0.59 (d, 3H, J = 7.2 Hz, H-11) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.4 (t, C-3), 143.2 (q, Ph), 137.5 (t, C-5), 135.1 (q, C-4), 128.7 (t, Ph), 128.2 (t, Ph), 127.2

(t, Ph), 116.2 (t, C-2), 80.9 (t, C-9), 76.2 (t, C-7), 60.4 (s, C-12), 44.6 (t, C-8), 34.6 (s, C-6), 14.5 (p, C-13), 13.6 (p, C-11), 12.6 (p, C-10) ppm.

7,8-*syn*,8,9-*anti* **S61b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.26-7.40 (m, 6H, Ph + H-3), 5.87 (dd, 1H, J = 7.5, 7.2 Hz, H-5), 5.80 (d, 1H, J = 15.7 Hz, H-2), 4.74 (d, 1H, J = 6.5 Hz, H-9), 4.20 (q, 2H, J = 7.1 Hz, H-12), 3.93-3.98 (m, 1H, H-7), 3.19 (brs, 1H, OH), 2.73 (brs, 1H, OH), 2.50-2.59 (m, 1H, H-6_a), 2.27-2.36 (m, 1H, H-6_b), 1.90-2.02 (m, 1H, H-8), 1.78 (s, 3H, H-10), 1.29 (t, 3H, J = 7.1 Hz, H-13), 0.92 (d, 3H, J = 6.8 Hz, H-11) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.3 (t, C-3), 143.6 (q, Ph), 137.9 (t, C-5), 134.9 (q, C-4), 128.6 (t, Ph), 127.8 (t, Ph), 126.4 (t, Ph), 116.3 (t, C-2), 78.4 (t, C-9), 71.9 (t, C-7), 60.4 (s, C-12), 44.7 (t, C-8), 33.7 (s, C-6), 14.5 (p, C-13), 12.6 (p, C-10), 11.7 (p, C-11) ppm.

Acetonids 7,8-anti,8,9-anti S62a and 7,8-syn,8,9-anti S62b

7,8-syn,8,9-anti **S62b**

7,8-anti,8,9-anti **S62a**

A mixture of diols **S61** [*d.r.*: 2:1 (**S61a**:**S61b**), 7 mg, 22 µmol, 1.0 eq] was dissolved in CH_2Cl_2 (1.3 ml). 2,2-Dimethoxypropane (0.25 ml) and PPTS (0.5 mg, catalytic) were added and stirring was continued for 3 h at RT. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1). Diols 7,8-*anti*,8,9-*anti* **S62a** and 7,8-*syn*,8,9-*anti* **S62b** [*d.r.*: 2:1 (**S62a**:**S62b**), 8 mg, 22 µmol, 99%] were isolated as a colourless liquid.

 $R_f = 0.82$ (PE:EE = 2:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): *m/z*: calculated for C₂₂H₃₀NaO₄: 381.2042 [M + Na]⁺, found: 381.2032 [M + Na]⁺.

7,8-*anti*,8,9-*anti* **S62a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.27-7.41 (m, 6H, Ph + H-3), 6.08 (dd, 1H, J = 7.0, 7.0 Hz, H-5), 5.81 (d, 1H, J = 15.7 Hz, H-2), 4.41 (d, 1H, J = 10.2 Hz, H-9), 4.22 (q, 2H, J = 7.0 Hz, H-12), 4.16 (ddd, 1H, J = 10.1, 7.2, 3.1 Hz, H-7), 2.56 (ddd, 1H, J = 15.8, 7.2, 3.1 Hz, H-6_a), 2.27-2.47 (m, 1H, H-6_b), 1.78 (s, 3H, H-10), 1.56-1.66 (m, 1H, H-8), 1.55 (s, 3H, H-15_a), 1.47 (s, 3H, H-15_b), 1.31 (t, 3H, J = 7.0 Hz, H-13), 0.65 (d, 3H, J = 6.5 Hz, H-11) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.8 (q, C-1), 149.6 (t, C-3), 140.6 (q, Ph), 137.9 (t, C-5), 134.2 (q, C-4), 128.5 (t, Ph), 128.2 (t, Ph), 127.9 (t, Ph), 115.9 (t, C-2), 98.9 (q, C-14), 78.5 (t, C-9), 74.5 (t, C-9), 74.5 (t, Ph), 128.2 (t, Ph), 127.9 (t, Ph), 115.9 (t, C-2), 98.9 (q, C-14), 78.5 (t, C-9), 74.5 (t, C-9), 74.5

C-7), 60.4 (s, C-12), 40.3 (t, C-8), 32.8 (s, C-6), 30.3 (p, C-15_a), 19.8 (p, C-15_b), 14.5 (p, C-13), 12.6 (p, C-11), 12.4 (p, C-10) ppm.

7,8-*syn*,8,9-*anti* **S62b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.27-7.41 (m, 6H, Ph + H-3), 5.92 (dd, 1H, J = 6.7, 6.7 Hz, H-5), 5.82 (d, 1H, J = 15.7 Hz, H-2), 4.26 (d, 1H, J = 6.8 Hz, H-9), 4.21 (q, 2H, J = 7.1 Hz, H-12), 4.12-4.18 (m, 1H, H-7), 2.27-2.47 (m, 2H, H-6), 2.03-2.12 (m, 1H, H-8), 1.81 (s, 3H, H-10), 1.45 (s, 3H, H-15_a), 1.43 (s, 3H, H-15_b), 1.30 (t, 3H, J = 7.2 Hz, H-13), 0.91 (d, 3H, J = 6.5 Hz, H-11) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.3 (t, C-3), 141.8 (q, Ph), 137.9 (t, C-5), 134.3 (q, C-4), 128.6 (t, Ph), 127.9 (t, Ph), 127.2 (t, Ph), 116.1 (t, C-2), 101.4 (q, C-14), 77.7 (t, C-9), 69.1 (t, C-7), 60.4 (s, C-12), 41.9 (t, C-8), 30.5 (s, C-6), 25.0 (p, C-15_a), 24.1 (p, C-15_b), 14.5 (p, C-13), 12.7 (p, C-10), 11.6 (p, C-11) ppm.

MASAMUNE aldol product S63

Propionated MASAMUNE auxiliary **S64**^{S10} (3.0 g, 6.3 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (30 ml) and cooled to -78 °C. Et₃N (2.1 ml, 15.0 mmol, 2.4 eq) and (*cy*)₂BOTf (13.8 ml, *c* = 1 mol/l in hexane, 13.8 mmol, 2.2 eq) were added. The solution was stirred 2 h at -78 °C. Acetaldehyde (**S11**) (1.4 ml, 25.0 mmol, 4.0 eq) was dissolved in CH₂Cl₂ (5 ml) and added to the first solution. The reaction mixture was stirred for 1 h during which time the temperature was raised from -78 °C to rt. The reaction was terminated by the addition of phosphate buffer (pH = 7, 26 ml), MeOH (128 ml) and aq. H₂O₂ (13 ml, 30%ig) and stirring was continued for 16 h at rt. The layers were separated and the aqueous layer was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $15:1 \rightarrow 5:1$) to furnish ester **S63** (*d.r.* > 20:1, 3.1 g, 5.9 mmol, 94%,) as a colourless solid.

R_f = 0.11 (PE:EE = 5:1); $[\alpha]_D{}^{20}$ = +10.1 (c = 1.0, CHCl₃); m.p. = 139 °C; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.15-7.31 (m, 8H, Ph), 6.84-6.93 (m, 4H, Ph), 5.86 (d, 1H, *J* = 4.4 Hz, H-1'), 4.74 (d, 1H, *J* = 16.5 Hz, H-4_a'), 4.55 (d, 1H, *J* = 16.5 Hz, H-4_b'), 4.12 (qd, 1H, *J* = 6.6, 4.4 Hz, H-2'), 3.83 (dq, 1H, *J* = 7.0, 6.6 Hz, H-3), 2.49 (s, 6H, Mes), 2.37 (qd, 1H, *J* = 7.4, 7.0 Hz, H-2), 2.28 (s, 3H, Mes), 1.18 (d, 3H, *J* = 6.6 Hz, H-3'+H-4), 1.12 (d, 3H, *J* = 7.4 Hz, H-6) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ

174.6 (q, C-1), 142.7 (q, Ph), 140.4 (q, Ph), 138.6 (q, Ph), 138.3 (q, Ph), 133.5 (q, Ph), 132.3 (t, Ph), 128.6 (t, Ph), 128.5 (t, Ph), 128.1 (t, Ph), 127.7 (t, Ph), 127.3 (t, Ph), 126.1 (t, Ph), 78.4 (t, C-1'), 69.4 (t, C-3), 56.9 (t, C-2'), 48.4 (s, C-4'), 47.2 (t, C-2), 23.1 (p, Mes), 21.0 (p, Mes), 20.7 (p, C-4), 14.1 (p, C-3'), 13.5 (p, C-5) ppm; **HRMS** (ESI): m/z: calculated for C₃₀H₃₇NaNO₅S: 546.2290 [M + Na]⁺, found: 546.2288 [M + Na]⁺.

MOM-protected MASAMUNE aldol product S65

Alcohol **S63** (1.0 g, 1.9 mmol, 1 eq) was dissolved in CH₂Cl₂ (30 ml) and the solution was cooled to 0 °C. ^{*i*}Pr₂NEt (3.4 ml, 19.1 mmol, 10 eq) and MOMCl (0.73 ml, 9.5 mmol, 5 eq) were added. The solution was warmed up to rt and stirred for 7 d at rt. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 5:1) to furnish MOM-ether **S65** (1.1 g, 1.9 mmol, 98%) as a colourless oil.

 R_f = 0.29 (PE:EE = 4:1); $[α]_D^{20}$ = +28.8 (*c* = 1.0, CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33-7.39 (m, 2H, Ph), 7.12-7.28 (m, 6H, Ph), 6.88-6.92 (m, 2H, Ph), 6.76-6.81 (m, 2H, Ph), 5.78 (d, 1H, *J* = 4.4 Hz, H-1⁺), 4.87 (d, 1H, *J* = 16.7 Hz, H-4⁺), 4.53-4.61 (m, 3H, H-4⁺ + MOM), 4.02-4.10 (m, 1H, H-2⁺), 3.87 (dq, 1H, *J* = 6.8, 6.6 Hz, H-3), 3.32 (s, 3H, MOM), 2.63 (qd, 1H, *J* = 7.1, 6.8 Hz, H-2), 2.48 (s, 6H, Mes), 2.30 (s, 3H, Mes), 1.78 (d, 3H, *J* = 6.6 Hz, H-4), 1.30 (d, 3H, *J* = 7.2 Hz, H-3⁺), 1.06 (d, 3H, *J* = 7.1 Hz, H-5) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 173.64 (q, C-1), 142.7 (q, Ph), 140.4 (q, Ph), 139.0 (q, Ph), 138.5 (q, Ph), 133.6 (q, Ph), 132.3 (t, Ph), 128.5 (t, Ph), 128.4 (t, Ph), 128.0 (t, Ph), 127.2 (t, Ph), 126.1 (t, Ph), 95.7 (s, MOM), 78.1 (t, C-1⁺), 75.4 (t, C-3), 56.9 (t, C-2⁺), 55.7 (p, MOM), 48.2 (s, C-4⁺), 46.4 (t, C-2), 23.0 (p, Mes), 21.0 (p, Mes), 17.5 (p, C-4), 13.8 (p, C-3⁺), 13.1 (p, C-5) ppm; **HRMS** (ESI): *m/z*: calculated for C₃₂H₄₁NaNO₆S: 590.2552 [M + Na]⁺, found: 590.2550 [M + Na]⁺.

(2S,3R)-3-(Methoxymethoxy)-2-methylbutan-1-ol (S66)

Ester **S65** (1.0 g, 1.8 mmol, 1 eq) was dissolved in CH₂Cl₂ (25 ml) and cooled to -78 °C. DIBAL-H (6.1 ml, c = 1.2 mol/l in toluene, 7.3 mmol, 4 eq) was slowly added and the reaction mixture was stirred for 1.5 h at -78 °C. The reaction was terminated by addition of ethyl acetate and the mixture was warmed up to rt. Then, aq. Na-K-tartrate was added and the solution was stirred for 16 h at rt. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $10:1 \rightarrow 3:1$) to furnish alcohol **S66** (250 mg, 1.7 mmol, 92%) as a colourless liquid.

 $R_f = 0.07$ (PE:EE = 2:1); $[α]_D^{20} = -68.4$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 4.73 (d, 1H, *J* = 6.8 Hz, MOM), 4.61 (d, 1H, *J* = 6.8 Hz, MOM), 3.72 (dd, 1H, *J* = 11.1, 3.8 Hz, H-1_a), 3.65 (dq, 1H, *J* = 6.7, 6.5 Hz, H-3), 3.57 (dd, 1H, *J* = 11.1, 6.5 Hz, H-1_b), 3.40 (s, 3H, MOM), 2.47 (brs, 1H, OH), 1.74 (qddd, 1H, *J* = 6.9, 6.7, 6.5, 3.8 Hz, H-2), 1.20 (d, 3H, *J* = 6.5 Hz, H-4), 0.95 (d, 3H, *J* = 6.9 Hz, H-5) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 95.2 (s, MOM), 77.8 (t, C-3), 66.3 (s, C-1), 55.9 (p, MOM), 41.3 (t, C-2), 18.1 (p, C-4), 14.1 (p, C-5) ppm; HRMS (ESI): *m/z*: calculated for C₇H₁₆NaO₃: 171.0997 [M + Na]⁺, found: 171.1002 [M + Na]⁺.

(2R,3R)-3-(Methoxymethoxy)-2-methylbutanal (59)

Alcohol **S66** (50 mg, 0.34 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (6.5 ml) and NaHCO₃ (15 mg) added. DESS-MARTIN periodinane (172 mg, 0.41 mmol, 1.2 eq) was added and the reaction mixture was stirred for 75 min at rt. The reaction was terminated by addition of aq. Na₂S₂O₃ and stirring was continued for 1 h at rt. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1). Aldehyde **59** (19 mg, 0.13 mmol, 38%) was obtained as a colourless liquid and used immediately in the next step.

(2E,4E,7S,8S,9R)-Ethyl-7-hydroxy-9-(methoxymethoxy)-4,8-dimethyldeca-2,4-dienoate (7,8-*anti*,8,9-*anti* 67a) and

(2E,4E,7R,8S,9R)-ethyl-7-hydroxy-9-(methoxymethoxy)-4,8-dimethyldeca-2,4-dienoate

(7,8-syn,8,9-anti 67b)

Following the general procedure, aldehyde **59** (15 mg, 10 μ mol, 1 eq) was reacted with ester **6** (31 mg, 20 μ mol, 2 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 30:1 \rightarrow 1.7:1) to furnish alcohols 7,8-*anti*,8,9-*anti* **67a** and 7,8-*syn*,8,9-*anti* **67b** [*d.r.*: 1:2.3 (**67a:67b**), 26 mg, 9 μ mol, 87%] as a colourless liquid.

 $R_f = 0.15$ (PE:EE = 5:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): *m/z*: calculated for C₁₆H₂₈NaO₅: 323.1834 [M + Na]⁺, found: 323.1833 [M + Na]⁺.

7,8-*anti*,8,9-*anti* **67a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.35 (d, 1H, J = 15.7 Hz, H-3), 6.05 (dd, 1H, J = 7.2, 7.2 Hz, H-5), 5.80 (d, 1H, J = 15.7 Hz, H-2), 4.73 (d, 1H, J = 7.7 Hz, MOM), 4.62 (d, 1H, J = 7.7 Hz, MOM), 4.20 (q, 2H, J = 7.2 Hz, H-13), 3.74-3.82 (m, 1H, H-7), 3.67-3.75 (m, 1H, H-9), 3.38 (s, 3H, MOM), 2.42-2.52 (m, 1H, H-6_a), 2.33-2.41 (m, 1H, H-6_b), 1.80 (s, 3H, H-12), 1.69-1.79 (m, 1H, H-8), 1.29 (t, 3H, J = 7.2 Hz, H-14), 1.19 (d, 3H, J = 6.1 Hz, H-10), 0.86 (d, 3H, J = 7.2 Hz, H-12) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.4 (t, C-3), 138.1 (t, C-5), 134.8 (q, C-4), 116.1 (t, C-2), 95.0 (s, MOM), 76.8 (t, C-7), 74.0 (t, C-9), 60.3 (s, C-13), 55.9 (p, MOM), 44.2 (t, C-8), 34.0 (s, C-6), 17.5 (p, C-10), 14.5 (p, C-14), 12.6 (p, C-11), 12.4 (p, C-12) ppm.

