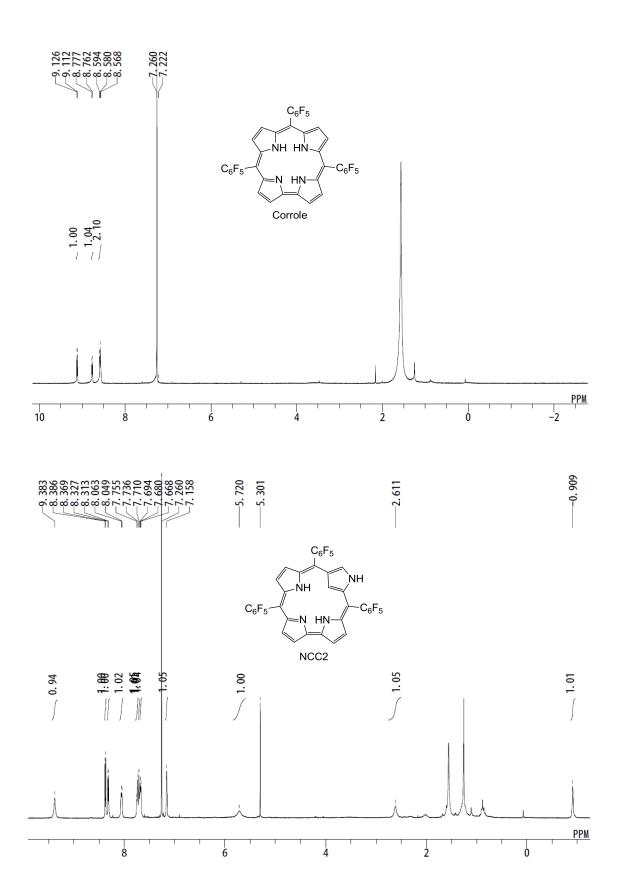
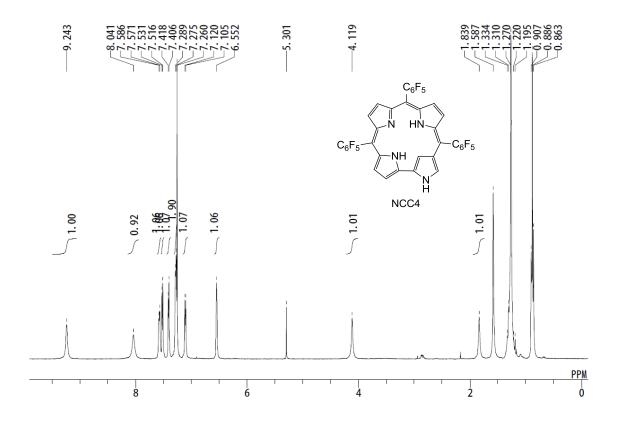
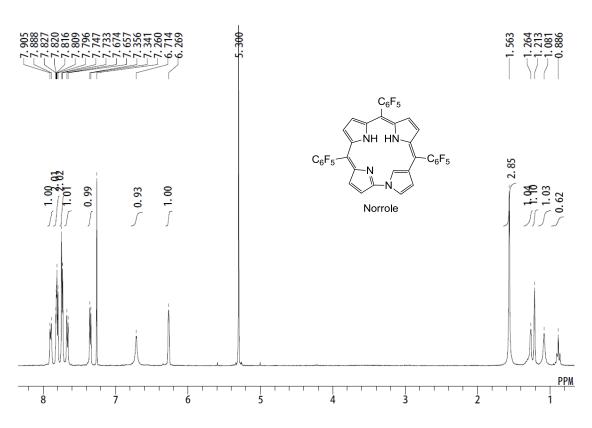
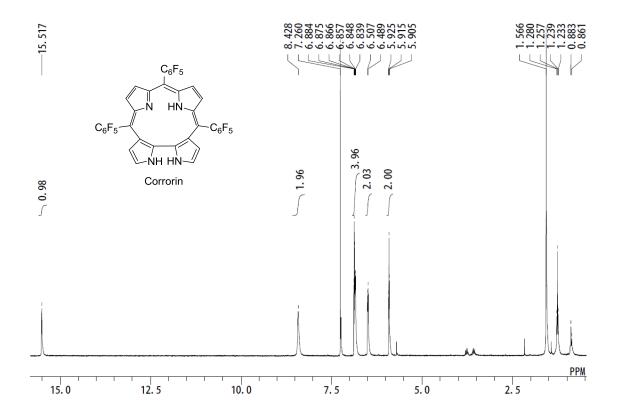
SUPPORTING INFORMATION

