Electronic Supplementary Information

Triterpenoids functionalized at C-2 as diagenetic transformation products of 2,3-dioxygenated triterpenoids from higher plants in buried wood

Gilles Schnell, Philippe Schaeffer, Estelle Motsch and Pierre Adam

1. Extraction, fractionation of the organic extract of the buried oak wood sample and isolation of compounds 5a, 7a-12

1.1 Isolation of compounds 5a, 7a-10a

Wood chips (26 g) were extracted by sonication (1 h, x 2) with a mixture of CH₂Cl₂/CH₃OH (1:1, v/v; 600 ml, x 2). The solvent extract was filtered through a cotton plug and the solvent removed under reduced pressure yielding 490 mg of crude extract. An aliquot of the extract (340 mg) was acetylated overnight at room temperature (Ac₂O/Pyridine 1:1 v/v, 4 ml). After removal of the solvent and excess reagent under reduced pressure, the acetylated extract was dissolved in CH₂Cl₂ and esterified using an ethereal solution of diazomethane. The derivatized extract was further fractionated by liquid chromatography on silica gel eluting with a mixture of CH₂Cl₂/AcOEt (92:8 v/v) into 21 fractions (F1 - F21) which were analyzed by GC and GC-MS. The fractions F10 (5.4 mg) and F11 (3.6 mg) were fractionated by reversed phase HPLC (Dupont, Zorbax ODS 5 μ m; 250 x 4.6 mm; CH₃OH/H₂0, 9:1 v/v; 1 ml min⁻¹), yielding *ca*. 2 mg of each compound **7a** and **8a** with a purity > 90% (GC).

Similarly, the fractions F15 (4.0 mg), F16 (4.2 mg) and F17 (4.2 mg) where further fractionated by reversed phase HPLC (Dupont, Zorbax ODS 5 mm; 250 x 4.6 mm;

CH₃OH/H₂0, 85:15 v/v; 0.8 ml min⁻¹), yielding compound **9a** and **10a** (*ca.* 1.5 mg of each) with a purity > 90% (GC) and < 1 mg of compound **5a**.

1.2 Isolation of compounds 11-12

Wood chips (43 g) were extracted by sonication (90 min) with a mixture of CH₂Cl₂/CH₃OH (1:1, v/v; 300 ml). The solvent extract was filtered through a cotton plug, and the solvent removed under reduced pressure, yielding 702 mg of crude extract. An aliquot of the extract (564 mg) was acetylated overnight at room temperature (Ac₂O/Pyridine 1:1 v/v, 4 ml). After removal of the solvent and excess reagent under reduced pressure, the acetylated extract was dissolved in CH₂Cl₂ and esterified using an ethereal solution of diazomethane. The derivatized extract was further fractionated by liquid chromatography on silica gel eluting with a mixture of CH₂Cl₂/AcOEt (92:8 v/v) into 15 fractions (F1 – F15) which were analyzed by GC and GC-MS. The fractions F5-F10 (26 mg) which contained compounds **11** and **12** were combined and further fractionated by reversed phase HPLC (Dupont, Zorbax ODS 5 μ m; 250 x 4.6 mm; CH₃OH/H₂0, 85:15 v/v; 0.8 ml min⁻¹), yielding < 1 mg of each compound **11** and **12** with a purity > 90% (GC).

2. NMR Data

2.1 Compound 8a

Figure 1: ¹H-NMR spectrum (600 MHz, CDCl₃) of compound 8a.

2.2 Compound 9a

Figure 3: ¹H-NMR spectrum (600 MHz, CDCl₃) of compound 9a

Figure 4: ¹³C-NMR spectrum (600 MHz, CDCl₃) of compound **9a**. C-13 and C-18 could not be seen due to the low amounts of compound **9a** available. ¹³C chemical shifts of C-13 and C-18 were deduced from the HMBC experiment.

2.3 Compound 11

Figure 5: ¹H-NMR spectrum (600 MHz, CDCl₃) of compound 11

Figure 6: ¹³C-NMR spectrum (500 MHz, CDCl₃) of compound 11

2.4 Compound 5a

Figure 7: ¹H-NMR spectrum (600 MHz, CDCl₃) of compound 5a