7,8-*syn*,8,9-*anti* **67b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33 (d, 1H, J = 15.7 Hz, H-3), 5.94 (dd, 1H, J = 7.2, 7.2 Hz, H-5), 5.80 (d, 1H, J = 15.7 Hz, H-2), 4.70 (d, 1H, J = 6.8 Hz, MOM), 4.60 (d, 1H, J = 6.8 Hz, MOM), 4.20 (q, 2H, J = 7.2 Hz, H-13), 4.09-4.15 (m, 1H, H-9), 3.67-3.75 (m, 1H, H-7), 3.39 (s, 3H, MOM), 2.42-2.52 (m, 1H, H-6_a), 2.24-2.33 (m, 1H, H-6_b), 1.80 (s, 3H, H-12), 1.48-1.56 (m, 1H, H-8), 1.29 (t, 3H, J = 7.2 Hz, H-14), 1.23 (d, 3H, J = 6.5 Hz, H-10), 0.97 (d, 3H, J = 7.2 Hz, H-12) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.5 (t, C-3), 138.5 (t, C-5), 134.3 (q, C-4), 116.1 (t, C-2), 95.7 (s, MOM), 77.8 (t, C-7), 70.1 (t, C-9), 60.3 (s, C-13), 56.0 (p, MOM), 42.7 (t, C-8), 33.9 (s, C-6), 18.7 (p, C-10), 14.5 (p, C-14), 12.6 (p, C-11), 10.7 (p, C-12) ppm.

Alcohol **S63** (1.5 g, 2.7 mmol, 1 eq) was dissolved in CH_2Cl_2 (40 ml) and cooled to 0 °C. 2,6-Lutidine (1.3 ml, 11.5 mmol, 4 eq) and TBSOTf (1.3 ml, 5.7 mmol, 2 eq) were added and the reaction mixture was stirred for 2 h. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1) to furnish alcohol **S67** (1.8 g, 2.8 mmol, 99%) as a colourless liquid.

 R_f = 0.63 (PE:EE = 4:1); $[α]_D^{20}$ = +18.2 (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 7.31-7.37 (m, 2H, Ph), 7.10-7.29 (m, 6H, Ph), 6.80-6.89 (m, 4H, Ph), 5.74 (d, 1H, *J* = 5.1 Hz, H-1[°]), 4.82 (d, 1H, *J* = 16.6 Hz, H-4_a[°]), 4.49 (d, 1H, *J* = 16.6 Hz, H-4_b[°]), 3.99-4.14 (m, 2H, H-2[°] + H-3), 2.41-2.49 (m, 7H, Mes + H-2), 2.29 (s, 3H, Mes), 1.17 (d, 3H, *J* = 7.2 Hz, H-3[°]), 1.02 (d, 3H, *J* = 7.2 Hz, H-5), 1.02 (d, 3H, *J* = 6.1 Hz, H-4), 0.86 (s, 9H, TBS), 0.04 (s, 3H, TBS), 0.03 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 173.0 (q, C-1), 142.6 (q, Ph), 140.5 (q, Ph), 138.6 (q, Ph), 138.5 (q, Ph), 133.4 (q, Ph), 132.3 (t, Ph), 128.5 (t, Ph), 128.4 (t, Ph), 128.0 (t, Ph), 128.0 (t, Ph), 127.4 (t, Ph), 126.4 (t, Ph), 78.1 (t, C-1[°]), 69.3 (t, C-3), 56.9 (t, C-2[°]), 48.3 (s, C-4[°]), 47.6 (t, C-2), 26.0 (p, TBS), 23.1 (p, Mes), 21.0 (p, Mes), 20.1 (p, C-4), 18.2 (q, TBS), 14.2 (p, C-3[°]), 11.7 (p, C-5), -4.5 (p, TBS), -4.7 (p, TBS) ppm; **HRMS** (ESI): *m*/*z*: calculated for C₃₆H₅₁NaNO₅SiS: 660.3155 [M + Na]⁺, found: 660.3173 [M + Na]⁺.

(2S,3R)-3-(tert-Butyldimethylsilyloxy)-2-methylbutan-1-ol (S68)

Ester **S67** (1.8 g, 2.8 mmol, 1 eq) was dissolved in CH_2Cl_2 (40 ml) and cooled to -78 °C. DIBAL-H (9.3 ml, c = 1.2 mol/l in toluene, 11.1 mmol, 4 eq) was slowly added and stirring was continued for 1.5 h at -78 °C. The reaction was terminated by addition of ethyl acetate and warmed up to rt. Then, aq. Na-K-tartrate was added and the mixture was stirred for 16 at rt. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The

combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $50:1 \rightarrow 10:1$) to furnish alcohol **S68** (0.6 g, 2.8 mmol, 99%) as a colourless liquid. R_f = 0.33 (PE:EE = 2:1); $[\alpha]_D^{20} = -22.2$ (c = 1.0, CHCl₃); ¹H-NMR (400 MHz, C₆D₆, C₆D₅H = 7.16 ppm): δ 3.59-3.67 (m, 2H, H-1_a + H-3), 3.48 (dd, 1H, J = 10.6, 5.8 Hz, H-1_b), 1.95 (brs, 1H, OH), 1.42-1.53 (m, 1H, H-2), 1.02 (d, 3H, J = 6.2 Hz, H-4), 0.94 (s, 9H, TBS), 0.85 (d, 3H, J = 6.8 Hz, H-5), 0.04 (p, 3H, TBS), 0.01 (p, 3H, TBS) ppm; ¹³C-NMR (100 MHz, C₆D₆, C₆D₆ = 128.06 ppm): δ 72.6 (t, C-3), 65.4 (s, C-1), 42.6 (t, C-2), 26.0 (p, TBS), 21.5 (p, C-4), 18.2 (q, TBS), 14.0 (p, C-5), -4.2 (p, TBS), -4.9 (p, TBS) ppm; **HRMS** (ESI): m/z:

calculated for $C_{11}H_{27}O_2Si: 219.1780 [M + H]^+$, found: 219.1776 $[M + H]^+$.

(2R,3R)-3-(tert-Butyldimethylsilyloxy)-2-methylbutanal (60)

 $\frac{1}{60}$ Alcohol **S68** (120 mg, 0.55 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (5 ml) and NaHCO₃ (30 mg) was added. DESS-MARTI periodinane (280 mg, 0.66 mmol, 1.2 eq) was added and the reaction mixture was stirred for 1 h at rt. The reaction was terminated by addition of aq.

(30 mg) was added. DESS-MARTI periodinane (280 mg, 0.66 mmol, 1.2 eq) was added and the reaction mixture was stirred for 1 h at rt. The reaction was terminated by addition of aq. Na₂S₂O₃ and stirring was continued for 1 h at rt. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish aldehyde **60** (110 mg, 0.51 mmol, 92%) as a colourless liquid, which was used immediately in the next step. $R_f = 0.65$ (PE:EE = 5:1).

(2*E*,4*E*,7*S*,8*S*,9*R*)-Ethyl-9-(*tert*-butyldimethylsilyloxy)-7-hydroxy-4,8-dimethyldeca-2,4dienoate (7,8-*anti*,8,9-*anti* 68a) and

(2*E*,4*E*,7*R*,8*S*,9*R*)-ethyl-9-(*tert*-butyldimethylsilyloxy)-7-hydroxy-4,8-dimethyldeca-2,4dienoate (7,8-*syn*,8,9-*anti* 68b)

Following the general procedure, aldehyde **60** (11 mg, 50 μ mol, 1 eq) was reacted with ester **6** (15 mg, 100 μ mol, 2 eq) at -78 °C overnight. The crude product was purified by flash

chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 5:1$) to furnish alcohols 7,8anti,8,9-anti **68a** and 7,8-syn,8,9-anti **68b** [d.r.: 2:1 (**68b:68a**), 15 mg, 39 µmol, 79%] as colourless liquids.

HRMS (ESI): *m/z*: calculated for $C_{20}H_{39}O_4$ Si: 371.2618 [M + H]⁺, found: 371.2612 [M + H]⁺. 7,8-*anti*,8,9-*anti* **68a**: $R_f = 0.07$ (PE:EE = 5:1); $[\alpha]_D^{20} = -15.7$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, C_6D_6 , $C_6D_5H = 7.16$ ppm): δ 7.37 (d, 1H, *J* = 15.7 Hz, H-3), 6.08 (dd, 1H, *J* = 7.3, 6.3 Hz, H-5), 5.80 (d, 1H, *J* = 15.7 Hz, H-2), 4.21 (q, 2H, *J* = 7.2 Hz, H-13), 3.80 (qd, 1H, *J* = 6.3, 6.3 Hz, H-9), 3.70 (ddd, 1H, *J* = 7.7, 7.7, 3.8 Hz, H-7), 2.47 (ddd, 1H, *J* = 15.7, 6.3, 3.8 Hz, H-6_a), 2.35 (ddd, 1H, *J* = 15.7, 7.7, 7.3 Hz, H-6_b), 1.80 (s, 3H, H-12), 1.55-1.65 (m, 1H, H-8), 1.30 (t, 3H, *J* = 7.2 Hz, H-14), 1.20 (d, 3H, *J* = 6.3 Hz, H-10), 0.90 (s, 9H, TBS), 0.82 (d, 3H, *J* = 6.8 Hz, H-12), 0.10 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, C_6D_6 , C_6D_6 = 128.06 ppm): δ 167.7 (q, C-1), 149.6 (t, C-3), 138.4 (t, C-5), 134.5 (q, C-4), 115.9 (t, C-2), 74.1 (t, C-7), 73.7 (t, C-9), 60.3 (s, C-13), 45.7 (t, C-8), 34.0 (s, C-6), 26.0 (p, TBS), 22.3 (p, C-10), 18.1 (q, TBS), 14.5 (p, C-14), 13.3 (p, C-12), 12.6 (p, C-11), -4.0 (p, TBS), -4.7 (p, TBS) ppm.

7,8-*syn*,8,9-*anti* **68b**: $R_f = 0.12$ (PE:EE = 5:1); $[\alpha]_D^{20} = -3.7$ (c = 1.0, CHCl₃); ¹H-NMR (400 MHz, C₆D₆, C₆D₅H = 7.16 ppm): δ 7.33 (d, 1H, J = 15.7 Hz, H-3), 5.92 (dd, 1H, J = 7.3, 7.3 Hz, H-5), 5.80 (d, 1H, J = 15.7 Hz, H-2), 4.15-4.24 (m, 3H, H-7 + H-13), 3.96 (qd, 1H, J = 6.4, 2.6 Hz, H-9), 2.46 (ddd, 1H, J = 15.0, 7.3, 7.3 Hz, H-6_a), 2.27 (ddd, 1H, J = 15.0, 7.4, 7.3 Hz, H-6_b), 1.80 (s, 3H, H-12), 1.36-1.44 (m, 1H, H-8), 1.29 (t, 3H, J = 7.2 Hz, H-14), 1.26 (d, 3H, J = 6.4 Hz, H-10), 1.02 (d, 3H, J = 6.8 Hz, H-12), 0.89 (s, 9H, TBS), 0.09 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, C₆D₆, C₆D₆ = 128.06 ppm): δ 167.7 (q, C-1), 149.5 (t, C-3), 138.3 (t, C-5), 134.3 (q, C-4), 116.0 (t, C-2), 74.7 (t, C-7), 70.1 (t, C-9), 60.3 (s, C-13), 42.0 (t, C-8), 34.2 (s, C-6), 25.9 (p, TBS), 22.2 (p, C-10), 18.0 (q, TBS), 14.5 (p, C-14), 12.6 (p, C-11), 11.6 (p, C-12), -4.2 (p, TBS), -5.0 (p, TBS) ppm.

(2E,4E,7R,8R,9R)-Ethyl-7,9-dihydroxy-4,8-dimethyldeca-2,4-dienoate

(7,8-*syn*,8,9-*anti* **S69b**)

Alcohol 7,8-*syn*,8,9-*anti* **68b** (17 mg, 46 μ mol, 1.0 eq) was dissolved in THF (1.3 ml) and the solution was cooled to 0 °C. TBAF·3H₂O (19 mg, 60 μ mol, 1.3 eq) was added and the reaction mixture was stirred for 2 h at 0 °C. The reaction was terminated by addition of aq.

NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $5:1 \rightarrow 1:1$) to furnish diol 7,8-*syn*,8,9-*anti* **S69b** (8 mg, 32 µmol, 70%) as a colourless liquid.

 $R_f = 0.13$ (PE:EE = 2:1); $[\alpha]_D^{20} = +15.4$ (c = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 7.33 (d, 1H, J = 15.7 Hz, H-3), 5.95 (dd, 1H, J = 7.5, 7.0 Hz, H-5), 5.82 (d, 1H, J = 15.7 Hz, H-2), 4.21 (q, 2H, J = 7.4 Hz, H-13), 4.06 (ddd, 1H, J = 8.2, 5.5, 2.2 Hz, H-7), 3.88 (qd, 1H, J = 6.5, 6.5 Hz, H-9), 2.50 (ddd, 1H, J = 15.3, 8.2, 7.5 Hz, H-6_a), 2.43 (brs, 1H, OH), 2.33 (ddd, 1H, J = 15.3, 7.0, 5.5 Hz, H-6_b), 1.81 (s, 3H, H-11), 1.59 (qdd, 1H, *J* = 7.0, 6.5, 2.2 Hz, H-8), 1.30 (t, 3H, *J* = 7.4 Hz, H-14), 1.27 (d, 3H, *J* = 6.5 Hz, H-10), 0.96 (d, 3H, J = 7.0 Hz, H-12) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.3 (t, C-3), 138.0 (t, C-5), 134.9 (q, C-4), 116.4 (t, C-2), 72.3 (t, C-7), 71.7 (t, C-9), 60.4 (s, C-13), 43.3 (t, C-8), 33.4 (s, C-6), 22.4 (p, C-10), 14.5 (p, C-14), 12.6 (p, C-11), 11.9 (p, C-12) ppm; **HRMS** (ESI): m/z: calculated for C₁₄H₂₅O₄ and C₁₄H₂₄NaO₄: $257.1745 [M + H]^+$ $257.1753 [M + H]^+$ and $279.1572 [M + Na]^+$, found: and $279.1573 [M + Na]^+$.

(2E,4E,7S,8R,9R)-Ethyl-7,9-dihydroxy-4,8-dimethyldeca-2,4-dienoate (7,8-*anti*,8,9-*anti* S69a)

7,8-anti,8,9-anti **S69a**

Alcohol 7,8-*anti*,8,9-*anti* **68a** (12 mg, 32 µmol, 1.0 eq) was dissolved in THF (0.9 ml) and the solution was cooled to 0 °C. TBAF·3H₂O (13 mg, 41 µmol, 1.3 eq) was added and stirring was continued for 2 h at 0 °C. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $10:1 \rightarrow 2:1$) to furnish diol 7,8-*anti*,8,9-*anti* **S69a** (4 mg, 14 µmol, 44%) as a colourless liquid.

 $R_f = 0.11$ (PE:EE = 2:1); $[α]_D^{20} = -16.9$ (c = 1.0, CH₂Cl₂); ¹H-NMR (400 MHz, C₆D₆, C₆D₅H = 7.16 ppm): δ 7.65 (d, 1H, J = 15.7 Hz, H-3), 5.97 (d, 1H, J = 15.7 Hz, H-2), 5.82 (dd, 1H, J = 7.6, 6.6 Hz, H-5), 4.12 (q, 2H, J = 7.2 Hz, H-13), 3.46-3.55 (m, 1H, H-9), 3.38 (ddd, 1H,

J = 7.8, 7.8, 3.6 Hz, H-7), 2.15 (ddd, 1H, J = 15.2, 6.6, 3.6 Hz, H-6_a), 2.06 (ddd, 1H, J = 15.2, 7.8, 7.6 Hz, H-6_b), 1.52 (s, 3H, H-11), 1.39-1.41 (m, 1H, H-8), 1.04 (t, 3H, J = 7.2 Hz, H-14), 0.99 (d, 3H, J = 6.3 Hz, H-10), 0.49 (d, 3H, J = 6.9 Hz, H-12) ppm; ¹³C-NMR (100 MHz, C₆D₆, C₆D₆, = 128.0 ppm): δ 167.2 (q, C-1), 149.5 (t, C-3), 138.1 (t, C-5), 134.9 (q, C-4), 116.7 (t, C-2), 75.7 (t, C-7), 72.4 (t, C-9), 60.2 (s, C-13), 45.3 (t, C-8), 34.7 (s, C-6), 21.9 (p, C-10), 14.4 (p, C-14), 12.9 (p, C-11), 12.3 (p, C-12) ppm; HRMS (ESI): *m/z*: calculated for C₁₄H₂₅O₄ and C₁₄H₂₄NaO₄: 257.1753 [M + H]⁺ and 279.1572 [M + Na]⁺, found: 257.1745 [M + H]⁺ and 279.1573 [M + Na]⁺.