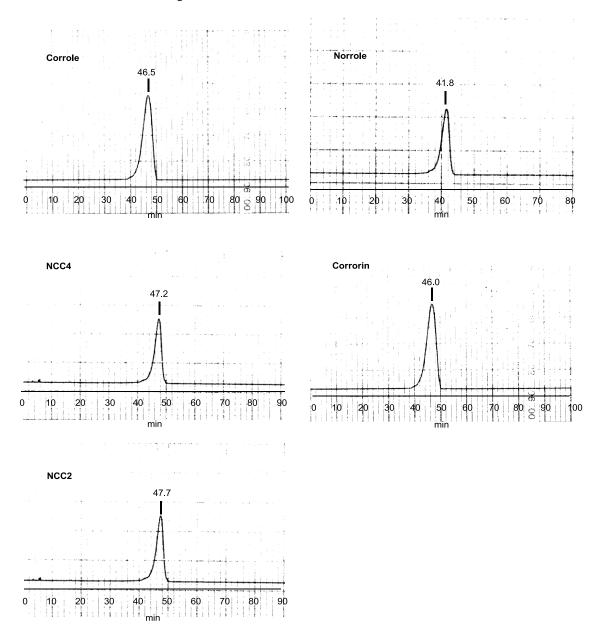

Corrole isomers: intrinsic gas-phase shapes *via* travelling wave ion mobility mass spectrometry and dissociation chemistries *via* tandem mass spectrometry


Maíra Fasciotti, ^a Alexandre F. Gomes, ^b Fabio C. Gozzo, ^b Bernardo A. Iglesias, ^c Gilberto F. de Sá, ^d Romeu J. Daroda, ^e Motoki Toganoh, ^f Hiroyuki Furuta, ^{*f} Koiti Araki ^{*c} and Marcos N. Eberlin ^{*a}


Contents


- (1) ¹H NMR spectra of all compounds.
- (2) **HPLC** traces of all compounds with their retention time.
- (3) DFT Calculations of the optimizatized energies (equilibrium geometry) using the Gaussian03 program for all the possible sites of protonation.
- (4) Collision cross sections (CCS) in $Å^2$ estimated by the MOBCAL program.

¹H NMR spectra of all compounds.



¹H NMR spectra were recorded in CDCl3 solution on a JNM-AL SERIES FT-NMR spectrometer (JEOL) at 300 MHz, and chemical shifts were reported relative to a residual proton of a deuterated solvent, CHCl3 (δ = 7.26) in ppm.

HPLC traces of all compounds with their retention time.

HPLC experiments were performed on a LC-9201R unit composed of a PI-50 pump 3702 UV-detector and JAIGEL-SH-043-15 column filled with silica gel (Japan Analytical Industry Co., Ltd). Eluent was $CH_2Cl_2/CH_3OH = 99/1$, and flow rate was 3.5 ml/min for all experiments.

Table S1. Energy optimization (equilibrium geometry) estimated by the Gaussian03 program, for ions representing all possible protonation sites of each isomer.

Species	Structure	E (hartree)	E _{NORMALIZED} (kcal mol ⁻¹)
Corrole_A*	F F N-H HN F F F	_	_
Corrole_B	F F NH H N F F	-3133.3353351	+37.82
Corrole_C	F F F NH HN F F F F F F	-3133.3444112	+32.12
Corrole_D	F F NH HN F F	-3133.3956063	0.00

^{*}Species Corrole_A is unstable and isomerizes to Corrole_D during geometry optimization.

Species	Structure	E (hartree)	E _{NORMALIZED} (kcal mol ⁻¹)
Corrorin_A*	F F NH HN F F	-	_
Corrorin_B	F F NH HN F F	-3133.3780051	0.00
Corrorin_C	E F F F F F F F F F F F F F F F F F F F	-3133.3004419	+48.67
Corrorin_D	F F NH N F F	-3133.3005566	+48.60

^{*}Species Corrorin_A is unstable and isomerizes to Corrorin_B during geometry optimization.

Species	Structure	E (hartree)	E _{NORMALIZED} (kcal mol ⁻¹)
NCC2_A*	F F P NHF F F F F F F F F F F F F F F F F F F	-3133.3407083	+25.01
NCC2_B		-3133.3084771	+45.24
NCC2_C	F F F F	-3133.3330736	+29.81
NCC2_D	F F NH F F	-3133.3805720	0.00

^{*}Species NCC2_A is unstable and isomerizes to NCC2_D during geometry optimization.

Species	Structure	E (hartree)	E _{NORMALIZED} (kcal mol ⁻¹)
NCC4_A	F F F F F F F F F F F F F F F F F F F	-3133.3769576	0.00
NCC4_B	F F N H F F N H	-3133.3309288	+28.88
NCC4_C	F F N HN F F F F F F F F F F F F F F F F	-3133.3039268	+45.83
NCC4_D*	F F N HN F F F H	_	_

^{*}Species NCC4_D is unstable and isomerizes to NCC4_A during geometry optimization.

Species	Structure	E (hartree)	E _{NORMALIZED} (kcal mol ⁻¹)
Norrole_A*	F F F F F F F F F F F F F F F F F F F	1	_
Norrole_B	F F NH H H H F F	-3133.3156630	+30.94
Norrole_C	F F NH HN F F F	-3133.3092324	+34.98
Norrole_D	F F NH HN F F F	-3133.3649717	0.00

^{*}Species Norrole_A is unstable and isomerizes to Norrole_D during geometry optimization.

Table S2. Collision cross sections (CCS) in $Å^2$ estimated by the MOBCAL program with the Trajectory Method (TM), for the ions of each isomer representing sites of protonation of lowest energy.

Species	Structure	CCS (Ų)
CORROLE		210.77
CORRORIN	F F F F F F F F F F F F F F F F F F F	209.78
NCC2	F F NH F F F	212.23
NCC4	F F F NH F F NH	210.11
NORROLE	F F NH HN F F F	209.27