Acetonide 7,8-syn,8,9-anti S70b

7,8-syn,8,9-anti S70b

Diol 7,8-syn,8,9-anti S69b (8 mg, 31 µmol, 1 eq) was dissolved in CH₂Cl₂ (1.0 ml) and 2,2-dimethoxypropane (0.2 ml) and PPTS (1 mg, catalytic) were added and the reaction mixture was stirred for 2 h at rt. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1). Acetonide 7,8-syn,8,9-anti S70b (7 mg, 25 mmol, 81%) was obtained as a colourless liquid. $R_f = 0.87$ (PE:EE = 2:1); $[\alpha]_D^{20} = -4.3$ (c = 0.7, CH₂Cl₂); ¹**H-NMR** (400 MHz, C₆D₆, C₆D₅H = 7.16 ppm): δ 7.67 (d, 1H, J = 15.5 Hz, H-3), 5.97 (d, 1H, J = 15.5 Hz, H-2), 5.69 (dd, 1H, J = 7.3, 6.7 Hz, H-5), 4.11 (q, 2H, J = 7.1 Hz, H-13), 3.78 (ddd, 1H, J = 8.3, 5.9, 5.2 Hz, H-7), 3.31 (qd, 1H, *J* = 6.5, 6.5 Hz, H-9), 2.10 (ddd, 1H, *J* = 15.4, 8.3, 7.3 Hz, H-6_a), 1.94 (ddd, 1H, $J = 15.4, 6.7, 5.9 \text{ Hz}, \text{H-6}_{b}$, 1.49 (s, 3H, H-11), 1.32 (s, 3H, H-16_a), 1.29 (s, 3H, H-16_b), 1.24-1.33 (m, 1H, H-8), 1.14 (d, 3H, J = 6.5 Hz, H-10), 1.03 (t, 3H, J = 7.1 Hz, H-14), 0.62 (d, 3H, J = 6.9 Hz, H-12) ppm; ¹³C-NMR (100 MHz, C₆D₆, C₆D₆, = 128.0 ppm): δ 167.1 (q, C-1), 149.3 (t, C-3), 138.2 (t, C-5), 134.2 (q, C-4), 116.7 (t, C-2), 100.6 (q, C-15), 70.9 (t, C-9), 68.6 (t, C-7), 60.1 (s, C-13), 41.7 (t, C-8), 30.6 (s, C-6), 25.1 (p, C-16_a), 24.1 (p, C-16_b), 20.6 (p, C-10), 14.4 (p, C-14), 12.3 (p, C-11), 11.9 (p, C-12) ppm; HRMS (ESI): m/z: calculated for $C_{17}H_{28}NaO_4$: 319.1885 [M + Na]⁺, found: 319.1880 [M + Na]⁺.

Acetonide (7,8-anti,8,9-anti S70a)

Diol **S69a** (3 mg, 12 μ mol, 1 eq) was dissolved in CH₂Cl₂ (0.5 ml) and 2,2-dimethoxypropane (0.1 ml) and PPTS (0.5 mg, catalytic) were added and the reaction mixture was stirred for 2 h at rt. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1). Acetonide 7,8-*anti*,8,9-*anti* **S70a** (3 mg, 9 mmol, 73%) was obtained as a colourless liquid.

 $R_f = 0.85
(PE:EE = 2:1);
[α]_D²⁰ = -14.4 ($ *c*= 0.3, CH₂Cl₂);
¹H-NMR (400 MHz, C₆D₆, C₆D₅H = 7.16 ppm): δ 7.69 (d, 1H,*J*= 15.7 Hz, H-3), 5.95-6.01 (m, 2H, H-2 + H-5), 4.11 (q, 2H,*J*= 7.1 Hz, H-13), 3.32-3.40 (m, 1H, H-9), 3.29 (ddd, 1H,*J*= 10.2, 7.4, 2.9 Hz, H-7), 2.23 (ddd, 1H,*J*= 15.7, 6.6, 2.9 Hz, H-6_a), 2.13 (ddd, 1H,*J*= 15.7, 7.6, 7.4 Hz, H-6_b), 1.53 (s, 3H, H-11), 1.49 (s, 3H, H-16_a), 1.26 (s, 3H, H-16_b), 1.07-1.16 (m, 1H, H-8), 1.12 (d, 3H,*J*= 6.0 Hz, H-10), 1.02 (t, 3H,*J*= 7.1 Hz, H-14), 0.41 (d, 3H,*J*= 7.2 Hz, H-12) ppm;
¹³C-NMR (100 MHz, C₆D₆, C₆D₆, = 128.0 ppm): δ 167.1 (q, C-1), 149.4 (t, C-3), 138.1 (t, C-5), 134.2 (q, C-4), 116.6 (t, C-2), 98.0 (q, C-15), 74.2 (t, C-7), 70.7 (t, C-9), 60.1 (s, C-13), 40.6 (t, C-8), 32.9 (s, C-6), 30.4 (p, C-16_a), 20.1 (p, C-10), 19.7 (p, C-16_b), 14.4 (p, C-14), 12.3 (p, C-12), 12.3 (p, C-12) ppm; HRMS (ESI):*m*/*z*: calculated for C₁₇H₂₈NaO₄: 319.1885 [M + Na]⁺, found: 319.1885 [M + Na]⁺.

MASAMUNE aldol produkt S71

Propionated MASAMUNE auxiliary **S64**^{S10} (5.0 g, 10.4 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (70 ml) and the reaction mixture was cooled to -78 °C. Et₃N (3.3 ml, 22.9 mmol, 2.2 eq) and $(cy)_2$ BOTf (22.9 ml, c = 1 mol/l in hexane, 22.9 mmol, 2.2 eq) were slowly added. The solution was stirred for 2 h at -78 °C. Pivaldehyde (**S25**) (2.9 ml, 26.3 mmol, 2.5 eq) was dissolved in CH₂Cl₂ (20 ml) and added to the first solution. The reaction mixture was stirred for 2 h at -78 °C and for 16 h at 0 °C. The reaction was terminated by addition of phosphate buffer (pH = 7, 50 ml), MeOH (250 ml) and aq. H₂O₂ (30 ml, 30%ig) and stirring was continued overnight at rt. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed

under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 10::1$) to furnish ester **S71** (5.0 g, 8.8 mmol, 85%, *d.r.* > 20:1) as a colourless solid.

 $R_f = 0.32$ (PE:EE = 2:1); $[\alpha]_D^{20} = +20.7$ (c = 1.0, CHCl₃); mp.: 183 °C; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.19-7.32 (m, 6H, Ph), 7.11-7.17 (m, 2H, Ph), 6.79-6.85 (m, 4H, Ph), 5.69 (d, 1H, J = 6.2 Hz, H-1'), 4.80 (d, 1H, J = 16.0 Hz, H-4'), 4.50 (d, 1H, J = 16.0 Hz, H-4'), 4.17 (qd, 1H, J = 7.0, 6.2 Hz, H-2'), 3.16 (d, 1H, J = 2.4 Hz, H-3), 2.75 (qd, 1H, J = 7.2, 2.4 Hz, H-2), 2.40 (s, 6H, Mes), 2.29 (s, 3H, Mes), 1.25 (d, 3H, J = 7.0 Hz, H-3'), 1.20 (d, 3H, J = 7.2 Hz, H-6), 0.90 (s, 9H, H-5) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 176.1 (q, C-1), 142.7 (q, Ph), 140.5 (q, Ph), 138.4 (q, Ph), 137.7 (q, Ph), 133.2 (q, Ph), 132.2 (t, Ph), 128.5 (t, Ph, 2x), 128.3 (t, Ph), 128.2 (t, Ph), 127.5 (t, Ph), 126.6 (t, Ph), 82.6 (t, C-3), 78.5 (t, C-1'), 56.5 (t, C-2'), 48.3 (s, C-4'), 39.0 (t, C-2), 36.1 (q, C-4), 26.5 (p, C-5), 23.0 (p, Mes), 21.0 (p, Mes), 17.9 (p, C-6), 14.9 (p, C-3') ppm; HRMS $C_{33}H_{43}NaNO_5S$: $588.2760 [M + Na]^+$, (ESI): m/z: calculated for found: 588.2755 $[M + Na]^+$. S10

MOM-protected MASAMUNE aldol product S72

Alcohol **S71** (1.9 g, 3.4 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (70 ml) and the solution was cooled to 0 °C. ^{*i*}Pr₂NEt (6.2 ml, 34.3 mmol, 10.0 eq) and MOMCl (1.3 ml, 17.1 mmol, 5.0 eq) were added and the reaction mixture was stirred for 3 h at 0 °C and then for 7 d at rt. MOMCl (0.5 ml, 6.6 mmol, 1.9 eq) was added and stirring was continued for 2 d at rt. A second portion of MOMCl (0.3 ml, 3.3 mmol, 1.0 eq) was added and the reaction mixture was stirred for 2 d at rt. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 30:1 \rightarrow 10:1) to furnish product **S72** (1.6 g, 2.9 mmol, 85%) as a colourless oil. R_f = 0.43 (PE:EE = 5:1); $[\alpha]_D^{20} = +30.5$ (c = 1.0, CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃

= 7.26 ppm): δ 7.30-7.35 (m, 2H, Ph), 7.11-7.24 (m, 6H, Ph), 6.80-6.86 (m, 4H, Ph), 5.82 (d, 1H, J = 5.7 Hz, H-1[°]), 4.86 (d, 1H, J = 16.6 Hz, H-4[°]_a), 4.63 (d, 1H, J = 7.0 Hz, MOM), 4.57

(d, 1H, J = 16.6 Hz, H-4'_b), 4.46 (d, 1H, J = 7.0 Hz, MOM), 4.16 (qd, 1H, J = 7.0, 5.7 Hz, H-2'), 3.32 (s, 3H, MOM), 3.23 (d, 1H, J = 4.9 Hz, H-3), 2.85 (qd, 1H, J = 7.1, 4.9 Hz, H-2), 2.43 (s, 6H, Mes), 2.28 (s, 3H, Mes), 1.24 (d, 3H, J = 7.0 Hz, H-3'), 1.14 (d, 3H, J = 7.1 Hz, H-6), 0.94 (s, 9H, H-5) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 173.3 (q, C-1'), 142.5 (q, Ph), 140.4 (q, Ph), 138.8 (q, Ph), 138.7 (q, Ph), 133.7 (q, Ph), 132.2 (t, Ph), 128.4 (t, Ph), 128.3 (t, Ph), 128.0 (t, Ph), 128.0 (t, Ph), 127.2 (t, Ph), 126.5 (t, Ph), 98.8 (s, MOM), 89.7 (t, C-3), 78.3 (t, C-1'), 57.0 (p, MOM), 56.5 (t, C-2'), 48.1 (s, C-4'), 42.7 (t, C-2), 36.3 (q, C-4), 26.6 (p, C-5), 23.0 (p, Mes), 21.0 (p, Mes), 18.0 (p, C-3'), 14.4 (p, C-6) ppm; **HRMS** (ESI): m/z: calculated for C₃₅H₄₇NaNO₆S: 632.3022 [M + Na]⁺, found: 632.3011 [M + Na]⁺.

Alcohol S73

Ester **S72** (1.6 g, 2.6 mmol, 1 eq) was dissolved in CH₂Cl₂ (77 ml) and cooled to -78 °C. DIBAL-H (8.8 ml, c = 1.2 mol/l in toluene, 10.6 mmol, 4 eq) was added over a period of 1.5 h and the solution was stirred for another 1.5 h at -78 °C. The reaction was terminated by addition of ethyl acetate and aq. Na-K-tartrate. The solution was stirred overnight at rt. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $20:1 \rightarrow 5:1$) to furnish alcohol **S73** (422 mg, 2.2 mmol, 85%) as a colourless liquid. R_f = 0.21 (PE:EE = 5:1); $[\alpha]_D^{20} = -42.0$ (c = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 4.74 (d, 1H, J = 6.1 Hz, MOM), 4.62 (d, 1H, J = 6.1 Hz, MOM), 3.05 (d, J = 11.3, 4.4 Hz, H-1_a), 3.59 (dd, 1H, J = 11.3, 6.5 Hz, H-1_b), 3.43 (s, 3H, MOM), 3.05 (d,

1H, J = 4.1 Hz, H-3), 2.53 (brs, 1H, OH), 1.03 (d, 3H, J = 7.2 Hz, H-6), 0.93 (s, 9H, H-5) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 100.2 (s, MOM), 93.8 (t, C-3), 66.2 (s, C-1), 56.6 (p, MOM), 36.6 (q, C-4), 36.0 (t, C-2), 26.4 (p, C-5), 18.8 (p, C-6) ppm; HRMS (ESI): m/z: calculated for C₁₀H₂₂NaO₃: 213.1467 [M + Na]⁺, found: 213.1463 [M + Na]⁺.

Aldehyde 61

Alcohol **S73** (66 mg, 0.35 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (7 ml) and NaHCO₃ (20 mg) and DESS-MARTIN periodinane (177 mg, 0.42 mmol, 1.2 eq) were added and the reaction mixture was stirred for 75 min at rt. The reaction was terminated by addition of aq. Na₂S₂O₃ and stirring was continued for 75 min at rt. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish aldehyde **61** (54 mg, 0.29 mmol, 83%) as a colourless liquid, which was used immediately in the next step. R_f = 0.62 (PE:EE = 5:1); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.81 (d, 1H, *J* = 2.1 Hz, H-1), 4.65 (d, 1H, *J* = 6.8 Hz, MOM), 4.59 (d, 1H, *J* = 6.8 Hz, MOM), 3.35 (s, 3H, MOM), 3.21 (d, 1H, *J* = 1.8 Hz, H-3), 2.68 (qdd, 1H, *J* = 7.0, 2.1, 1.8 Hz, H-2), 1.20 (d, 3H, *J* = 7.0 Hz, H-6), 0.98 (s, 9H, H-5) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 204.4 (t, C-1), 99.0 (s, MOM), 91.2 (t, C-3), 56.4 (p, MOM), 47.3 (t, C-2), 36.6 (q, C-4), 26.5 (p, C-5), 14.7 (p, C-6) ppm; **HRMS** (ESI): *m*/*z*: Compound **61** could not be detected by mass spectrometry.

YAMAMOTO aldol product 7,8-syn,8,9-anti 69b

Following the general procedure, aldehyde **61** (48 mg, 0.26 μ mol, 1 eq) was reacted with ester **6** (79 mg, 0.51 μ mol, 2 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 30:1 \rightarrow 2:1) to furnish 7,8-*syn*,8,9-*anti* **69b** (*d.r.*: >10:1, 55 mg, 0.16 μ mol, 63%) as a yellow liquid.

 $R_f = 0.25$ (PE:EE = 5:1); $[α]_D^{20} = -1.4$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 7.33 (d, 1H, *J* = 15.7 Hz, H-3), 5.96 (dd, 1H, *J* = 7.5, 7.4 Hz, H-5), 5.79 (d, 1H, *J* = 15.7 Hz, H-2), 4.78 (d, 1H, *J* = 5.3 Hz, MOM), 4.53 (d, 1H, *J* = 5.3 Hz, MOM), 4.19 (q, 2H, *J* = 7.1 Hz, H-14), 4.11-4.17 (m, 1H, H-7), 3.80 (brs, 1H, OH), 3.40 (s, 3H, MOM), 2.95 (d, 1H, *J* = 2.7 Hz, H-9), 2.44 (ddd, 1H, *J* = 14.8, 7.4, 7.3 Hz, H-6_a), 2.28 (ddd, 1H, *J* = 14.8, 7.5, 7.4 Hz, H-6_b), 1.75-1.83 (m, 4H, H-8 + H-12), 1.29 (t, 3H, *J* = 7.2 Hz, H-15), 1.05 (d, 3H, *J* = 7.2 Hz, H-13) 0.88 (s, 9H, H-11) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃) = 77.16 ppm): δ 167.7 (q, C-1), 149.5 (t, C-3), 138.8 (t, H-5), 134.2 (q, C-4), 115.9 (t, C-2), 100.7 (s, MOM), 94.9 (t, C-9), 69.6 (t, C-7), 60.3 (s, C-14), 55.9 (p, MOM), 37.1 (t, C-8), 36.9 (q, C-10), 34.3 (s, C-6), 26.5 (p, C-11), 14.4 (p, C-15), 13.8 (p, C-13), 12.5 (p, C-12) ppm; **HRMS** (ESI): m/z: calculated for C₁₉H₃₄NaO₅: 365.2304 [M + Na]⁺, found 365.2297 [M + Na]⁺.

TBS-protected MASAMUNE aldol product S74

Alcohol **S71** (2.3 g, 4.1 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (60 ml) and cooled to 0 °C. 2,6-Lutidine (1.43 ml, 12.3 mmol, 3.0 eq) and TBSOTf (1.42 ml, 6.1 mmol, 1.5 eq) were added and the reaction mixture was stirred for 3 h at 0 °C. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1) to furnish product **S74** (2.7 g, 3.9 mmol, 96%) as a colourless solid.

R_f = 0.53 (PE:EE = 5:1); $[α]_D^{20}$ = +30.5 (*c* = 1.0, CHCl₃); m.p. = 172 °C; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.31-7.35 (m, 2H, Ph), 7.15-7.29 (m, 4H, Ph), 7.04-7.10 (m, 2H, Ph), 6.79-6.84 (m, 4H, Ph), 5.69 (d, 1H, *J* = 7.0 Hz, H-1'), 4.77 (d, 1H, *J* = 16.4 Hz, H-4'_a), 4.42 (d, 1H, *J* = 16.4 Hz, H-4'_b), 4.16 (dq, 1H, *J* = 7.0, 6.8 Hz, H-2'), 3.70 (d, 1H, *J* = 3.1 Hz, H-3), 2.60 (qd, 1H, *J* = 7.2, 3.1 Hz, H-2), 2.35 (s, 6H, Mes), 2.28 (s, 3H, Mes), 1.28 (d, 3H, *J* = 6.8 Hz, H-3'), 1.12 (d, 3H, *J* = 7.2 Hz, H-6), 0.90 (s, 9H, TBS), 0.72 (p, 9H, H-5), 0.08 (p, 3H, TBS), 0.05 (p, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 172.6 (q, C-1), 142.5 (q, Ph), 140.6 (q, Ph), 138.3 (q, Ph), 137.8 (q, Ph), 133.1 (q, Ph), 132.3 (t, Ph), 128.6 (t, Ph), 128.3 (t, Ph), 128.2 (t, Ph), 128.0 (t, Ph), 127.6 (t, Ph), 127.3 (t, Ph), 80.8 (t, C-3), 78.0 (t, C-1'), 56.5 (t, C-2'), 48.2 (s, C-4'), 45.8 (t, C-2), 36.9 (q, C-4), 27.3 (p, C-5), 26.2 (p, TBS), 23.0 (p, Mes), 21.0 (p, Mes), 18.4 (q, TBS), 15.6 (p, C-3'), 13.3 (p, C-6), -3.8 (p, TBS), -4.2 (p, TBS) ppm; **HRMS** (ESI): *m/z*: calculated for C₃₉H₅₇NaNO₅₅Si: 702.3624 [M + Na]⁺, found: 702.3633 [M + Na]⁺.

Ester **S74** (2.6 g, 3.9 mmol, 1 eq) was dissolved in CH_2Cl_2 (95 ml) and cooled to -78 °C. DIBAL-H (13.0 ml, c = 1.2 mol/l in toluene, 15.6 mmol, 4 eq) was added over a period of 1.5 h and the reaction mixture was stirred for 30 min at -78 °C. The reaction was terminated by addition of ethyl acetate and aq. Na-K-tartrate. The solution was stirred at rt overnight after which time the layers were separated and the aqueous layer extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 30:1) to furnish alcohol **S75** (998 mg, 3.8 mmol, 99%) as a colourless liquid.

 $R_f = 0.56$ (PE:EE = 5:1); $[α]_D^{20} = -4.1$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 3.65 (dd, 1H, *J* = 11.1, 8.7 Hz, H-1_a), 3.40 (dd, 1H, *J* = 11.1, 5.3 Hz, H-1_b), 3.25 (d, 1H, *J* = 3.8 Hz, H-3), 2.45 (brs, 1H, OH), 2.01-2.13 (m, 1H, H-2), 0.94 (s, 9H, TBS), 0.92 (d, 3H, *J* = 7.2 Hz, H-6), 0.91 (s, 9H, C-5), 0.14 (s, 3H, TBS), 0.09 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 86.1 (t, C-3), 66.5 (s, C-1), 36.7 (q, C-4), 36.2 (t, C-2), 26.5 (p, TBS), 26.5 (p, C-5), 18.9 (p, C-6), 18.5 (q, TBS), -2.7 (p, TBS), -3.9 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₁₄H₃₂NaO₂Si: 283.2069 [M + Na]⁺, found: 283.2057 [M + Na]⁺.

Aldehyde 62

Alcohol **S75** (60 mg, 0.23 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (4.6 ml) and NaHCO₃ (20 mg) and the DESS-MARTIN periodinane (117 mg, 0.28 mmol, 1.2 eq) were added and the reaction mixture was stirred for 90 min at rt. The reaction was terminated by addition of aq. Na₂S₂O₃ and stirring was continued for 75 min at rt. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 30:1) to furnish aldehyde **62** (59 mg, 0.23 mmol, 99%) as a colourless liquid, which was used immediately in the next step. $R_f = 0.66$ (PE:EE = 10:1); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.83 (d, 1H, J = 1.8 Hz, H-1), 3.40 (d, 1H, J = 1.8 Hz, H-3), 2.66 (qdd, 1H, J = 7.2, 1.8, 1.8 Hz, H-2), 1.16

(d, 3H, *J* = 7.2 Hz, H-6), 0.95 (s, 9H, TBS), 0.90 (s, 9H, H-5), 0.06 (s, 3H, TBS), 0.06 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 204.9 (t, C-1), 84.6 (t, C-3), 48.0 (t, C-2), 36.9 (q, C-4), 26.6 (p, TBS), 26.3 (p, C-5), 18.6 (q, TBS), 14.9 (p, C-6), -3.1 (p, TBS), -4.1 (p, TBS) ppm; **HRMS** (ESI): *m/z*: Compound **62** could not be detected by mass spectrometry.

YAMAMOTO aldol products 7,8-anti,8,9-anti 70a and 7,8-syn,8,9-anti 70b

7,8-anti,8,9-anti **70a**

Following the general procedure, aldehyde **62** (52 mg, 20 µmol, 1 eq) was reacted with ester **6** (62 mg, 40 µmol, 2 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 10:1$) to furnish alcohols 7,8-*anti*,8,9-*anti* **70a** and 7,8-*syn*,8,9-*anti* **70b** (*d.r.*: 1:7 (**70a**:**70b**), 64 mg, 15 µmol, 77%) as a yellow liquid.

 R_f = 0.28 (PE:EE = 10:1); the diastereomers could not be separated by column chromatography; 7,8-*syn*,8,9-*anti* **70b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33 (d, 1H, *J* = 15.7 Hz, H-3), 5.91 (dd, 1H, *J* = 7.7, 7.0 Hz, H-5), 5.80 (d, 1H, *J* = 15.7 Hz, H-2), 3.55 (ddd, 1H, *J* = 7.3, 7.0, 1.7 Hz, H-7), 4.20 (q, 2H, *J* = 7.1 Hz, H-14), 3.49 (brs, 1H, OH), 3.44 (d, 1H, *J* = 1.4 Hz, H-9), 2.42 (ddd, 1H, *J* = 15.0, 7.0, 7.0 Hz, H-6_a), 2.28 (ddd, 1H, *J* = 15.0, 7.7, 7.3 Hz, H-6_b), 1.79-1.88 (m, 1H, H-8), 1.80 (s, 3H, H-12), 1.29 (t, 3H, *J* = 7.1 Hz, H-15), 1.05 (d, 3H, *J* = 7.2 Hz, H-13) 0.96 (s, 9H, H-11), 0.95 (s, 9H, TBS), 0.17 (s, 3H, TBS), 0.14 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.5 (t, C-3), 138.1 (t, H-5), 134.4 (q, C-4), 116.1 (t, C-2), 88.0 (t, C-9), 71.0 (t, C-7), 60.3 (s, C-14), 36.8 (t, C-8), 36.6 (q, C-10), 34.6 (s, C-6), 28.0 (p, C-11), 26.6 (p, TBS), 18.9 (q, TBS), 14.5 (p, C-15), 14.0 (p, C-13), 12.6 (p, C-12), -2.7 (p, TBS), -3.9 (p, TBS) ppm; **HRMS** (ESI): *m/z*: calculated for C₂₃H₄₅O₄Si: 413.3087 [M + H]⁺, found: 413.3075 [M + H]⁺.

Diol 7,8-*syn*,8,9-*anti* **S76b**

7,8-syn,8,9-anti **S76b**

Alcohol **70b** (15 mg, 36 µmol, 1.0 eq) was dissolved in THF (1.2 ml) and cooled to 0 °C. TBAF·3H₂O (17 mg, 54 µmol, 1.5 eq) was added and the reaction mixture was stirred for 1.5 h at 0 °C. A second portion of TBAF·3H₂O (10 mg, 32 µmol, 0.9 eq) was added and stirring was continued for 1.5 h at rt. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with Et₂O. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $8:1 \rightarrow 2:1$) to furnish diol 7,8-*syn*,8,9-*anti* **S76b** (7 mg, 25 µmol, 69%) as a colourless oil.

 R_f = 0.15 (PE:EE = 5:1); [α]_D²⁰ = +2.2 (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 7.33 (d, 1H, *J* = 15.7 Hz, H-3), 5.93 (dd, 1H, *J* = 7.5, 7.4 Hz, H-5), 5.82 (d, 1H, *J* = 15.7 Hz, H-2), 4.21 (q, 2H, *J* = 7.2 Hz, H-14), 4.14-4.21 (m, 1H, H-7), 3.28 (d, 1H, *J* = 2.7 Hz, H-9), 2.48 (ddd, 1H, *J* = 14.9, 7.5, 7.5 Hz, H-6_a), 2.31 (ddd, 1H, *J* = 14.9, 7.4, 7.3 Hz, H-6_b), 1.77-1.85 (m, 4H, H-8 + H-12), 1.30 (t, 3H, *J* = 7.2 Hz, H-15), 1.06 (d, 3H, *J* = 7.2 Hz, H-13) 0.93 (s, 9H, H-11) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.3 (t, C-3), 138.0 (t, H-5), 134.8 (q, C-4), 116.3 (t, C-2), 85.2 (t, C-9), 71.4 (t, C-7), 60.4 (s, C-14), 36.6 (t, C-8), 36.2 (q, C-10), 34.2 (s, C-6), 26.4 (p, C-11), 14.5 (p, C-15), 14.1 (p, C-13), 12.6 (p, C-12) ppm; HRMS (ESI): *m/z*: calculated for C₁₇H₃₁O₄ and C₁₇H₃₀NaO₄: 299.2222 [M + H]⁺ and 321.2028 [M + Na]⁺, found: 299.2213 [M + H]⁺ and 321.2028 [M + Na]⁺.

Acetonide 7,8-syn,8,9-anti S77b

7,8-syn,8,9-anti S77b

Diol **S76b** (7 mg, 23 μ mol, 1.0 eq) was dissolved in CH₂Cl₂ (0.5 ml), 2,2-dimethoxypropane (0.1 ml) and CSA (1 mg, catalytic) were added and the reaction mixture was stirred for 2 h at rt. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish acetonide 7,8-*syn*,8,9-*anti* **S77b** (4 mg, 12 μ mol, 51%) as a colourless liquid.

 $R_f = 0.35$ (PE:EE = 20:1); $[\alpha]_D^{20} = -5.1$ (c = 0.4, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 7.33 (d, 1H, J = 15.7 Hz, H-3), 5.88 (dd, 1H, J = 6.8, 6.8 Hz, H-5), 5.81 (d, 1H, J = 15.7 Hz, H-2), 4.21 (q, 2H, J = 7.1 Hz, H-14), 3.78 (ddd, 1H, J = 8.8, 5.6, 3.5 Hz, H-7), 2.97 (d, 1H, J = 6.5 Hz, H-9), 2.28-2.38 (m, 1H, H-6_a), 2.17-2.28 (m, 1H, H-6_b), 1.71-1.79 (m, 4H, H-8 + H-12), 1.32 (s, 3H, H-17_a), 1.30 (t, 3H, J = 7.1 Hz, H-15), 1.29 (s, 3H, H-17_b), 0.88-0.91 (m, 12H, H-13 + H-11) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.8 (q, C-1), 149.5 (t, C-3), 138.3 (t, H-5), 134.2 (q, C-4), 115.9 (t, C-2), 100.2 (q, C-16), 81.9 (t, C-9), 69.2 (t, C-7), 60.4 (s, C-14), 34.8 (t, C-8), 34.7 (q, C-10), 30.7 (s, C-6), 26.2 (p, C-17_a), 25.7 (p, C-11), 23.4 (p, C-17_b), 14.5 (p, C-15), 13.9 (p, C-13), 12.6 (p, C-12) ppm; **HRMS** (ESI): *m/z*: calculated for C₂₀H₃₄NaO₄: 361.2355 [M + Na]⁺, found: 361.2341 [M + Na]⁺.

Oxolane S78b

Alcohol **69b** (17 mg, 50 μ mol, 1.0 eq) was dissolved in EtOH (1.5 ml) and concentrated HCl (0.1 ml) was added. The solution was stirred overnight and the reaction was terminated by addition of aq. NaHCO₃. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish oxolane **S78b** (13 mg, 42 mmol, 84%) as a colourless liquid.

R_f = 0.67 (PE:EE = 5:1); $[α]_D^{20}$ = -7.7 (*c* = 1.0, CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33 (d, 1H, *J* = 15.7 Hz, H-3), 5.91 (dd, 1H, *J* = 7.5, 7.1 Hz, H-5), 5.81 (d, 1H, *J* = 15.7 Hz, H-2), 5.06 (d, 1H, *J* = 3.9 Hz, H-16_a), 4.84 (d, 1H, *J* = 3.9 Hz, H-16_b), 4.21 (q, 2H, *J* = 7.2 Hz, H-14), 3.91 (ddd, 1H, *J* = 8.5, 6.4, 3.5 Hz, H-7), 2.91 (d, 1H, *J* = 6.2 Hz, H-9), 2.50 (ddd, 1H, *J* = 15.3, 8.5, 7.5 Hz, H-6_a), 2.26 (ddd, 1H, *J* = 15.3, 7.1, 6.4 Hz, H-6_b), 1.98 (qdd, 1H, *J* = 6.9, 6.2, 3.5 Hz, H-8), 1.81 (s, 3H, H-12), 1.30 (t, 3H, *J* = 7.2 Hz, H-15), 0.94 (d, 3H, *J* = 6.9 Hz, H-13), 0.93 (s, 9H, H-11) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.3 (t, C-3), 137.6 (t, H-5), 134.4 (q, C-4), 116.2 (t, C-2), 90.9 (s, C-16), 87.9 (t, C-9), 71.0 (t, C-7), 60.4 (s, C-14), 35.1 (q, C-10), 34.7 (t, C-8), 29.9 (s, C-6), 26.0 (p, C-11), 15.0 (p, C-13), 14.5 (p, C-15), 12.6 (p, C-12) ppm; **HRMS** (ESI): *m/z*: calculated for C₁₈H₃₀NaO₄: 333.2042 [M + Na]⁺, found: 333.2040 [M + Na]⁺.

MASAMUNE aldol product S79

Propionated MASAMUNE auxiliary S64^{S10} (3.0 g, 6.3 mmol, 1 eq) was dissolved in CH₂Cl₂ (30 ml) and cooled to -78 °C. Et₃N (2.1 ml, 15.0 mmol, 2.4 eq) and (cy)₂BOTf (13.8 ml, c = 1 mol/l in hexane, 13.8 mmol, 2.2 eq) were added and the solution was stirred for 2 h at -78 °C. Aldehyde S33 (1.6 g, 9.4 mmol, 1.5 eq) was dissolved in CH₂Cl₂ (5 ml) and added dropwise to the first solution. The reaction mixture was stirred for 2 h at -78 °C and for 16 h at rt. Then, the reaction was terminated by addition of phosphate buffer (pH = 7, 26 ml), MeOH (128 ml), aq. H₂O₂ (13 ml, 30%ig) and stirring was continued for 2 h at rt. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate $= 20:1 \rightarrow 5:1$) to furnish ester **S79** (4.0 g, 6.2 mmol, 99%, *d.r.*> 20:1) as a colourless solid. $R_f = 0.36$ (PE:EE = 5:1); $[\alpha]_D^{20} = +26.7$ (c = 1.0, CHCl₃); m.p.: 54 °C; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.28-7.33 (m, 2H, Ph), 7.14-7.27 (m, 6H, Ph), 6.82-6.89 (m, 4H, Ph), 5.83 (d, 1H, J = 4.8 Hz, H-1'), 4.76 (d, 1H, J = 16.2 Hz, H-4_a'), 4.52 (d, 1H, $J = 16.2 \text{ Hz}, \text{ H-4}_{\text{b}}$), 4.51 (d, 1H, J = 7.9 Hz, H-3), 4.06-4.15 (m, 1H, H-2'), 2.68 (dq, 1H, J = 7.9, 7.2 Hz, H-2), 2.47 (s, 6H, Mes), 2.28 (s, 3H, Mes), 1.21 (d, 3H, J = 7.2 Hz, H-3'), 1.18 (d, 3H, J = 7.2 Hz, H-6), 0.92 (s, 9H, TBS), 0.09 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 173.1 (q, C-1), 142.7 (q, Ph), 140.5 (q, Ph), 138.6 (q, Ph), 138.2 (q, Ph), 133.5 (q, Ph), 132.3 (t, Ph), 128.6 (t, Ph), 128.5 (t, Ph), 128.1 (t, Ph), 127.9 (t, Ph), 127.4 (t, Ph), 126.2 (t, Ph), 104.6 (q, C-10), 89.8 (q, C-11), 78.6 (t, C-1'), 64.9 (t, C-3), 56.9 (t, C-2'), 48.4 (s, C-4'), 46.6 (t, C-2), 26.2 (p, TBS), 23.1 (p, Mes), 21.0 (p, Mes), 16.6 (q, TBS), 14.0 (p, C-3'), 13.8 (p, C-6), -4.6 (p, TBS), -4.6 (p, TBS) ppm; HRMS C₃₇H₄₉NaNO₅SiS: $670.2998 [M + Na]^+$, (ESI): m/z: calculated for found: $670.2973 [M + Na]^+$.

Ester **S79** (1.0 g, 1.5 mmol, 1 eq) was dissolved in CH_2Cl_2 (30 ml) and cooled to 0 °C. ^{*i*}Pr₂NEt (2.8 ml, 15.4 mmol, 10 eq) and MOMCl (0.6 ml, 7.7 mmol, 5 eq) were added and the solution was stirred for 3 d at rt. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1) to furnish alcohol **S80** (1.0 g, 1.4 mmol, 93%) as a colourless solid.

 R_f = 0.52 (PE:EE = 2:1); $[α]_D^{20}$ = -11.5 (*c* = 1.0, CHCl₃); m.p. = 49 °C; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.32-7.37 (m, 2H, Ph), 7.12-7.27 (m, 6H, Ph), 6.87-6.90 (m, 2H, Ph), 6.75-6.80 (m, 2H, Ph), 5.81 (d, 1H, *J* = 4.4 Hz, H-1'), 4.94 (d, 1H, *J* = 6.5 Hz, MOM), 4.87 (d, 1H, *J* = 16.4 Hz, H-4_a'), 4.48-4.60 (m, 3H, H-4_b' + MOM + H-3), 4.07 (m, 1H, H-2'), 3.33 (s, 3H, MOM), 2.68 (m, 1H, H-2), 2.47 (s, 6H, Mes), 2.30 (s, 3H, Mes), 1.21 (d, 3H, *J* = 7.2 Hz, H-6), 1.13 (d, 3H, *J* = 7.2 Hz, H-3'), 0.93 (s, 9H, TBS), 0.10 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 172.7 (q, C-1), 142.7 (q, Ph), 140.4 (q, Ph), 139.0 (q, Ph), 138.4 (q, Ph), 133.7 (q, Ph), 132.3 (t, Ph), 128.5 (t, Ph), 128.4 (t, Ph), 128.1 (t, Ph), 128.0 (t, Ph), 127.3 (t, Ph), 126.1 (t, Ph), 102.2 (q, C-4), 94.2 (s, MOM), 91.2 (q, C-5), 78.4 (t, C-1'), 68.3 (t, C-3), 56.9 (t, C-2'), 56.2 (p, MOM), 48.2 (s, C-4'), 45.5 (t, C-2), 26.2 (p, TBS), 23.0 (p, Mes), 21.1 (p, Mes), 16.6 (q, TBS), 14.0 (p, C-6), 13.8 (p, C-3'), -4.6 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₃₉H₅₃NO₆SSiNa: 714.3261 [M + Na]⁺; found: 714.3244 [M + Na]⁺.

(2*S*,3*S*)-5-(*tert*-Butyldimethylsilyl)-3-(methoxymethoxy)-2-methylpent-4-yn-1-ol (S81) and (2R,3S)-5-(*tert*-Butyldimethylsilyl)-3-(methoxymethoxy)-2-methylpent-4-ynal (63)

Ester **S80** (940 mg, 1.4 mmol, 1 eq) was dissolved in CH_2Cl_2 (20 ml) and the solution was cooled to -78 °C. DIBAL-H (4.5 ml, c = 1.2 mol/l in toluene, 5.4 mmol, 4 eq) was added and stirring was continued for 2 h at -78 °C. The reaction was terminated by addition of ethyl acetate and Na-K-tartrate was added. The mixture was stirred overnight at rt. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $10:1 \rightarrow 2:1$)

to yield aldehyde **63** (260 mg, 1.0 mmol, 72%) and alcohol **S81** (100 mg, 0.4 mmol, 27%) as colourless liquids.

S81: $R_f = 0.17$ (PE:EE = 4:1); $[\alpha]_D^{20} = -84.6$ (*c* = 1.0, CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 4.99 (d, 1H, *J* = 6.8 Hz, H-3), 4.60 (d, 1H, *J* = 6.5 Hz, MOM), 4.36 (d, 1H, *J* = 6.5 Hz, MOM), 3.74 (dd, 1H, *J* = 11.1, 4.1 Hz, H-1_a), 3.65 (dd, 1H, *J* = 11.1, 6.8 Hz, H-1_b), 3.40 (s, 3H, MOM), 2.06 (qddd, 1H, *J* = 6.8, 6.8, 6.8, 4.1 Hz, H-2), 1.06 (d, 3H, *J* = 6.8 Hz, H-6), 0.93 (s, 9H, TBS), 0.11 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 103.5 (q, C-4), 94.3 (s, MOM), 90.3 (q, C-5), 70.0 (t, C-3), 65.9 (s, C-1), 56.0 (p, MOM), 40.6 (t, C-2), 26.2 (p, TBS), 16.6 (q, TBS), 13.4 (p, C-6), -4.5 (p, TBS) ppm; **HRMS** (ESI): *m/z*: calculated for C₁₄H₂₉O₃Si: 273.1886 [M + H]⁺, found: 273.1892 [M + H]⁺.

63: $R_f = 0.36$ (PE:EE = 4:1); $[\alpha]_D^{20} = -106.6$ (c = 1.0, CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.81 (s, 1H, H-1), 4.98 (d, 1H, J = 6.8 Hz, MOM), 4.61 (d, 1H, J = 7.0 Hz, H-3), 4.58 (d, 1H, J = 6.8 Hz, MOM), 3.37 (s, 3H, MOM), 2.72 (qdd, 1H, J = 7.0, 6.9, 1.5 Hz, H-2), 1.21 (d, 3H, J = 6.9 Hz, H-6), 0.93 (s, 9H, TBS), 0.11 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 202.5 (t, C-1), 102.0 (q, C-4), 94.2 (s, MOM), 91.7 (q, C-5), 66.6 (t, C-3), 56.1 (p, MOM), 50.9 (t, C-2), 26.2 (p, TBS), 16.6 (q, TBS), 10.8 (p, C-6), -4.6 (p, TBS) ppm; **HRMS** (ESI): m/z: calculated for C₁₄H₂₆NaO₃Si: 293.1549 [M + Na]⁺, found: 293.1550 [M + Na]⁺.

(2E,4E,7S,8S,9S)-Ethyl 11-(*tert*-butyldimethylsilyl)-7-hydroxy-9-(methoxymethoxy)-4,8dimethylundeca-2,4-dien-10-ynoate (7,8-*anti*,8,9-*anti*-71a) and

(2*E*,4*E*,7*R*,8*S*,9*S*)-ethyl-11-(*tert*-butyldimethylsilyl)-7-hydroxy-9-(methoxymethoxy)-4,8dimethylundeca-2,4-dien-10-ynoate (7,8-*syn*,8,9-*anti* 71b)

Following the general procedure, aldehyde **63** (40 mg, 0.15 mmol, 1.0 eq) was reacted with ester **6** (46 mg, 0.30 mmol, 2.0 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 5:1$) to furnish alcohols 7,8-*anti*,8,9-*anti* **71a** and 7,8-*syn*,8,9-*anti* **71b** [*d.r.*: 1:2 (**71b**:**71a**), 37 mg, 0.09 mmol, 58%] as a yellow liquid. In addition, another isomer was detected by NMR spectroscopy, which we propose to be the 4Z-isomer. However, clear analytical proof could not be collected.

7,8-*anti*,8,9-*anti* **71a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.35 (d, 1H, J = 15.7 Hz, H-3), 6.04 (dd, 1H, J = 7.2, 7.2 Hz, H-5), 5.81 (d, 1H, J = 15.7 Hz, H-2), 4.99 (d, 1H, J = 6.7 Hz, MOM), 4.61 (d, 1H, J = 6.7 Hz, MOM), 4.53 (d, 1H, J = 6.1 Hz, H-9), 4.20 (q, 2H, J = 7.2 Hz, H-14), 3.74 (ddd, 1H, J = 7.9, 7.9, 3.4 Hz, H-7), 3.38 (s, 3H, MOM), 2.64 (s, 1H, OH), 2.30-2.56 (m, 2H, H-6), 1.91-2.01 (m, 1H, H-8), 1.81 (s, 3H, H-12), 1.29 (t, 3H, J = 7.2 Hz, H-15), 1.03 (d, 3H, J = 6.8 Hz, H-13), 0.93 (s, 9H, TBS), 0.11 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.3 (t, C-3), 137.6 (t, C-5), 135.1 (q, C-4), 116.3 (t, C-2), 103.1 (q, C-10), 94.3 (s, MOM), 90.8 (q, C-11), 73.6 (t, C-9), 69.3 (t, C-7), 60.4 (s, C-14), 56.1 (p, MOM), 43.4 (t, C-8), 34.1 (s, C-6), 26.2 (p, TBS), 16.6 (q, TBS), 14.5 (p, C-15), 12.6 (p, C-13), 12.6 (p, C-12), -4.5 (p, TBS), -4.6 (p, TBS) ppm.

7,8-*syn*,8,9-*anti* **71b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.32 (d, 1H, J = 15.5 Hz, H-3), 5.92 (dd, 1H, J = 7.3, 7.3 Hz, H-5), 5.81 (d, 1H, J = 15.5 Hz, H-2), 4.96 (d, 1H, J = 6.7 Hz, MOM), 4.60 (d, 1H, J = 6.7 Hz, MOM), 4.39 (d, 1H, J = 4.8 Hz, H-9), 4.19-4.27 (m, 1H, H-7), 4.20 (q, 2H, J = 7.2 Hz, H-14), 3.38 (s, 3H, MOM), 2.30-2.56 (m, 2H, H-6), 2.28 (s, 1H, OH), 1.82-1.90 (m, 1H, H-8), 1.81 (s, 3H, H-12), 1.29 (t, 3H, J = 7.2 Hz, H-15), 1.08 (d, 3H, J = 6.8 Hz, H-13), 0.93 (s, 9H, TBS), 0.11 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.0 (t, C-3), 137.8 (t, C-5), 134.7 (q, C-4), 116.3 (t, C-2), 103.7 (q, C-10), 94.4 (s, MOM), 90.7 (q, C-11), 71.0 (t, C-9), 70.5 (t, C-7), 60.4 (s, C-14), 56.1 (p, MOM), 42.1 (t, C-8), 34.1 (s, C-6), 26.2 (p, TBS), 16.6 (q, TBS), 14.5 (p, C-15), 12.6 (p, C-12), 10.0 (p, C-13), -4.5 (p, TBS), -4.6 (p, TBS) ppm.

TBS-protected MASAMUNE aldol product S82

 $425.2729 [M + H]^+$.

Aldol product **S79** (2.0 g, 3.1 mmol, 1 eq) was dissolved in CH_2Cl_2 (45 ml) and the solution was cooled to 0 °C. 2,6-Lutidine (1.4 ml, 12.3 mmol, 4 eq) and TBSOTf (1.4 ml, 6.2 mmol, 2 eq) were added and the reaction mixture was stirred for 1.5 h. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with

CH₂Cl₂. The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 10:1$) to furnish alcohol **S82** (2.3 g, 3.0 mmol, 96%) as a colourless oil.

 R_f = 0.50 (PE:EE = 5:1); $[a]_D^{20}$ = +17.6 (*c* = 1.0, CHCl₃); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.35-7.40 (m, 2H, Ph), 7.15-7.33 (m, 4H, Ph), 7.07-7.14 (m, 2H, Ph), 6.87-6.90 (m, 2H, Ph), 6.71-6.75 (m, 2H, Ph), 5.70 (d, 1H, *J* = 5.8 Hz, H-1'), 4.85 (d, 1H, *J* = 16.4 Hz, H-4_a'), 4.57 (d, 1H, H-3), 4.43 (d, 1H, *J* = 16.4 Hz, H-4_b'), 4.04 (qd, 1H, *J* = 6.6, 5.8 Hz, H-2'), 2.65 (dq, 1H, *J* = 7.8, 7.3 Hz, H-2), 2.43 (s, 6H, Mes), 2.31 (s, 3H, Mes), 1.15 (d, 3H, *J* = 6.6 Hz, H-3'), 1.11 (d, 3H, *J* = 7.3 Hz, H-6), 0.91 (s, 9H, TBS), 0.86 (s, 9H, TBS), 0.13 (s, 3H, TBS), 0.08 (s, 3H, TBS), 0.07 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 172.1 (q, C-1), 142.5 (q, Ph), 140.4 (q, Ph), 138.6 (q, Ph), 138.2 (q, Ph), 133.2 (q, Ph), 132.2 (t, Ph), 128.4 (t, Ph), 128.3 (t, Ph), 128.2 (t, Ph), 127.9 (t, Ph), 127.3 (t, Ph), 126.3 (t, Ph), 105.5 (q, C-4), 89.4 (q, C-5), 77.9 (t, C-1'), 65.2 (t, C-3), 56.7 (t, C-2'), 48.2 (s, C-4'), 47.5 (t, C-2), 26.0 (p, TBS), 25.8 (p, TBS), 22.9 (p, Mes), 20.9 (p, Mes), 18.2 (q, TBS), 16.4 (q, TBS), 14.5 (p, C-3'), 13.2 (p, C-6), -4.7 (p, TBS), -4.8 (p, TBS), -4.9 (p, TBS) ppm; **HRMS** (ESI): *m*/z: calculated for C₃₄H₆₃NNaO₅Si₂S: 784.3863 [M + Na]⁺, found: 784.3870 [M + Na]⁺.

(2*S*,3*S*)-5-(*tert*-Butyldimethylsilyl)-3-(*tert*-butyldimethylsilyloxy)-2-methylpent-4-yn-1-ol (S83)

Ester **S82** (2.2 g, 2.9 mmol, 1 eq) was dissolved in CH₂Cl₂ (40 ml) and the solution was cooled to -78 °C. DIBAL-H (9.5 ml, c = 1.2 mol/l in toluene, 11.4 mmol, 4 eq) was slowly added and stirring was continued for 1.5 h at -78 °C. The reaction was terminated by addition of ethyl acetate and aq. Na-K-tartrate was added and the mixture was stirred overnight at rt. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 50:1 \rightarrow 10:1) to furnish alcohol **S83** (925 mg, 2.7 mmol, 94%) as a colourless liquid.

 $R_f = 0.50$ (PE:EE = 5:1); [α]_D²⁰ = -45.3 (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 4.34 (d, 1H, *J* = 6.2 Hz, H-3), 3.81 (dd, 1H, *J* = 10.9, 3.5 Hz, H-1_a), 3.63 (dd,

1H, J = 10.9, 6.5 Hz, H-1_b), 2.10 (brs, 1H, OH), 1.93 (qddd, 1H, J = 6.9, 6.5, 6.2, 3.5 Hz, H-2), 1.02 (d, 3H, J = 6.9 Hz, H-6), 0.93 (s, 9H, TBS), 0.91 (s, 9H, TBS), 0.17 (s, 3H, TBS), 0.14 (s, 3H, TBS), 0.10 (s, 6H, TBS) ppm; 13 C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 107.0 (q, C-4), 88.8 (q, C-5), 68.1 (t, C-3), 66.0 (s, C-1), 42.1 (t, C-2), 26.2 (p, TBS), 25.9 (p, TBS), 18.3 (q, TBS), 16.6 (q, TBS), 13.6 (p, C-6), -4.3 (p, TBS), -4.6 (p, TBS), -5.0 (p, TBS) ppm; **HRMS** (ESI): m/z: calculated for C₁₈H₃₉O₂Si₂: 343.2484 [M + H]⁺, found: 343.2480 [M + H]⁺.

(2R,3S)-5-(tert-Butyldimethylsilyl)-3-(tert-butyldimethylsilyloxy)-2-methylpent-4-ynal (64)

Alcohol **S83** (60 mg, 0.18 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (3.5 ml) and NaHCO₃ (10 mg) as well as DESS-MARTIN periodinane (90 mg, 0.21 mmol, 1.2 eq) were added and the solution was stirred for 1 h at rt. The reaction was terminated by addition of aq. Na₂S₂O₃ and stirring was continued for 1 h at rt. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 30:1) to furnish aldehyde 64 (58 mg, 0.17 mmol, 96%) as a colourless liquid, which was used immediately in the next step. $R_f = 0.73$ (PE:EE = 10:1).

(2E,4E,7S,8S,9S)-Ethyl-11-(tert-butyldimethylsilyl)-9-(tert-butyldimethylsilyloxy)-7hydroxy-4,8-dimethylundeca-2,4-dien-10-ynoate (7,8-anti,8,9-anti 72a) and (2E,4E,7R,8S,9S)-ethyl-11-(tert-butyldimethylsilyl)-9-(tert-butyldimethylsilyloxy)-7hydroxy-4,8-dimethylundeca-2,4-dien-10-ynoate (7,8-syn,8,9-anti 72b)

7,8-anti,8,9-anti 72a

Following the general procedure, aldehyde 64 (57 mg, 0.17 mmol, 1 eq) was reacted with ester 6 (52 mg, 0.34 mmol, 2 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 10:1$) to furnish alcohols 7,8*anti*,8,9-*anti* **72a** and 7,8-*syn*,8,9-*anti* **72b** (*d.r.*: 1:1, 73 mg, 0.15 mmol, 88%) as yellow liquids.

HRMS (ESI): m/z: calculated for C₂₇H₅₁O₄Si₂ and C₂₇H₅₀NaO₄Si₂: 495.3326 [M + H]⁺ and 517.3145 [M + Na]⁺, found: 495.3344 [M + H]⁺ and 517.3138 [M + Na]⁺.

7,8-*anti*,8,9-*anti* **72a**: $R_f = 0.38$ (PE:EE = 10:1); $[\alpha]_D^{20} = -1.4$ (c = 0.4, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.37 (d, 1H, J = 15.7 Hz, H-3), 6.07 (dd, 1H, J = 6.8, 6.8 Hz, H-5), 5.81 (d, 1H, J = 15.7 Hz, H-2), 4.46 (d, 1H, J = 6.5 Hz, H-9), 4.21 (q, 2H, J = 7.0 Hz, H-14), 3.75 (ddd, 1H, J = 7.5, 7.5, 36 Hz, H-7), 3.03 (brs, 1H, OH), 2.47-2.56 (m, 1H, H-6_a), 2.35-2.45 (m, 1H, H-6_b), 1.81-1.91 (m, 1H, H-8), 1.80 (s, 3H, H-12), 1.30 (t, 3H, J = 7.0 Hz, H-15), 0.97 (d, 3H, J = 6.8 Hz, H-13), 0.93 (s, 9H, TBS), 0.91 (s, 9H, TBS), 0.18 (s, 3H, TBS), 0.15 (s, TBS), 0.10 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.5 (t, C-3), 138.0 (t, C-5), 134.7 (q, C-4), 116.0 (t, C-2), 106.8 (q, C-10), 89.4 (q, C-11), 73.9 (t, C-9), 67.5 (t, C-7), 60.3 (s, C-14), 45.2 (t, C-8), 34.2 (s, C-6), 26.2 (p, TBS), 25.9 (p, TBS), 18.3 (q, TBS), 16.6 (q, TBS), 14.5 (p, C-15), 12.8 (p, C-13), 12.6 (p, C-12), -4.2 (p, TBS), -4.6 (p, TBS), -4.9 ppm.

7,8-*syn*,8,9-*anti* **72b**: $\mathbf{R}_f = 0.39$ (PE:EE = 10:1); $[\alpha]_D^{20} = +0.4$ (c = 0.6, CH₂Cl₂); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33 (d, 1H, J = 15.7 Hz, H-3), 5.92 (dd, 1H, J = 7.2, 7.2 Hz, H-5), 5.80 (d, 1H, J = 15.7 Hz, H-2), 4.36-4.44 (m, 2H, H-9 + H-7), 4.21 (q, 2H, J = 7.2 Hz, H-14), 3.16 (brs, 1H, OH), 2.41-2.52 (m, 1H, H-6_a), 2.25-2.35 (m, 1H, H-6_b), 1.65-1.75 (m, 1H, H-8), 1.80 (s, 3H, H-12), 1.30 (t, 3H, J = 7.2 Hz, H-15), 1.04 (d, 3H, J = 6.8 Hz, H-13), 0.93 (s, 9H, TBS), 0.90 (s, 9H, TBS), 0.18 (s, 3H, TBS), 0.13 (s, 3H, TBS), 0.01 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.4 (t, C-3), 138.0 (t, C-5), 134.6 (q, C-4), 116.2 (t, C-2), 106.6 (q, C-10), 89.4 (q, C-11), 71.3 (t, C-9), 69.0 (t, C-7), 60.3 (s, C-14), 42.8 (t, C-8), 34.2 (s, C-6), 26.2 (p, TBS), 25.8 (p, TBS), 18.2 (q, TBS), 16.6 (q, TBS), 14.5 (p, C-15), 12.5 (p, C-12), 10.1 (p, C-13), -4.4 (p, TBS), -4.6 (p, TBS), -4.6 (p, TBS), -5.3 (p, TBS) ppm.

(2*E*,4*E*,7*S*,8*S*,9*S*)-Ethyl-11-(tert-butyldimethylsilyl)-7,9-dihydroxy-4,8-dimethylundeca-2,4-dien-10-ynoate (7,8-*anti*,8,9-*anti* S84a) and

(2*E*,4*E*,7*R*,8*S*,9*S*)-ethyl-11-(*tert*-butyldimethylsilyl)-7,9-dihydroxy-4,8-dimethylundeca-2,4-dien-10-ynoate (7,8-*syn*,8,9-*anti* S84b)

7,8-syn,8,9-anti **S84b**

7,8-anti,8,9-anti **S84a**
A mixture of alcohols **71** [*d.r.*: 1:2 (**71b**:**71a**), 10 mg, 23 µmol, 1 eq] was dissolved in EtOH (1 ml) and concentrated aq. HCl (0.04 ml) was added. The solution was stirred for 5 d at rt. A second portion of concentrated aq. HCl (0.02 ml) was added and stirring was continued for 1 d at rt. The reaction was terminated by addition of aq. NaHCO₃, the layers were separated, the aqueous layer was extracted with CH₂Cl₂ and the combined, organic layers were dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1 \rightarrow 2:1). Diols 7,8-*syn*,8,9-*anti* **S84b** and 7,8-*anti*,8,9-*anti* **S84a** [*d.r.*: 1:2 (**S84b**:**S84a**), 7 mg, 17 mmol, 75%) were obtained as a colourless liquid.

R_f = 0.4 (PE:EE = 2:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): *m/z*: calculated for C₂₁H₃₇O₄Si: 381.2461 [M + H]⁺, found: 381.2460 [M + H]⁺. 7,8-*anti*,8,9-*anti* **S84a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.35 (d, 1H, *J* = 15.5 Hz, H-3), 6.02 (dd, 1H, *J* = 7.2, 7.2 Hz, H-5), 5.83 (d, 1H, *J* = 15.5 Hz, H-2), 4.54 (d, 1H, *J* = 6.8 Hz, H-9), 4.21 (q, 2H, *J* = 7.2 Hz, H-14), 3.73 (ddd, 1H, *J* = 7.9, 7.8, 3.7 Hz, H-7), 2.42-2.58 (m, 2H, H-6), 1.83-1.93 (m, 1H, H-8), 1.81 (s, 3H, H-12), 1.30 (t, 3H, *J* = 7.2 Hz, H-15), 1.02 (d, 3H, *J* = 6.8 Hz, H-13), 0.94 (s, 9H, TBS), 0.12 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.2 (t, C-3), 137.0 (t, C-5), 135.5 (q, C-4), 116.5 (t, C-2), 105.8 (q, C-10), 89.7 (q, C-11), 74.8 (t, C-9), 66.9 (t, C-7), 60.4 (s, C-14), 44.5 (t, C-8), 34.6 (s, C-6), 26.2 (p, TBS), 16.6 (q, TBS), 14.5 (p, C-15), 12.9 (p, C-12), 12.7 (p, C-13), -4.5 (p, TBS), -4.5 (p, TBS) ppm.

7,8-*syn*,8,9-*anti* **S84b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.32 (d, 1H, J = 15.7 Hz, H-3), 5.91 (dd, 1H, J = 7.3, 7.3 Hz, H-5), 5.83 (d, 1H, J = 15.7 Hz, H-2), 4.44 (d, 1H, J = 5.5 Hz, H-9), 4.28 (ddd, 1H, J = 7.8, 7.8, 6.1 Hz, H-7), 4.21 (q, 2H, J = 7.2 Hz, H-14), 2.30-2.51 (m, 2H, H-6), 1.46-1.64 (m, 1H, H-8), 1.81 (s, 3H, H-12), 1.30 (t, 3H, J = 7.2 Hz, H-15), 1.09 (d, 3H, J = 6.8 Hz, H-13), 0.94 (s, 9H, TBS), 0.12 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.1 (t, C-3), 137.2 (t, C-5), 135.2 (q, C-4), 116.6 (t, C-2), 106.5 (q, C-10), 89.5 (q, C-11), 71.7 (t, C-9), 67.1 (t, C-7), 60.4 (s, C-14), 42.8 (t, C-8), 34.2 (s, C-6), 26.2 (p, TBS), 16.6 (q, TBS), 14.5 (p, C-15), 12.6 (p, C-12), 10.1 (p, C-13), -4.5 (p, TBS), -4.5 (p, TBS) ppm.

Acetonide (7,8-anti,8,9-anti S85a) and (7,8-syn,8,9-anti S85b)

A mixture of diols **S84** [*d.r.*: 1:2 (**S84b**:**S84a**), 6.0 mg, 16 μ mol, 1 eq) was dissolved in CH₂Cl₂ (0.8 ml) and 2,2-dimethoxypropane (0.08 ml) and PPTS (1 mg, catalytic) were added. The reaction mixture was stirred for 3 h at rt. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 10:1). Acetonides 7,8-*syn*,8,9-*anti* **S85b** and 7,8-*anti*,8,9-*anti* **S85a** [*d.r.*: 1:1.5 (**S85b**:**S85a**), 3.4 mg, 8 μ mol, 50%) were obtained as a colourless liquid.

 $R_f = 0.56$ (PE:EE = 5:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): m/z: calculated for C₂₄H₄₉NaO₄Si: 443.2594 [M + Na]⁺, found: 443.2585 [M + Na]⁺.

7,8-*anti*,8,9-*anti* **S85**a: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.34 (d, 1H, J = 15.6 Hz, H-3), 6.00 (dd, 1H, J = 7.3, 6.9 Hz, H-5), 5.80 (d, 1H, J = 15.6 Hz, H-2), 4.28 (d, 1H, J = 10.5 Hz, H-9), 4.21 (q, 2H, J = 7.1 Hz, H-14), 3.58 (ddd, 1H, J = 10.3, 7.4, 3.3 Hz, H-7), 2.51 (ddd, 1H, J = 16.0, 6.9, 3.3 Hz, H-6_a), 2.35 (ddd, 1H, J = 16.0, 7.4, 7.3 Hz, H-6_b), 1.77 (s, 3H, H-12), 1.59-1.70 (m, 1H, H-8), 1.43 (s, 3H, H-17_a), 1.43 (s, 3H, H-17_b), 1.31 (q, 3H, J = 7.1 Hz, H-14), 0.96 (d, 3H, J = 6.7 Hz, H-13), 0.93 (s, 9H, TBS), 0.11 (s, 3H, TBS), 0.11 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.5 (t, C-3), 137.4 (t, C-5), 134.4 (q, C-4), 116.0 (t, C-2), 104.1 (q, C-10), 99.1 (q, C-16), 88.5 (q, C-11), 74.1 (t, C-7), 67.1 (t, C-9), 60.4 (s, C-14), 39.6 (t, C-8), 32.6 (s, C-6), 30.1 (p, C-17_a), 26.3 (p, TBS), 19.4 (p, C-17_b), 16.7 (q, TBS), 14.5 (p, C-15), 13.0 (p, C-13), 12.6 (p, C-12), -4.5 (p, TBS), -4.6 (p, TBS) ppm.

7,8-*syn*,8,9-*anti* **S85b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.32 (d, 1H, J = 15.7 Hz, H-3), 5.87 (dd, 1H, J = 7.7, 7.7 Hz, H-5), 5.82 (d, 1H, J = 15.7 Hz, H-2), 4.34 (d, 1H, J = 4.1 Hz, H-9), 4.21-4.30 (m, 1H, H-7), 4.22 (q, 2H, J = 7.0 Hz, H-14), 2.40 (ddd, 1H, J = 15.1, 7.7, 7.4 Hz, H-6_a), 2.29 (ddd, 1H, J = 15.1, 7.7, 7.2 Hz, H-6_b), 1.81-1.89 (m, 1H, H-8), 1.80 (s, 3H, H-12), 1.37 (s, 3H, H-17_a), 1.31 (q, 3H, J = 7.0 Hz, H-14), 1.25 (s, 3H, H-17_b), 1.06 (d, 3H, J = 6.8 Hz, H-13), 0.93 (s, 9H, TBS), 0.11 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.3 (t, C-3), 137.0 (t, C-5), 134.7 (q, C-4), 116.3 (t, C-2), 104.3 (q, C-10), 101.0 (q, C-16), 89.3 (q, C-11), 68.0 (t, C-7), 67.4 (t, C-9), 60.4 (s, C-14), 38.7 (t, C-8), 31.7 (s, C-6), 28.4 (p, C-17_a), 26.2 (p, TBS), 23.7 (p, C-17_b), 16.7 (q, TBS), 14.5 (p, C-15), 12.6 (p, C-12), 11.6 (p, C-13), -4.7 (p, TBS), -4.7 (p, TBS) ppm.

(*R*)-Ethyl-3-(methoxymethoxy)butanoate (S86)

Ethyl (*R*)-(-)-3-hydroxybutyrate (**S87**) (0.49 ml, 3.8 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (50 ml), cooled to 0 °C and ^{*i*}Pr₂NEt (6.26 ml, 37.8 mmol, 10.0 eq) was added. MOMCl (1.44 ml, 18.9 mmol, 5.0 eq) was added dropwise and the reaction mixture was stirred at rt overnight. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 30:1 \rightarrow 10:1) to furnish alcohol **S86** (630 mg, 3.6 mmol, 95%) as a colourless liquid.

R_f = 0.69 (PE:EE = 2:1); $[α]_D^{20}$ = -11.1 (*c* = 1.0, CHCl₃) [Lit.: -88.1 (*c* = 1.0, CHCl₃)]; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 4.67 (d, 1H, *J* = 7.0 Hz, MOM), 4.65 (d, 1H, *J* = 7.0 Hz, MOM), 4.14 (q, 2H, *J* = 7.1 Hz, H-5), 4.10-4.19 (m, 1H, H-3), 3.35 (s, 3H, MOM), 2.59 (dd, 1H, *J* = 15.2, 7.5 Hz, H-2_a), 2.41 (dd, 1H, *J* = 15.2, 5.5 Hz, H-2_b), 1.26 (t, 3H, *J* = 7.1 Hz, H-6), 1.25 (d, 3H, *J* = 6.2 Hz, H-4) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 171.4 (q, C-1), 95.5 (s, MOM), 70.5 (t, C-3), 60.6 (s, C-5), 55.5 (p, MOM), 42.6 (s, C-2), 20.7 (p, C-4), 14.4 (p, C-6) ppm; HRMS (ESI): *m*/*z*: calculated for C₈H₁₆NaO₄: 199.0946 [M + Na]⁺, found: 199.0950 [M + Na]⁺. The analytical data are in accordance with those reported in the literature.^{S11}

(R)-3-(Methoxymethoxy)butan-1-ol (S88)

Ester **S86** (611 mg, 3.5 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (50 ml) and the solution was cooled to -78 °C. DIBAL-H (8.7 ml, c = 1.2 mol/l in toluene, 10.4 mmol, 3.0 eq) was added dropwise and stirring was continued for 2 h. The solution was warmed up to -50 °C and stirred for another 1.5 h. A second portion of DIBAL-H (3.0 ml, c = 1.2 mol/l in toluene, 3.6 mmol, 1.0 eq) was added and the mixture was stirred for 1.5 h. The reaction was terminated by addition of ethyl acetate and warmed up to rt. Then, aq. Na-K-tartrate was added and after stirring overnight, the layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash

chromatography (petroleum ether : ethyl acetate = 2:1) to furnish alcohol **S88** (327 mg, 2.4 mmol, 70%) as a colourless liquid.

 $R_f = 0.16$ (PE:EE = 2:1); $[α]_D^{20} = -77.6$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃) = 7.26 ppm): δ 4.71 (d, 1H, *J* = 6.7 Hz, MOM), 4.62 (d, 1H, *J* = 6.7 Hz, MOM), 3.88-3.97 (m, 1H, H-3), 3.76-3.84 (m, 1H, H-1_a), 3.69-3.76 (m, 1H, H-1_b), 3.38 (s, 3H, MOM), 2.40-2.48 (m, 1H, OH), 1.67-1.81 (m, 2H, H-2), 1.20 (d, *J* = 6.5 Hz, H-4) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 95.1 (s, MOM), 72.4 (t, C-3), 60.3 (s, C-1), 55.7 (p, MOM), 39.3 (s, C-2), 20.4 (p, C-4) ppm; HRMS (ESI): *m/z*: Compound S88 could not be detected by mass spectrometry.

(R)-3-(Methoxymethoxy)butanal (73)

Alcohol **S88** (53 mg, 0.4 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (7.0 ml) and NaHCO₃ (20 mg) and the DESS-MARTIN periodinane (200 mg, 0.5 mmol, 1.2 eq) were added. The reaction mixture was stirred for 1 h at rt and the reaction was terminated by addition of aq. Na₂SO₃/NaHCO₃. After 1 h at rt, the layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 2:1) to furnish aldehyde **73** (27 mg, 0.2 mmol, 51%) as a colourless liquid, which was used immediately in the next step.

 $R_f = 0.43$ (PE:EE = 2:1); ¹H-NMR (200 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.80 (dd, 1H, J = 2.6, 1.7 Hz, H-1), 4.71 (d, 1H, J = 7.0 Hz, MOM), 4.63 (d, 1H, J = 7.0 Hz, MOM), 4.18-4.33 (m, 1H, H-3), 3.35 (s, 3H, MOM), 2.68 (ddd, 1H, J = 16.4, 7.3, 2.6 Hz, H-2_a), 2.51 (ddd, 1H, J = 16.4, 5.0, 1.7 Hz, H-1_b), 1.27 (d, 3H, J = 6.3 Hz, H-4) ppm.

(2E,4E,7S,9R)-Ethyl-7-hydroxy-9-(methoxymethoxy)-4-methyldeca-2,4-dienoate

(7,9-syn 75a) and

(2*E*,4*E*,7*R*,9*R*)-ethyl-7-hydroxy-9-(methoxymethoxy)-4-methyldeca-2,4-dienoate (7,9-*anti* 75b)

Following the general procedure, aldehyde **73** (27 mg, 0.2 mmol, 1.0 eq.) was reacted with ester **6** (62 mg, 0.4 mmol, 2.0 eq.) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $10:1 \rightarrow 1:1$) to furnish alcohols 7,9-*anti* **75b** and 7,9-*syn* **75a** [*d.r.*: 1.6:1 (**75a**:**75b**), 32 mg, 0.1 mmol, 56%] as yellow liquids.

HRMS (ESI): m/z: calculated for C₁₅H₂₆NaO₅: 309.1678 [M + Na]⁺, found: 309.1679 [M + Na]⁺.

7,9-*syn* **75a**: $R_f = 0.26$ (PE:EE = 2:1); $[\alpha]_D^{20} = -36.3$ (c = 0.8, CH₂Cl₂); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.34 (d, 1H, J = 15.7 Hz, H-3), 5.95 (dd, 1H, J = 7.9, 7.2 Hz, H-5), 5.81 (d, 1H, J = 15.7 Hz, H-2), 4.76 (d, 1H, J = 7.0 Hz, MOM), 4.62 (d, 1H, J = 7.0 Hz, MOM), 4.20 (q, 2H, J = 7.2 Hz, H-12), 3.88-4.00 (m, 2H, H-7 + H-9), 3.39 (s, 3H, MOM), 2.31-2.47 (m, 2H, H-6), 1.80 (s, 3H, H-11), 1.55-1.73 (m, 2H, H-8), 1.29 (t, 3H, J = 7.2 Hz, H-13), 1.20 (d, 3H, J = 6.2 Hz, H-10) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.4 (t, C-3), 137.4 (t, C-5), 134.8 (q, C-4), 116.3 (t, C-2), 94.6 (s, MOM), 73.9 (t, C-7), 71.1 (t, C-9), 60.3 (s, C-12), 56.0 (p, MOM), 43.7 (s, C-8), 37.0 (s, C-6), 20.5 (p, C-10), 14.5 (p, C-13), 12.6 (p, C-11) ppm.

7,9-*anti* **75b**: $R_f = 0.24$ (PE:EE = 2:1); $[\alpha]_D^{20} = -24.1$ (c = 0.6, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.34 (d, 1H, J = 15.7 Hz, H-3), 5.97 (dd, 1H, J = 8.4, 7.3 Hz, H-5), 5.81 (d, 1H, J = 15.7 Hz, H-2), 4.70 (d, 1H, J = 6.7 Hz, MOM), 4.62 (d, 1H, J = 6.7 Hz, MOM), 4.21 (q, 2H, J = 7.1 Hz, H-12), 3.95-4.07 (m, 2H, H-7 + H-9), 3.40 (s, MOM), 2.32-2.50 (m, 2H, H-6), 1.80 (s, 3H, H-11), 1.59-1.65 (m, 2H, H-8), 1.30 (t, 3H, J = 7.1 Hz, H-13), 1.22 (d, 3H, J = 6.2 Hz, H-10) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.6 (q, C-1), 149.4 (t, C-3), 137.6 (t, C-5), 134.8 (q, C-4), 116.3 (t, C-2), 95.6 (s, MOM), 71.5 (t, C-9), 67.8 (t, C-7), 60.4 (s, C-12), 55.8 (p, MOM), 43.4 (s, C-8), 36.9 (s, C-6), 20.4 (p, C-10), 14.5 (p, C-13), 12.6 (p, C-11) ppm.

(R)-Ethyl-3-(tert-butyldimethylsilyloxy)butanoate (S89)

OTBS CO₂Et

Ethyl (*R*)-(-)-3-hydroxybutyrate (**S87**) (0.3 ml, 2.3 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (30 ml), cooled to 0 °C and 2,6-lutidine (1.05 ml, 9.1 mmol, 4.0 eq) and TBSOTf (1.04 ml, 4.5 mmol, 2.0 eq) were successively added. The reaction mixture was stirred for 1 h 0 °C and then for 1.5 h at rt. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were washed with aq. HCl (c = 1 mol/l), dried over MgSO₄ and the solvent was removed

under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 30:1) to furnish alcohol **S89** (529 mg, 2.2 mmol, 95%) as a colourless liquid.

 R_f = 0.34 (PE:EE = 20:1); [*α*]_D²⁰ = -19.2 (*c* = 1.0, CHCl₃) [Lit. S12.: -28.0 (*c* = 1.1, CHCl₃)]; ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 4.23-4.32 (m, 1H, H-3), 4.05-4.18 (m, 2H, H-5), 2.47 (dd, 1H, *J* = 14.5, 7.7 Hz, H-2_a), 2.36 (dd, 1H, *J* = 14.5, 5.3 Hz, H-2_b), 1.26 (t, 3H, *J* = 7.2 Hz, H-6), 1.19 (d, 3H, *J* = 6.2 Hz, H-4), 0.86 (s, 9H, TBS), 0.06 (s, 3H, TBS), 0.04 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 171.8 (q, C-1), 66.0 (t, C-3), 60.4 (s, C-5), 45.1 (s, C-2), 25.9 (p, TBS), 24.1 (p, C-4), 18.1 (q, TBS), 14.3 (p, C-6), -4.4 (p, TBS), -4.9 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₁₂H₂₆NaO₃Si: 269.1549 [M + Na]⁺, found: 269.1550 [M + Na]⁺. The analytical data are in accordance with those reported in the literature.^{S12}

(R)-3-(tert-Butyldimethylsilyloxy)butan-1-ol (S90)

Ester **S89** (510 mg, 2.1 mmol, 1.0 eq) was dissolved in CH₂Cl₂ (40 ml) and cooled to -78 °C. DIBAL-H (5.2 ml, c = 1.2 mol/l in toluene, 6.2 mmol, 3.0 eq) was added dropwise and the reaction mixture was stirred for 2 h. The solution was warmed to -50 °C and stirring was continued for 1.5 h. A second portion of DIBAL-H (1.8 ml, c = 1.2 mol/l in toluene, 2.2 mmol, 1.0 eq) was added and the reaction mixture was stirred for another 1.5 h. The reaction was terminated by addition of ethyl acetate, warmed to rt, aq. Na-K-tartrate was added and stirring was continued overnight. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $10:1 \rightarrow 5:1$) to furnish alcohol **S90** (317 mg, 1.6 mmol, 75%) as a colourless liquid.

R_f = 0.58 (PE:EE = 2:1); $[α]_D^{20}$ = -26.6 (*c* = 1.0, CHCl₃) [Lit. S13.: -28.0 (*c* = 2.1, CHCl₃)]; ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 4.11 (dqd, 1H, *J* = 6.6, 6.2, 4.1 Hz, H-3), 3.79-3.88 (m, 1H, H-1_a), 3.67-3.75 (m, 1H, H-1_b), 2.52-2.58 (m, 1H, OH), 1.78 (dddd, 1H, *J* = 14.1, 8.1, 4.1, 4.1 Hz, H-2_a), 1.63 (dddd, 1H, *J* = 14.1, 6.9, 6.6, 4.0 Hz, H-2_b), 1.20 (d, *J* = 6.2 Hz, H-4), 0.89 (s, 9H, TBS), 0.09 (s, 3H, TBS), 0.08 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 68.6 (t, C-3), 60.7 (s, C-1), 40.6 (s, C-2), 25.9 (p, TBS), 23.6 (p, C-4), 18.1 (q, TBS), -4.2 (p, TBS), -4.8 (p, TBS) ppm; **HRMS** (ESI): *m/z*:

(R)-3-(tert-Butyldimethylsilyloxy)butanal (74)

Alcohol **S90** (77 mg, 0.4 mmol, 1.0 eq) was dissolved in CH_2Cl_2 (7.5 ml) and NaHCO₃ (40 mg) and the DESS-MARTIN periodinane (240 mg, 0.6 mmol, 1.5 eq) were added and the reaction mixture was stirred for 75 min. The reaction was terminated by addition of aq. Na₂S₂O₃ and stirring was continued for 50 min. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 2:1$) to furnish aldehyde **74** (40.1 mg, 0.20 mmol, 53%) and the corresponding acid **S91** (31.1 mg, 140 µmol, 38%) as colourless liquids. Aldehyde **74** was used immediately in the next step.

74: $R_f = 0.67$ (PE:EE = 5:1); ¹**H-NMR** (200 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 9.80 (dd, 1H, J = 2.4, 2.2 Hz, H-1), 4.53 (ddq, 1H, J = 6.2, 6.1, 6.0 Hz, H-3), 2.38-2.63 (m, 2H, H-2), 1.24 (d, 3H, J = 6.2 Hz, H-4), 0.87 (s, 9H, TBS), 0.08 (s, 3H, TBS), 0.06 (s, 3H, TBS) ppm. The NMR-data are in accordance with those reported in the literature.^{S12,S13}

S91: $R_f = 0.25$ (PE:EE = 5:1); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 4.28 (qdd, 1H, J = 6.0, 5.9, 5.9 Hz, H-3), 2.42-2.57 (m, 2H, H-2), 1.25 (d, 3H, J = 6.0 Hz, H-4), 0.89 (s, 9H, TBS), 0.10 (s, 3H, TBS), 0.09 (s, 3H, TBS); ¹³**C-NMR** (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 174.9 (q, C-1), 65.9 (t, C-3), 43.9 (s, C-2), 25.8 (p, TBS), 23.6 (p, C-4), 18.1 (q, TBS), -4.4 (p, TBS), -5.0 (p, TBS) ppm; **HRMS** (ESI): m/z: calculated for C₁₀H₂₁O₃Si: 217.1260 [M - H]⁻, found: 217.1259 [M - Na]⁻.

(2*E*,4*E*,7*S*,9*R*)-Ethyl-9-(*tert*-butyldimethylsilyloxy)-7-hydroxy-4-methyldeca-2,4-dienoate (7,9-*syn* 76a) and

(2*E*,4*E*,7*R*,9*R*)-ethyl-9-(*tert*-butyldimethylsilyloxy)-7-hydroxy-4-methyldeca-2,4-dienoate (7,9-*anti* 76b)

Following the general procedure, aldehyde **74** (40 mg, 0.2 mmol, 1.0 eq) was reacted with ester **6** (61 mg, 0.4 mmol, 2.0 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $40:1 \rightarrow 2:1$) to furnish alcohols 7,9-*anti* **76b** and 7,9-*syn* **76a** [*d.r.*: 1:3 (**76b**:**76a**), 56 mg, 0.2 mmol, 79%] as a colourless liquid.

 $R_f = 0.36$ (PE:EE = 2:1); the diastereomers could not be separated by column chromatography; **HRMS** (ESI): m/z: calculated for C₁₉H₃₆NaO₄Si: 379.2281 [M + Na]⁺, found: 379.2280 [M + Na]⁺.

7,9-*syn* **76a**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.34 (d, 1H, *J* = 15.9 Hz, H-3), 5.96 (dd, 1H, *J* = 7.3, 7.3 Hz, H-5), 5.80 (d, 1H, *J* = 15.9 Hz, H-2), 4.20 (q, 2H, *J* = 7.1 Hz, H-12), 4.02-4.14 (m, 1H, H-9), 3.85-3.93 (m, 1H, H-7), 3.69 (s, 1H, OH), 2.28-2.47 (m, 2H, H-6), 1.79 (s, 3H, H-11), 1.56 (dd, 2H, *J* = 6.2, 6.1 Hz, H-8), 1.29 (t, 3H, *J* = 7.1 Hz, H-13), 1.17 (d, 3H, *J* = 6.2 Hz, H-10), 0.90 (s, 9H, TBS), 0.12 (s, 3H, TBS), 0.11 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.5 (t, C-3), 137.6 (t, C-5), 134.7 (q, C-4), 116.2 (t, C-2), 71.3 (t, C-7), 70.5 (t, C-9), 60.3 (s, C-12), 45.2 (s, C-8), 37.0 (s, C-6), 25.9 (p, TBS), 24.8 (p, C-10), 18.0 (q, TBS), 14.5 (p, C-13), 12.6 (p, C-11), -3.7 (p, TBS), -4.7 (p, TBS) ppm.

7,9-*anti* **76b**: ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.34 (d, 1H, *J* = 15.9 Hz, H-3), 5.96 (dd, 1H, *J* = 7.3, 7.3 Hz, H-5), 5.80 (d, 1H, *J* = 15.9 Hz, H-2), 4.20 (q, 2H, *J* = 7.1 Hz, H-12), 4.18-4.24 (m, 1H, H-9), 4.02-4.14 (m, 1H, H-9), 3.57 (s, 1H, OH), 2.28-2.47 (m, 2H, H-6), 1.79 (s, 3H, H-11), 1.56 (dd, 2H, *J* = 6.2, 6.1 Hz, H-8), 1.29 (t, 3H, *J* = 7.1 Hz, H-13), 1.23 (d, 3H, *J* = 6.5 Hz, H-10), 0.89 (s, 9H, TBS), 0.09 (s, 3H, TBS), 0.08 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.5 (t, C-3), 137.7 (t, C-5), 134.7 (q, C-4), 116.2 (t, C-2), 68.1 (t, C-7), 67.8 (t, C-9), 60.3 (s, C-12), 43.7 (s, C-8), 37.3 (s, C-6), 25.9 (p, TBS), 22.8 (p, C-10), 18.1 (q, TBS), 14.5 (p, C-13), 12.6 (p, C-11), -4.4 (p, TBS), -4.9 (p, TBS) ppm.

(2E,4E,7S,9R)-Ethyl-7,9-dihydroxy-4-methyldeca-2,4-dienoate (7,9-syn S92a) and (2E,4E,7R,9R)-ethyl-7,9-dihydroxy-4-methyldeca-2,4-dienoate (7,9-anti S92b)

7,9-syn **S92a**

A mixture of alcohols **76** [*d.r.*: 1:3 (**76b**:**76a**), 28 mg, 79 µmol, 1.0 eq] was dissolved in THF (1.4 ml) and cooled to 0 °C. TBAF·3H₂O (32 mg, 0.1 mmol, 1.3 eq) was dissolved in THF (0.9 ml) and added to the first solution. The reaction was terminated after 45 min by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 1:1) to furnish diols 7,9-*anti* **S92b** and 7,9-*syn* **S92a** [*d.r.*: ~1:2.5 (**S92b**:**S92a**), 18 mg, 75 µmol, 83%] as colourless liquids.

 $R_f = 0.20$ (PE:EE = 2:1); **HRMS** (ESI): *m/z*: Compound **S92** could not be detected by mass spectrometry.

7,9-*syn* **S92a**: $[\alpha]_D^{20} = -2.8 (c = 0.4, CH_2Cl_2)$; ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.32 (d, 1H, J = 15.5 Hz, H-3), 5.93 (dd, 1H, J = 7.3, 7.3 Hz, H-5), 5.82 (d, 1H, J = 15.5 Hz, H-2), 4.20 (q, 2H, J = 7.0 Hz, H-12), 4.02-4.10 (m, 1H, H-9), 3.94-4.01 (m, 1H, H-7), 2.31-2.52 (m, 2H, H-6), 1.79 (s, 3H, H-11), 1.47-1.66 (m, 2H, H-8), 1.29 (t, 3H, J = 7.0 Hz, H-13), 1.21 (d, 3H, J = 6.2 Hz, H-10) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.2 (t, C-3), 136.9 (t, C-5), 135.2 (q, C-4), 116.5 (t, C-2), 72.4 (t, C-7), 69.3 (t, C-9), 60.4 (s, C-12), 44.3 (s, C-8), 37.5 (s, C-6), 24.5 (p, C-10), 14.5 (p, C-13), 12.6 (p, C-11) ppm.

7,9-*anti* **S92b**: $[\alpha]_D^{20} = -0.9 (c = 0.4, CH_2Cl_2)$; ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.32 (d, 1H, J = 15.5 Hz, H-3), 5.93 (dd, 1H, J = 7.3, 7.3 Hz, H-5), 5.82 (d, 1H, J = 15.5 Hz, H-2), 4.20 (q, 2H, J = 7.0 Hz, H-12), 4.14-4.22 (m, 1H, H-9), 4.02-4.10 (m, 1H, H-7), 2.31-2.52 (m, 2H, H-6), 1.79 (s, 3H, H-11), 1.47-1.66 (m, 2H, H-8), 1.29 (t, 3H, J = 7.0 Hz, H-13), 1.24 (d, 3H, J = 6.2 Hz, H-10) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.2 (t, C-3), 137.3(t, C-5), 135.1 (q, C-4), 116.5 (t, C-2), 68.8 (t, C-7), 65.6 (t, C-9), 60.4 (s, C-12), 43.8 (s, C-8), 37.0 (s, C-6), 23.7 (p, C-10), 14.5 (p, C-13), 12.6 (p, C-11) ppm.

Acetonide (7,9-syn S93a)

7,9**-**syn **S93a**

Diol 7,9-*syn* **S92a** (8.6 mg, 19 μ mol, 1.0 eq) was dissolved in CH₂Cl₂ (2 ml) and 2,2-dimethoxypropane (0.2 ml) as well as PPTS (2 mg, catalytic) were added. The reaction

mixture was stirred for 1 h at rt. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $8:1 \rightarrow 2:1$) to furnish acetonide 7,9-*syn* **S93a** (2.3 mg, 8 µmol, 42%) as a colourless liquid. R_f = 0.76 (PE:EE = 1:1); $[\alpha]_D^{20} = +2.5$ (c = 0.2, CH₂Cl₂); ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.33 (d, 1H, J = 15.7 Hz, H-3), 5.92 (dd, 1H, J = 7.2, 7.2 Hz, H-5), 5.81 (d, 1H, J = 15.7 Hz, H-2), 4.21 (q, 2H, J = 7.2 Hz, H-12), 3.86-4.02 (m, 2H, H-9 + H-7), 2.28-2.49 (m, 2H, H-6), 1.78 (s, 3H, H-11), 1.46-1.55 (m, 2H, H-8), 1.45 (s, 3H, H-15_a), 1.41 (s, 3H, H-15_b), 1.30 (t, 3H, J = 7.2 Hz, H-13), 1.17 (d, 3H, J = 5.8 Hz, H-10) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.4 (t, C-3), 136.9 (t, C-5), 134.7 (q, C-4), 116.2 (t, C-2), 98.8 (q, C-14), 68.6 (t, C-7), 65.2 (t, C-9), 60.4 (s, C-12), 38.5 (s, C-8), 35.9 (s, C-6), 30.4 (p, C-15_b), 22.4 (p, C-10), 20.0 (p, C-15_a), 14.5 (p, C-13), 12.6 (p, C-11) ppm; **HRMS** (ESI): m/z: calculated for C₁₆H₂₆NaO₄: 305.1729 [M + Na]⁺, found: 305.1726 [M + Na]⁺.

Acetonide (7,9-anti S93b)

7,9**-**anti **S93b**

Diol 7,9-*anti* **S92b** (4.8 mg, 20 μ mol, 1.0 eq) was dissolved in CH₂Cl₂ (2 ml) and 2,2-dimethoxypropane (0.2 ml) as well as PPTS (2 mg, catalytic) were added. The reaction mixture was stirred for 1 h at rt. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 8:1 \rightarrow 2:1). Acetonide 7,9-*anti* **S93b** (2.7 mg, 10 μ mol, 48%) was obtained as a colourless liquid.

R_f = 0.75 (PE:EE = 1:1); $[\alpha]_D^{20}$ = -18.3 (*c* = 0.3, CH₂Cl₂); ¹**H-NMR** (400 MHz, C₆D₆, C₆D₅H = 7.16 ppm): δ 7.65 (d, 1H, *J* = 15.6 Hz, H-3), 5.97 (d, 1H, *J* = 15.6 Hz, H-2), 5.72 (dd, 1H, *J* = 7.1, 7.0 Hz, H-5), 4.11 (q, 2H, *J* = 7.1 Hz, H-12), 3.75-3.86 (m, 1H, H-9), 3.65-3.74 (m, 1H, H-7), 2.21 (ddd, 1H, *J* = 15.0, 7.0, 6.9 Hz, H-6_a), 2.05 (ddd, 1H, *J* = 15.0, 6.7, 6.7 Hz, H-6_b), 1.48 (s, 3H, H-11), 1.34 (s, 3H, H-15_a), 1.32 (s, 3H, H-15_b), 1.16-1.38 (m, 2H, H-8), 1.09 (d, 3H, *J* = 6.3 Hz, H-10), 1.03 (t, 3H, *J* = 7.1 Hz, H-13) ppm; ¹³C-NMR (100 MHz, C₆D₆, C₆D₆ = 128.06 ppm): δ 167.0 (q, C-1), 149.3 (t, C-3), 137.4 (t, C-5), 134.5 (q, C-4), 116.9 (t, C-2), 100.2 (q, C-14), 66.1 (t, C-7), 62.7 (t, C-9), 60.1 (s, C-12), 39.9 (s, C-8), 35.5 (s, C-6), 25.2 (p, C-15_b), 25.2 (p, C-15_a), 22.0 (p, C-10), 14.4 (p, C-13), 12.3 (p, C-11) ppm;

HRMS (ESI): m/z: calculated for C₁₆H₂₆NaO₄: 305.1729 [M + Na]⁺, found: 305.1729 [M + Na]⁺.

Alcohol S94

Alcohol **S94** was isolated from the reaction mixture of alcohol **77/S68** after acid treatment. It is supposed to be formed by a proton-mediated silyl shift.

 $R_f = 0.4$ (PE:EE = 2:1); $[α]_D^{20} = +8.4$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 3.78 (dd, 1H, *J* = 10.1, 3.9 Hz, H-1_a), 3.63-3.74 (m, 1H, H-3), 3.55 (dd, 1H, *J* = 10.1, 8.4 Hz, H-1_b), 1.59-1.71 (m, 1H, H-2), 1.18 (d, 3H, *J* = 6.2 Hz, H-4), 0.90 (s, 9H, TBS), 0.80 (d, 3H, *J* = 6.8 Hz, H-5), 0.08 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 73.4 (t, C-3), 69.2 (s, C-1), 41.5 (t, C-2), 26.0 (p, TBS), 21.5 (p, C-4), 18.2 (q, TBS), 13.5 (p, C-5), -5.5 (p, TBS), -5.5 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₁₁H₂₆NaO₂Si: 241.1600 [M + Na]⁺, found: 241.1598 [M + Na]⁺.

(S)-4-(tert-Butyldimethylsilyloxy)-3-methylbutan-2-one (78)

Alcohol **S94** (41 mg, 188 μ mol, 1.0 eq) was dissolved in CH₂Cl₂ (4 ml) and NaHCO₃ (20 mg) as well as the DESS-MARTIN periodinane (96 mg, 226 μ mol, 1.2 eq) were added. The reaction mixture was stirred for 1 h at rt. The reaction was terminated by addition of aq. Na₂S₂O₃ and stirring was continued for 1 h at rt. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 20:1) to furnish ketone **78** (26 mg, 121 μ mol, 64%) as a colourless liquid.

 $R_f = 0.53$ (PE:EE = 2:1); $[\alpha]_D^{20} = +13.7$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, C₆D₆, C₆D₅H = 7.16 ppm): δ 3.62 (dd, 1H, *J* = 9.9, 7.1 Hz, H-4_a), 3.45 (dd, 1H, *J* = 9.9, 5.6 Hz, H-4_b), 2.41

(qdd, 1H, J = 7.1, 7.1, 5.6 Hz, H-3), 1.84 (s, 3H, H-1), 0.92 (s, 9H, TBS), 0.86 (d, 3H, J = 7.1 Hz, H-5), 0.00 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, C₆D₆, C₆D₆ = 128.06 ppm): δ 209.0 (q, C-2), 65.7 (s, C-4), 49.2 (t, C-3), 29.2 (p, C-1), 26.2 (p, TBS), 18.4 (q, TBS), 13.0 (p, C-5), -5.4 (p, TBS) ppm.

Alcohols (7S)-79a and (7R)-79b

Following the general procedure, ketone **78** (23 mg, 0.11 mmol, 1.0 eq) was reacted with ester **6** (34 mg, 0.22 mmol, 2 eq) at -78 °C overnight. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = $30:1 \rightarrow 5:1$) to furnish alcohols (7*S*)-**79a** and (7*R*)-**79b** [*d.r.*: 1:1.5 (**79b**:**79a**), 22 mg, 0.06 mmol, 54%] as colourless liquids.

HRMS (ESI): m/z: calculated for C₂₀H₃₈NaO₄Si: 393.2461 [M + Na]⁺, found: 393.2449 [M + Na]⁺.

(7*R*)-**79b**: $R_f = 0.43$ (PE:EE = 5:1); Mixture with 7,8-*syn*,8,9-*anti* **68b**; ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.38 (d, 1H, *J* = 15.7 Hz, H-3), 6.14 (dd, 1H, *J* = 7.2, 7.2 Hz, H-5), 5.79 (d, 1H, *J* = 15.7 Hz, H-2), 4.38 (brs, 1H, OH), 4.20 (q, 2H, *J* = 7.2 Hz, H-13), 3.76 (dd, 1H, *J* = 10.2, 4.4 Hz, H-9_a), 3.65 (dd, 1H, *J* = 10.2, 8.5 Hz, H-9_b), 2.40 (d, 1H, *J* = 4.8 Hz, H-6_a), 2.38 (d, 1H, *J* = 4.8 Hz, H-6_b), 1.80-1.90 (m, 1H, H-8), 1.79 (s, 3H, H-10), 1.29 (t, 3H, *J* = 7.2 Hz, H-14), 1.14 (s, 3H, H-11), 0.90 (s, 9H, TBS), 0.80 (d, 3H, *J* = 7.2 Hz, H-12), 0.09 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.9 (t, C-3), 138.1 (t, C-5), 134.1 (q, C-4), 115.7 (t, C-2), 75.5 (t, C-7), 67.0 (t, C-9), 60.3 (s, C-13), 41.4 (t, C-8), 40.9 (s, C-6), 25.9 (p, TBS), 22.9 (p, C-11), 18.2 (q, TBS), 14.5 (p, C-14), 12.7 (p, C-12), 12.6 (p, C-10), -5.5 (p, TBS), -5.6 (p, TBS) ppm.

(7*S*)-**79a**: $R_f = 0.37$ (PE:EE = 5:1); $[\alpha]_D^{20} = -10.0$ (*c* = 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.36 (d, 1H, *J* = 15.5 Hz, H-3), 6.06 (dd, 1H, *J* = 7.3, 7.3 Hz, H-5), 5.79 (d, 1H, *J* = 15.5 Hz, H-2), 4.20 (q, 2H, *J* = 7.1 Hz, H-13), 4.08 (brs, 1H, OH), 3.88 (dd, 1H, *J* = 10.2, 4.1 Hz, H-9_a), 3.65 (dd, 1H, *J* = 10.2, 6.5 Hz, H-9_b), 2.36-2.41 (m, 1H, H-6), 1.79 (s, 3H, H-10), 1.71-1.78 (m, 1H, H-8), 1.29 (t, 3H, *J* = 7.1 Hz, H-14), 1.19 (s, 3H, H-11), 0.95 (d, 3H, *J* = 6.8 Hz, H-12), 0.90 (s, 9H, TBS), 0.09 (s, 6H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 167.7 (q, C-1), 149.8 (t, C-3), 138.0 (t, C-5), 134.4 (q, C-4), 115.8 (t, C-2), 75.5 (t, C-7), 67.0 (t, C-9), 60.3 (s, C-13), 42.6 (t, C-8), 37.5 (s, C-6),

26.6 (p, C-11), 25.9 (p, TBS), 18.2 (q, TBS), 14.5 (p, C-14), 12.7 (p, C-12), 12.6 (p, C-10), -5.6 (p, TBS), -5.6 (p, TBS) ppm.

Diol (7*R*)-**S95b**

Alcohol (7*R*)-**79b** (15 mg, 40 µmol, 1.0 eq) was dissolved in THF (1.5 ml) and the solution was cooled to 0 °C. TBAF·3H₂O (15 mg, 50 µmol, 1.2 eq) was added and the reaction mixture was stirred for 1 h at 0 °C. The reaction was terminated by addition of aq. NH₄Cl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined, organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether : ethyl acetate = 7:1 \rightarrow 2:1) to furnish diol (7*R*)-**S95b** (5 mg, 20 µmol, 49%) as a colourless liquid.

R_f = 0.20 (PE:EE = 1:1); $[α]_D^{20}$ = -0.6 (*c* = 0.2, MeOH); ¹H-NMR (500 MHz, CD₃OD, CD₂HOD = 3.31 ppm): δ 7.36 (d, 1H, *J* = 15.5 Hz, H-3), 6.14 (dd, 1H, *J* = 7.6, 7.4 Hz, H-5), 5.42 (d, 1H, *J* = 15.5 Hz, H-2), 4.19 (q, 2H, *J* = 7.1 Hz, H-13), 3.81 (dd, 1H, *J* = 10.5, 6.1 Hz, H-9_a), 3.47 (dd, 1H, *J* = 10.5, 7.0 Hz, H-9_b), 2.47 (dd, 1H, *J* = 15.2, 7.6 Hz, H-6_a), 2.41 (dd, 1H, *J* = 15.2, 7.4 Hz, H-6_b), 1.82 (s, 3H, H-10), 1.77 (dqd, 1H, *J* = 7.0, 6.8, 6.1 Hz, H-8), 1.29 (t, 3H, *J* = 7.1 Hz, H-14), 1.13 (s, 3H, H-12), 0.92 (d, 3H, *J* = 6.8 Hz, H-11) ppm; ¹³C-NMR (500 MHz, CD₃OD, CD₃OD = 77.16 ppm): δ 169.3 (q, C-1), 151.0 (t, C-3), 139.2 (t, C-5), 135.7 (q, C-4), 116.5 (t, C-2), 76.2 (q, C-7), 65.3 (s, C-9), 61.4 (s, C-13), 44.6 (s, C-6), 41.0 (t, C-8), 23.3 (p, C-12), 14.6 (p, C-14), 12.9 (p, C-10), 12.6 (p, C-11) ppm; **HRMS** (ESI): *m/z*: calculated for C₁₄H₂₄NaO₄: 279.1572 [M + Na]⁺, found: 279.1573 [M + Na]⁺.

Acetonide (7R)-80b

Diol (7*R*)-**S95b** (2 mg, 8 µmol, 1.0 eq.) was dissolved in CH₂Cl₂ (0.70 ml) and cooled to 0 °C and 2,2-dimethoxypropane (0.07 ml) as well as PPTS (0.2 mg, catalytic) were added and stirring was continued for 1 h at rt. The reaction was terminated by addition of Et₃N and the solvent was removed under reduced pressure. The crude product was purified by RP-HPLC (Macherey-Nagel NUCLEODUR C18 ISIS 5 µm, column: 250 mm x 8 mm, gradient: 50/50 water/MeOH \rightarrow 100 MeOH in 60 min, flow: 3.5 ml/min, t_r = 37.5 min). Diol (7*R*)-**80b** (1.5 mg, 5 µmol, 64%) was obtained as a colourless liquid.

 R_f = 0.8 (PE:EE = 1:1); $[a]_D^{20}$ = -5.9 (*c* = 0.1, MeOH); ¹H-NMR (500 MHz, CD₃OD, CD₂HOD = 3.31 ppm): δ 7.34 (d, 1H, *J* = 15.7 Hz, H-3), 6.12 (dd, 1H, *J* = 8.0, 7.2 Hz, H-5), 5.83 (d, 1H, *J* = 15.7 Hz, H-2), 4.19 (q, 2H, *J* = 7.2 Hz, H-13), 3.70 (dd, 1H, *J* = 11.7, 11.1 Hz, H-9_a), 3.60 (dd, 1H, *J* = 11.7, 4.9 Hz, H-9_e), 2.45 (dd, 1H, *J* = 15.2, 8.0 Hz, H-6_a), 2.39 (dd, 1H, *J* = 15.2, 7.2 Hz, H-6_b), 1.85-1.94 (m, 1H, H-8), 1.81 (s, 3H, H-10), 1.43 (s, 3H, H-12), 1.33 (s, 3H, H-16_e), 1.29 (t, 3H, *J* = 7.2 Hz, H-14), 1.27 (p, 3H, H-16_a), 0.80 (d, 3H, *J* = 7.1 Hz, H-11) ppm; ¹³C-NMR (500 MHz, CD₃OD, CD₃OD = 77.16 ppm): δ 169.3 (q, C-1), 151.2 (t, C-3), 139.5 (t, C-5), 135.6 (q, C-4), 116.4 (t, C-2), 99.4 (q, C-15), 78.1 (q, C-7), 63.5 (s, C-9), 61.4 (s, C-13), 42.1 (s, C-6), 36.6 (t, C-8), 31.1 (p, C-16_e), 25.3 (p, C-12), 22.6 (C-16_a), 14.6 (p, C-14), 12.6 (p, C-10), 12.4 (p, C-11) ppm; **HRMS** (ESI): *m/z*: calculated for C₁₇H₂₈NaO₄: 319.1885 [M + Na]⁺, found: 319.1892 [M + Na]⁺.

References

- S1. a) G. Vidari, S. Ferriño and P.A. Grieco, *J. Am. Chem. Soc.* 1984, **106**, 3539-3548; b) M. Ahmed, M. S. Mortensen and G.A. O'Doherty, *J. Org. Chem.* 2006, **71**, 7741-7746.
- S2. a) M. G. Organ, Y.V. Bilokin and S. Bratovanov, J. Org Chem. 2002, 67, 5176-5183; b)
- Y. Wu and X. Shen, Tetrahedron: Asymmetry 2000, 11, 4359-4363.
- S3. R.C. Harris, A.L. Cutter, K. J. Weissman, U. Hanefeld, M. C. Timoney and J. Staunton, *J. Chem. Res.*(S), **1998**, 283.
- S4. D. A. Evans and M. DiMare, J. Am. Chem. Soc. 1986, 108, 2476-2478.
- S5. D. A. Evans, J. R. Gage and J. L. Leighton, J. Am. Chem. Soc. 1992, 114, 9434-9453.
- S6. J.-A. Funel and J. Prunet, J. Org. Chem. 2004, 69, 4555-4558.
- S7. G. Guanti, L. Banfi and E. Narisano, Gazzetta Chimica Italiana 1989, 10, 527-532.
- S8. S. Tanaka, N. Tagashira, K. Chiba, M. Yasuda and A. Baba, J. Org. Chem. 2008, 73, 6312-6320.
- S9. M. Kurosu and M. Lorca, J. Org. Chem. 2001, 66, 1205–1209.

S10. a) T. Inoue, J. Liu, D.C. Buske, A. Abiko, J. Org. Chem. 2002, 67, 5250-5256; b) A.
Abiko, J. Liu and S. Masamune, J. Am. Chem. Soc. 1997, 119, 2586-2587.

S11. G. Bhalay, S. Clough, L. McLaren, A. Sutherland and C. L. Willis, *J. Chem. Soc., Perkin Trans. 1* 2000, 901-910.

S12. G. Solladié, L. Gressot and F. Colobert, Eur. J. Org. Chem. 2000, 357-364.

S13. D. S. Coffey, A. I. McDonald, L. E. Overman, M. H. Rabinowitz and P. A. Renhowe, J. Am. Chem. Soc. 2000, **122**, 4893–4903.

Attachement: representative NMR spectra

S128

.

,

S150

